Autonomic Solutions for Parallel and Distributed Data
Stream Processing (Auto-DaSP) - Euro-Par 2017 Workshop

STREAMING IN THE PGAS ERrRA

Marco Aldinucci, Maurizio Drocco (%5:%) UNIVERSITA

University of Torino, Italy < £)) DEGLISTUDI

LSAD!L

4
RePHRASE == Toreador +EcHiPSet =<JNESUS ...

CCDSE | Network for Sustainable Ultrascale Computing

COMPILATION iz laidagvli

OUTLINE

- Programming models

. Distributed Memories: the PGAS model

- Some example

+ Streaming

- Some example

- Streaming with PGAS

L OW-LEVEL PARALLEL PROGRAMMING MODELS

-+ Message-Passing
- Scalability and performance

+ Developer-based precise knowledge of code and overhead

Processes + communications (symmetric/collective, blocking/nonblocking)

+ Shared-Memory

Productivity
- Global and uniform vision of data layout

- Threads + synchronisations mechanisms (mutex, atomics, transactions, ...)

MPI IS LIKE A CAR, YOU CAN DRIVE DATA WHERE YOU LIKE
-D.K. Panda, leader MVAPICH project at Ohio state Uni.

EXPECTATIONS

= m] R ke
<]“¥;_~ ‘_l"! S !("/
. /\ "‘:‘ﬂ\r” "

1

1

~
Y

I
7
= pild

[' A -1
J i e
)_ __xl":‘ ; _{ _/.' - =
f . :'/ = -]
" 2
S
l’ ‘J

-~

REALITY

——
EXASCAHALE COMPUTING PROJECT

30 -

|
- Lo -
i

2>
20 -
15 -

PROIDINV Y
WIHAW
AO0

0Ad PO
AdOAS

€le
NOLSId
SsaJ.

dVOW
orpnisuadQ
gado0
FHdIOWPYIN
Iaas/idd
MnogxQ
uadsy
vauvd
Yingvxg
4andvD
F100LDOdH
Spvaiyi0)
TADSVL
DULAD(]
UvYSiv(]
VINSV'Idd
a1av
XdH/MXdH
ILLd
n142dng
IdVd

ALAd

dS0O¥
OINO¥
++UADY D)
$10QO8AYy
WA
WATI
SAVLLY 190715
VINOVIN
Yovdvipog

L/Himng
VUL
daDizu/4adPud
M.LA/W- LA
STVIANNS
DISvd
MILId

OV.L
OI-IdW
sou1ji4],
MIINDAD]
VIV
uo01327
12NSVD
soIav
++DdI
1ISINA

2S.13d
SO0

DO vuadO
ddH
vand
dWuadQ
IdW

Courtesy of P. Messina, director of ECP.
No. of software proposals in US ECP 2017

ANYWAY, MPIl IS NO. 1 IN HPC

DISTRIBUTED SHARED (VIRTUAL)
MEMORY — DSM OR DVSM

- Physically separated memories can be

addressed as one logically shared
address space

- Hardware or software. Conceptually
similar to Virtual Memory

- Designed to distributed platform
transparent to programmer 1.e.
“simplify programming”

- "Vanilla” API
- read(addr)

- write(value, adds)
+ lock/unlock

Invocation

response

Mem
Manager

Shared Virtual Memory

Distributed Shared Memory

Table A. Software DSM implementations.

IMPLEMENTATION TYPE OF IMPLEMENTATION Type oF ALGORITHM || CoONSISTENCY MODEL | GRANULARITY UNIT COHERENCE POLICY
VY User-level library MRSW Sequential 1 Kbyte Invalidate

+ 0S modification
Mermaid User-level library MRSW Sequential 1 Kbyte, 8 Kbytes Invalidate

+ 0S modifications
Munin Runtime system + linker | Type-specific Release | Variable size objects | Type-specific

+ library + preprocessor | (SRSW, MRSW} | | (delayed

+ 0S modifications MRMW) update,

| invalidate)

