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OUTLINE

• Programming models 

• Distributed Memories: the PGAS model 
• Some example 

• Streaming 
• Some example 

• Streaming with PGAS
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LOW-LEVEL PARALLEL PROGRAMMING MODELS 

• Message-Passing 
• Scalability and performance 

• Developer-based precise knowledge of code and overhead  

• Processes + communications (symmetric/collective, blocking/nonblocking)  

• Shared-Memory 
• Productivity 

• Global and uniform vision of data layout 

• Threads + synchronisations mechanisms (mutex, atomics, transactions, …)
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MPI IS LIKE A CAR, YOU CAN DRIVE DATA WHERE YOU LIKE 
–D.K. Panda, leader MVAPICH project at Ohio state Uni. 

MPI-3 
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EXPECTATIONS

Val D’Orcia, Tuscany, Italy

Car
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REALITY

Irregular data

Hot data spotsTransposed data
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32 Exascale Computing Project

No. of ECP Application Proposals a Software is Mentioned in

ANYWAY, MPI IS NO. 1 IN HPC Courtesy of P. Messina, director of ECP.  
No. of software proposals in US ECP 2017
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DISTRIBUTED SHARED (VIRTUAL) 
MEMORY — DSM OR DVSM

• Physically separated memories can be 
addressed as one logically shared 
address space 

• Hardware or software. Conceptually 
similar to Virtual Memory 

• Designed to distributed platform 
transparent to programmer i.e. 
“simplify programming” 

• “Vanilla” API  
• read(addr)

• write(value, adds)

• lock/unlock
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Already mature  20 years ago, 
now quite rotten

P. Jelica, M. Tomasevic, and V. Milutinovic. "Distributed shared 
memory: Concepts and systems." IEEE Parallel & Distributed 
Technology: Systems & Applications 4.2 (1996): 63-71.
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DSM: WHY THEY FAILED

• Started to simplify distributed code 

• To make them efficient, we made the memory consistency 
model very complex 

• This seriously affect the coding effort
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PGAS PROGRAMMING MODEL (DSM EVOLVED)

• A set of processor, each with own local memory 

• Part managed as private, part as shared 
• Sharing implemented HW or SW 

• Explicitly NUMA 
• Each location has an affinity with a processor 

• Model differentiates between local and remote data partitions 

• Explicitly partitioned 
• Collective synchronisations, i.e. barriers and fences

12



PGAS SYSTEM AT BARE BONES
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APPROACHES

Languages 

• Unified Parallel C (UPC)  

• Co-Array Fortran (CAF) 

• X10 

• Chapel  

• STAPL 

• Titanium

Libraries 

• UPC++ 

• OpenSHMEM 

• Global Arrays  

• DASH 
• … 

14



DASH Hello World K. Furlinger, C. Glass, J. Gracia, et al. DASH: Data Structures and Algorithms with Support for Hierarchical 
Locality. In Euro-Par Workshops, 2014. 
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OpenSHMEM “symmetric” 
memory model formerly know as Cray SHMEM (1993)



OPENSHMEM 
A OLD FASHIONED PGAS

• Perform computations in separate address spaces and explicitly pass data to 
and from different processes in the program 

• API 
• Library Setup: init, query  

• Symmetric Data Object Management: allocation, deallocation, reallocation:  

• Remote Memory Access: get (private←shared), put (shared←private) 

• Atomics: swap, inc, add, was, fetch_add 

• Synchronisation and Ordering: fence (i.e. flush inflight ops), quiet (ensure other completion), barrier 
• Collective Communication: broadcast, collection (i.e. gather), reduction  

• Mutual Exclusion: lock, testlock, unlock

17



OPENSHMEM HELLO WORLD!