Midway Runtime system MRMW . 1 | Entry, release, 4 Kbytes Update

+ compiler processor
TreadMarks User-level MRMW Lazy release 4 Kbytes Update,

| | invalidate

Blizzard User-level + OS kernel MRSW Sequential 32-128 bytes Invalidate

modification .
Mirage 0S kernel - MRSW Sequential 512 bytes Invalidate
Clouds 0S, out of kernel - MRSW | Inconsistent, 8 Kbytes Discard

| sequential segment when

unlocked
Linda Language MRSW Sequential Variable (tuple size) Implementation-
dependent
Orca Language MRSW Synchronization | Shared data Update
dependent object size

A‘ ready matu re 20 years agO, P. Jelica,. M. Tomasevic, and V. Mi'l'utinovic. "Distribu_ted_shared
| memory: Concepts and systems.” IEEE Parallel & Distributed
NOwW quite rotten

Technology: Systems & Applications 4.2 (1996): 63-71.

DSM: WHY THEY FAILED

- Started to simplity distributed code

- To make them efficient, we made the memory consistency
model very complex

- This seriously affect the coding effort

10

PGAS PROGRAMMING MODEL (DSM EVOLVED)

- A set of processor, each with own local memory

- Part managed as private, part as shared

- Sharing implemented HW or SW

- Explicitly NUMA
- Each location has an affinity with a processor

- Model differentiates between local and remote data partitions

- Explicitly partitioned

- Collective synchronisations, i.e. barriers and fences

12

PGAS SYSTEM AT BARE BONES

Partitioned Global Address Space (PGAS)

13

APPROACHES

Languages

- Unitied Parallel C (UPC)
- Co-Array Fortran (CAF)
- X10

- Chapel

- STAPL

- Titanium

Libraries

- UPC++

- OpenSHMEM
. Global Arrays
- DASH

14

#include <libdash.h>

int main(int argc, charx*x argvl[]) {
dash::init (&argc, &argv);

int myid
int size

dash::myid () ;
dash::size () ;

dash::array<int> key(size);

if (myid==0) A

for(i=0; i<size; i++) key[il=compute_key (...);

}

dash::barrier () ;

cout<<"Hello from unit,"<<myid<<" ,of "
<<size<<" mypkey_is"<<key[myid]<<endl;

dash::finalize () ;

DASH Hello World

O© 0O Tt W=

e
w N = O

DO DD b= = et e e
—_O © 00 ~J O Ot =

K. Furlinger, C. Glass, J. Gracia, et al. DASH: Data Structures and Algorithms with Support for Hierarchical

Locality. In Euro-Par Workshops, 2014.

15

(

PEO PE 1 PE N-1
[
&)
= Global and Static Global and Static Global and Static
& Variables Variables Variables
3
““v |\ — M oe_—- e
% § """'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_'_ ''' { X =shmem maIIoc(S|zeof(Iong)) sl
28 | Variable: X Varlable X --------------------------------- Varlable X
o ___
S TR N T S A P O S
O ®©
‘; O Symmetric Heap Symmetric Heap Symmetric Heap
[0}
: Q Q O
-
[
oc
.
ﬁ
©
T
(]
@ g Local Variables Local Variables Local Variables
20
o

OpenSHMEM “symmetric”

formerly know as Cray SHMEM (1993)
memory model

OPENSHMEM
A OLD FASHIONED PGAS

- Perform computations in separate address spaces and explicitly pass data to
and from different processes in the program

- AP
- Library Setup: init, query
-+ Symmetric Data Object Management: allocation, deallocation, reallocation:

- Remote Memory Access: get (private «shared), put (shared+private)

- Atomics: swap, inc, add, was, fetch_ada

- Synchronisation and Ordering: fence (i.e. flush inflight ops), quiet (ensure other completion), barrier
+ Collective Communication: broadcast, collection (i.e. gather), reduction

- Mutual Exclusion: lock, testlock, unlock

17

OPENSHMEM HELLO WORLD!

#include <stdio.h>
#include <mpp/shmem.h>

int main (int argc, char **argv){
int me, npes;

start pes (0); /*Library Initialization*/

me = _my_pe ();

npes = num _pes ();

printf ("Hello World from node %d of %d\n", me, npes);
return 0;

}

OPENSHMEM EXAMPLE

#include <stdio.h>
#include <shmem.h>

long pSync[_SHMEM_ BARRIER_SYNC_SIZE];
int x = 10101;

int main (void)
{
int i, me, npes;
for (1 = 0; 1 < _SHMEM BARRIER _SYNC_SIZE; 1 += 1) {
pSync[i] = _SHMEM_SYNC_VALUE;

shmem_init () ;

me = shmem_my_pe();
npes = shmem_n_pes|();
if(me % 2 == 0){

x = 1000 + me;
/*put to next even PE in a circular fashionx/
shmem_int_p(&x, 4, (me+2)%npes);
/*synchronize all even pesx/
shmem_barrier (0, 1, (npes/2 + npes%2), pSync);
}
printf ("%d: x = %d\n", me, X);
return 0;

CHAPEL LIST WALK

class Node { // Data-driven List walk (work done in parallel

var data: real; // Each locale WRITE its own data (own-compute)

var next: Node;
} current = head;

while current {

// List init (seq, with remote operations) on current {
var head = new Node(9); writeln("node with data = ", current.data, " on locale
var current = head; ", here.id);
for i in 1..numLocales-1 do current = current.next;

on Locales[i] { }

current.next = new Node(i);
current = current.next; // Deallocate (seq)
}
current = head;
// List walk (seq) while current {
on current <

current = head; var ptr = current;
while current { current = current.next;

writeln("node with data = ", current.data, " on locale delete ptr;
", current.locale.id); }

current = current.next; }
} }

writeln();

PGAS

- Overcomes some DSM criticality

- Aiming at productivity for large scale

- To overcome MPl —- not succeeding yet

- Most of them build on top or interoperate with MP!

- Designed for weak scalability (own-compute) = Data
Parallelism

- Not for streaming

COROUTINES: SRIANTICS I STARCH OF A SIIIX

Oxford University and

Bell Telepnone Lhaboratceries, Incorporated.

2 ". o ~ - A > - ’ 1 A (.o
ARSTRACT: Un11“° subroutines, coroutiines mzy D& connaCued, and

reconnected, in nonhiararchical srrangenents. Corcuvines are

irg and processing daba stre

B

ch

vy
)

pervicularly useful for genera

no

Semantics for corcutines are developad and e 9n"¢ps are given.

Streams! Coroutines: Mcllroy, 1968

N ‘- |
McCarthy

Paterson F. Allen

-

3

Ne
Ne
@)

' B

_
o)
)

D

. O
1
=

O-
O
=

-
LI
—
=

@]

@,
-

o))
X

-
=

=
O
LL

Q)
)

qV)
A

IEEE STC DATAFLOW AND BEYOND
HTTP://DFSTC.CAPSL.UDEL.EDU

IEEE IEEE
STC STC

Parallel Model & system
DataFlow and Beyond

IEEE
STC

Parallel Model & system
DataFlow and Beyond

Parallel Model & system
DataFlow and Beyond

Home News Timeline OurTeam -~ Publication = Knowledge Base @ STC Event Home News Timeline OurTeam - Publication @ Knowledge Base @ STC Event

STC Founding Member

These are the people that made possible the creation of this IEEE Special Technical Community.

Click here to see the STC founding members

Members of our STC

The University of Queensland, Australia
Georgi Gaydadijiev
Maxeler, Imperial College London, UK