#include	<stdio.h>		
#include	<mpp/shmem.h>		
int	main	(int	argc,	char	**argv){ 

int	me,	npes;	
 
start_pes	(0);	/*Library	Initialization*/		
me	=	_my_pe	();		
npes	=	_num_pes	();	
printf	("Hello	World	from	node	%d	of	%d\n",	me,	npes);		
return	0;		
}	



OPENSHMEM EXAMPLE



CHAPEL LIST WALK

class	Node	{	
		var	data:	real;	
		var	next:	Node;	
}	

//	List	init	(seq,	with	remote	operations)	
var	head				=	new	Node(0);	
var	current	=	head;	
for	i	in	1..numLocales-1	do	
		on	Locales[i]	{	
				current.next	=	new	Node(i);	
				current						=	current.next;	
		}	

//	List	walk	(seq)	

current	=	head;	
while	current	{	
		writeln("node	with	data	=	",	current.data,	"	on	locale	
",	current.locale.id);	
		current	=	current.next;	
}	
writeln();	

//	Data-driven	List	walk	(work	done	in	parallel	
//	Each	locale	WRITE	its	own	data	(own-compute)		

current	=	head;	
while	current	{	
		on	current	{	
				writeln("node	with	data	=	",	current.data,	"	on	locale	
",	here.id);	
				current	=	current.next;	
		}	

//	Deallocate	(seq)	

current	=	head;	
while	current	{	
		on	current	{	
				var	ptr	=	current;	
				current	=	current.next;	
				delete	ptr;	
		}	
}	
}
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PGAS 

• Overcomes some DSM criticality 

• Aiming at productivity for large scale  
• To overcome MPI —- not succeeding yet 

• Most of them build on top or interoperate with MPI 

• Designed for weak scalability (own-compute) → Data 
Parallelism 
• Not for streaming



Coroutines: McIlroy: 1968

Streams! Coroutines: McIlroy, 1968 



Notables – Novosibirsk - 1972
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Data Flow Workshop MIT Endicott House – 1977 

DennisArvindGita



IEEE STC DATAFLOW AND BEYOND 
HTTP://DFSTC.CAPSL.UDEL.EDU



• Data Stream Processing (DaSP)

• Real-time processing of continuous data streams 

• Processed on-the-fly with stringent Quality of Service (QoS)  

• Potentially irregular flows of data must be timely processed  
• detect anomalies, real-time incremental responses, etc.



Stream processing applications  D. Turaga, H. Andrade, B. Gedik, et al. Design principles for 
developing stream processing applications. Softw. Pract. 
Exper. 2010; 40:1073–1104



INTERSECTING DIFFERENT CS AREAS

• Control Systems (and CPS) 
• Including network processors, FPGAs, etc 

• Parallel Computing (shared memory) 
• StreamIt (2006), TBB, FastFlow (2009), RaftLib (2013), StreamBox (2016), … 

• BigData Analytics 
• Lambda, Kappa architectures 

• Apache + x ∈ {Kafka, Flink, Storm, Apex, Spark, … and counting} 

• Tensorflow (2015)







STREAMING: CORE PARADIGM

Tiziano De Matteis and Gabriele Mencagli. Keep Calm and React with Foresight: Strategies 
for Low- Latency and Energy-Efficient Elastic Data Stream Processing, PPoPP 2016.  





NETWORK OF EXECUTORS VS TASK GRAPH

• Graph of tasks 
• Dataflow — typically  DAG 

• Each node is a task  

• E.g. a C++ object 

• Problems: firing, scheduling, etc. 

• Network of executors 
• “Controlflow" — typically cyclic graph 

• E.g. threads or processes 

• Problems: pinning, mapping, pooling, etc.



FastFlow
http://mc-fastflow.sourceforge.net/

• Toreador (EC-RIA, H2020, ICT-16-2015 big data): TrustwOrthy model-
awaRE Analytics Data platfORm (2016, 36 months, total cost 6.5M €) 

• Rephrase (EC-RIA, H2020, ICT-2014-1): Refactoring Parallel 
Heterogeneous Resource-Aware Applications – a Software 
Engineering Approach (2015, 36 months, total cost 3.5M €) 

• HyVar (EC-RIA, H2020, ICT-2014-1): Scalable Hybrid Variability for 
Distributed Evolving Software Systems (2015, 36 months, total cost 
2.8M €) 

• REPARA (EC-STREP, 7th FP): Reengineering and Enabling 
Performance And poweR of Applications (2013, 36 months, total cost 
3.5M €) 

• ParaPhrase (EC-STREP, 7th FP): Parallel Patterns for Adaptive 
Heterogeneous Multicore Systems (2011, 42 months, total cost 4.2M €) 