Guang R. Gao

University of Delaware, USA

Hirarki Kei
The University of Tokyo, Japan

Hironori Kasahara
Waseda University, Japan

Jack B. Dennis
Massachusetts Institute of Technology, USA

Jean-Luc Gaudiot
University of California, Irvine, USA

Jin Hai

Huazhong University of Science and
Technology, China

Kuan-Ching Li
Providence University, Taiwan

Mateo Valero
Universitat Politécnica de Catalunya, Spain

University of Versailles, France

Nelson Amaral
University of Alberta, Canada

R. Govindarajan
Indian Institute of Science, India

Roberto Giorgi

Universita di Siena, Italy

Skevos Evripidou
University of Cyprus, Cyprus

Stephane Zuckerman
Michigan Technological University, USA

Vivek Sarkar
Rice University, USA

Won Woo Ro

Yonsei University, South Korea

Zheng Weimin
Tsinghua University, China

Dr Lorenzo Verdoscia
Marco Procaccini

Dr. Chen Liu

Jin Yan

Tongsheng Geng

Dr. Sreepathi Pai

Peng Qu

Dr. Albert Cohen
Shipeng Qi

Dr. Toshiaki Kitamura
Jose M Monsalve Diaz
Dr Erik Altman

Dr. Karu Sankaralingam
Dr. Jidong Zhai
Professor Eduardo Juarez

. Arvind Mei Hong
Massachusetts Institute of Technology, USA Beijing Institute of technology, China Dr. Mario D t0 Mari Br And M
i i ¢] o .
« David Abramson Nahid Emad r. viario vonato wviarino r. Anares iviarquez

¢ Yoshitake OKki

¢ Professor Junqging Yu

¢ Professor wenguang chen

e Professor Sunita Chandrasekaran
e Professor Dongrui Fan

¢ Joshua Suetterlein

¢ Professor Bob lannucci
Dr Long Zheng

Dr. Hao Tu

Dr Tobias Becker
Siddhisanket Raskar
Professor Marco Aldinucci
Professor Avi Mendelson
Professor Xiaoming Li

Dr. Xu Tan

- Data Stream Processing (DaSP)

- Real-time processing of continuous data streams
- Processed on-the-tfly with stringent Quality ot Service (QoS)

- Potentially irregular flows ot data must be timely processed

- detect anomalies, real-time incremental responses, etc.

» Stock market
* Impact of weather on
securities prices

* Analyze market data at (' a \

ultra-low latencies \

'@ral Systems

e Seismic monitoring

* Wildfire management Law Enforcement
e Water management ; Real-time multimodal surveillance

,‘. '
Fraud prevention

* Detecting multi-party fraud
* Real time fraud prevention

-

F

Transportation
* Intelligent traffic
management

Manufacturing

* Process control for
microchip fabrication

Radio Astronomy
e Detection of transient event<i

e

. Health & Life Sciences

0 Neonatal ICU monitoring » Telecom

 Epidemic early warning system * Processing of Call Detail records

» Remote healthcare monitoring * Real-time services, billing, advertizing
* Business intelligence

e Churn Analysis, Fraud Detection

St ream prOceSS|ng apphcathnS D. Turaga, H. Andrade, B. Gedik, et al. Design principles for

developing stream processing applications. Softw. Pract.
Exper. 2010; 40:1073-1104

INTERSECTING DIFFERENT CS AREAS

. Control Systems (and CPS)

- Including network processors, FPGAs, etc

- Parallel Computing (shared memory)
. Streamlt (2006), TBB, FastFlow (2009), RaftLib (2013), StreamBox (2016), ...

- BigData Analytics
- Lambda, Kappa architectures

- Apache + x € {Katka, Flink, Storm, Apex, Spark, ... and counting}
ensortlow (2015)

APACHE"

Download Libraries ~ Documentation ~

Spqr K? Streaming

Examples Community ~ Developers ~

Apache Software Foundation ~

SQL and DataFrames
Spark Streamin . . .
es it easy to build scalable fault-tolerant streaming

MLIlib (machine learning)
GraphX (graph)

Third-Party Projects

Ease of Use

Build applications through high-level operators.

Spark Streaming brings Apache Spark's language-integrated APl to stream

applications.

TwitterUtils.createStream(...)
.filter(_.getText.contains("Spark"))
. countByWindow(Seconds(5))

Counting tweets on a sliding window

processing, letting you write streaming jobs the same way you write batch

jobs. It supports Java, Scala and Python.

Fault Tolerance

Stateful exactly-once semantics out of the box.