• IBM Research 3 faculty awards 2015 (50K $) 
• Noesis Solutions: Machine learning for engineering 2015 (75K €) 
• A3CUBE Inc.: FastFlow/PGAS with in memory fabric 2014 
• NVidia Corp: CUDA Research Center at University of Torino 2013



SWSR QUEUES + MEDIATORS 
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GENERATE THE NETWORK 
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

Composing via mediator guarantee  
correctness (data races & deadlock freedom)
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GENERATE THE NETWORK 
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PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA 
DEPENDENCIES (THUS NO ATOMICS ARE NEEDED)

standard pointers
i.e.

synchronisation capabilities

shared memory

L3 L3

write read
no atomic read-update

operations

Shared-memory cache-coherent or  
non-coherent multicore

Synchronisations are in 
a message-passing 
style, but designers are 
not forced to think in a 
distributed way 

No copies are needed, 
the memory fences are 
but asynchrony helps 



PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA 
DEPENDENCIES (THUS NO ATOMICS ARE NEEDED)

PGAS/opaque pointers
i.e.

synchronisation capabilities

PGASL3 L3

write read
no atomic read-update

operations

One-sided
either eager “put” or lazy “get”

standard pointers
i.e.

synchronisation capabilities

shared memory

L3 L3

write read
no atomic read-update

operations

Shared-memory cache-coherent or  
non-coherent multicore Distributed GAM



BASED ON SINGLE-WRITER-SINGLE-READER FIFO 

• Does not require atomic 
• No fence under TSO, WriteFence under WO 

• J. Giacomoni et al. Fastforward for efficient pipeline parallelism: a 
cache-optimized concurrent lock-free queue. PPoPP 08 

• M. Aldinucci et al. An Efficient Unbounded Lock-Free Queue for Multi-
core Systems. Euro-Par 2012 

• Enough to support Producer-Consumer 
• Inherently asynchronous 
• Powerful enough to build a general purpose parallel 

programming model
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Bringing Parallel Patterns out of the corner: 
the P3ARSEC Benchmark Suite

Comparison over 3 di erent shared memory multicore architectures
(Intel Xeon, Intel Xeon Phi, IBM Power 8) using di erent implementations

 A Benchmark Suite for 
parallel patterns-based 

applications

Parallel Pattern design 
of 12 out of 13 PARSEC 
benchmark applications

Implementation with
FastFlow and SkePU2

publicly available

paragroup@di.unipi.it

M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and M. Torquati, 
“P3ARSEC: towards parallel patterns benchmarking” 

in Proceedings of the 32nd annual ACM Symposium on Applied Computing (SAC 2017)
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*Normalized with respect to Pthreads, averaged over all the benchmarks (the lower the better)
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D. De Sensi,  T. De Matteis, M. Torquati, G. Mencagli and  M. Danelutto,
“Bringing Parallel Patterns out of the corner: the P3ARSEC Benchmark Suite” 

Under Review in ACM Transactions on Architecture and Code Optimization

Detailed results and comparison with additional frameworks can be found in:

       Software available at:

http://calvados.di.unipi.it/paragroup/

http://github.com/paragroup/p3arsec 

FASTFLOW

http://calvados.di.unipi.it/paragroup/ 


• Compared in performance and features against: 
openMP, TBB, Pthreads, OpenSs, MPI,  …


• M. Aldinucci, M. Meneghin, and M. Torquati, 
“Efficient Smith-Waterman on multi-core with 
FastFlow,” Euromicro PDP 2010.


• 80+ papers from 2010



WINDOWED STREAM PROCESSING

S
A

B

8 9 787…

…

…

IN

IN(A)

IN(B)

window

…

…

…



WINDOWED STREAM PROCESSING

•  Windows approximate infinite stream history 
• tuple significance is often time-decaying 

• only the most recent tuples are kept 

• Different windowing policies 
• Sliding windows: window size + sliding factor 

• Session windows [Apache Flink, Apache Beam…] 

• Common implementation = Worker-side windowing (more 
parallelism)
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KEY-PARTITIONING (KP)

S
A

B

8 9 787…

9 78…

9 78…

IN

IN(A)

IN(B)

…

…

…



WINDOW-FARMING (WF)
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A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS 
DISTRIBUTED FASTFLOW V.2 — C++ GLOBAL MEMORY STACK

Platform

GAM  
Nets

GAM

Smart Global Pointers

Communication Library  
libfabric, MPI…

Task
RTS …

M. Drocco. Parallel Programming with Global 
Asynchronous Memory: Models, C++ APIs 
and Implementations. PhD. Thesis proposal, 
University of Torino, 2017 (not yet defended).  

Aldinucci, S. Campa, M. Danelutto, P. 
Kilpatrick, and M. Torquati, “Targeting 
Distributed Systems in FastFlow,” in Euro-Par 
2012 Workshops,



GLOBAL ASYNCHRONOUS MEMORY 
A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS (BASED ON FF)

• From MPI Style:  
communicate pointers  
(a.k.a., capabilities) 

• From DSM Style:  
shared address space 

➡Capability = both data reference 
and synchronization token

P

P

P
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M

data coordination



PUBLIC CAPABILITIES

• Read-only (single assignment) 

• Cacheable 

• Can be copied



PRIVATE CAPABILITIES

• Exclusive read-write 

• Not cacheable 

• Can be moved



GAM MEMORY MODEL

• (Trivial) Sequential Consistency 

• Avoiding consistency issues  
(vs solving as in DSM/PGAS) 

• SWMR cache-coherence invariant: 
• public → (NW)MR 

• private → SWSR

P P

M

P

SWITCH



SMART GLOBAL POINTERS

• Rooted in modern C++ 
• Intentional programming:  

public → shared, private → unique 

• Automatic Memory Management — the C++ way 
• Smartness = memory-reference lifetime binding 

• No memory leaks, no dangling pointers 

• No garbage collection (vs Java & friends)



PUBLIC POINTERS

public_ptr(T * const, Deleter);  
public_ptr<T> make_public(Args&&…); 

//copy constructor/assignment... 
//move constructor/assignment... 

public_ptr(private_ptr<T> &&); 
public_ptr& operator=(private_ptr<T> &&); 

std::shared_ptr<T> local(); 

void push(executor_id to); 
public_ptr<T> pull_public(const exec_id from); 
public_ptr<T> pull_public();

enables 
plain C++ code



PRIVATE POINTERS

private_ptr(T * const, Deleter);  
private_ptr<T> make_private(Args&&…); 

//move constructor/assignment… 

//NO copy constructor/assignment 

gam_unique_ptr<T> local(); //unique_ptr + custom deleter 

void push(executor_id to); 
private_ptr<T> pull_private(const exec_id from); 
private_ptr<T> pull_private();

enables 
plain C++ code



SMARTNESS FOR PUBLIC POINTERS

• Distributed reference counting protocol 

• Creation/copy/push trigger +1, destruction triggers -1 

• C++ shared pointers: atomic-based reference counting

+/-1

+/-1

A

rt
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C
ref. cnt

author

context unmap

+1
A rt B C

author

push



SMARTNESS FOR PRIVATE POINTERS

• Distributed memory releasing protocol 

• Destruction triggers releasing 

• C++ unique pointers: destruction-triggered release 

• Inherently simpler than public pointers (as unique vs shared)

x
A rt B

author

context unmap



KP - INHERENTLY EFFICIENT

• Disjoint IN(A)/IN(B) 
• each tuple accessed “exclusively” 

• GAM implementation 
• private pointers - exclusive capabilities 

• 1 RMA access per tuple
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WF - INHERENTLY COMPLEX

• IN(A) = IN(B) = IN 
• each tuple accessed “by-any” 

• GAM implementation 
• public pointers - read-only replicas 

• multiple RMA accesses per tuple
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GAM ADVANTAGES

• Passing capabilities versus data 
• efficient worker-side windowing 

• extreme case: static dispatching not viable
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HTP Video Restoration

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal Baboon
1024x1024

Restored



• A GAM implementation of ordering farm

HTP Video Restoration

GAM worker

I ORR RR

. . .

mutli-core/GPU
filterpre post
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filterpre post

GAM 
node
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communicator

C++/GPU code 
[GTC 2014]



HTP Video Restoration
720p Video Stream
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OCCAM cluster @ UniTO 
4x GPU nodes 

Nvidia Tesla k40 GPUs



EuroPar 2018 
Torino, Italy — 27-31 August  2018 Co-chairs: M. Aldinucci, L. Padovani, M. Torquati