Spark Streaming recovers both lost work and operator state (e.g. sliding

windowe) niit of the haoy withot it anv evtra code on volir nart

node crash

\

N

rval response
time (s)
—h

>

Latest News
Spark 2.2.0 released (Jul 11, 2017)
Spark 2.1.1 released (May 02, 2017)

Spark Summit (June 5-7th, 2017, San
Francisco) agenda posted (Mar 31,
2017)

Spark Summit East (Feb 7-9th, 2017,
Boston) agenda posted (Jan 04, 2017)

Archive

Download Spark

Built-in Libraries:

SQL and DataFrames
Spark Streaming
MLlib (machine learning)

GraphX (graph)
Third-Party Projects

alll

ch

Counting tweets on a sliding window

Built-in Libra
o node crash SQL and DataF
g 2 N Spark Streamin
2 — MLIlib (machine
@ o | GraphX (graph)
= E
S = Third-Party Pro
)

STREAMING: CORE PARADIGM

partitioned-stateful
operator

State of the
replica

results

output
* ' stream

hash-based 31 REPLICAnN * results of the
distribution same key are

Istributi State of the
m: K — [1, n] already ordered

Tiziano De Matteis and Gabriele Mencagli. Keep Calm and React with Foresight: Strategies

for Low- Latency and Energy-Efficient Elastic Data Stream Processing, PPoPP 2016.

TR R R s e N e - AL LALLN

control actors

Boolean actors

yperator iV]

T-gate F-gate

i3]
eclder ,

merge

Figure 2. Node types for data flow programs.

i,

D AR MASSACHUSETTS
' INSTITUTE OF
TECHNOLOGY

LABORATORY FOR »
COMPUTER SCIENCE 1=

MIT/LCS/TM-61

FIRST VERSION OF A
DATA FLOW PROCEDURE
LANGUAGE

Jack B. Dennis

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

NETWORK OF EXECUTORS VS TASK GRAPH

- Graph of tasks
Dataflow — typically DAG

- Each node is a task
- E.g. a C++ object

- Problems: tiring, scheduling, etc.

- Network of executors

- "Controlflow" — typically cyclic graph
- E.g. threads or processes

- Problems: pinning, mapping, pooling, etc.

O

N\
il

Login

Fa St F I OW ('\’ ’ m People Architecture Ref-Manual Performance Tutorial Papers & Talks
Z/ ‘ Stats FAQ

Testimonials News Downloads

FastFlow

http://mc-fastflow.sourceforge.net/ esiow (5

FastFlow (1R 3® iff) is a C++ parallel programming framework advocating high-level, pattern-based parallel programming. It chiefly supports
streaming and data parallelism, targeting heterogenous platforms composed of clusters of shared-memory platforms, possibly equipped with
computing accelerators such as NVidia GPGPUs, Xeon Phi, Tilera TILE64.

Toreador (EC-RIA, H2020, ICT-16-2015 big data): TrustwOrthy model- porabity, effciency and perfonmance porabil) v sutale parllel programming absractons and a careul deeigned run-dme support
awaRE Analytics Data platfORm (2016, 36 months, total cost 6.5M €) Application scenarios

Rephrase (EC-RIA, H2020, ICT-2014-1): Refactoring Parallel < I :
Heterogeneous Resource-Aware Applications — a Software | e @
Engineering Approach (2015, 36 months, total cost 3.5M €)

Hngr (EC-RIA, HZOZO, ICT-2014-1): Scalable Hybrid Variability for I Arg 12, 2010 -Sep 12, 2018
Distributed Evolving Software Systems (2015, 36 months, total cost -
2.8M €) Al Users

REPARA (EC-STREP, 7th FP): Reengineering and Enabling — |
Performance And poweR of Applications (2013, 36 months, total cost

3-5'\/' €) 4,000

ParaPhrase (EC-STREP, 7th FP): Parallel Patterns for Adaptive
Heterogeneous Multicore Systems (2011, 42 months, total cost 4.2M €)

IBM Research 3 faculty awards 2015 (50K $)

Noesis Solutions: Machine learning for engineering 2015 (75K €) 51,398 26,670
A3CUBE Inc.: FastFlow/PGAS with in memory fabric 2014 . o
NVidia Corp: CUDA Research Center at University of Torino 2013 116,280 2.26

Arn rAe, |~

\W\/\

201 2012 2013 2014 2015 2016

B New Visitor M Returning Visitor

SWSR QUEUES + MEDIATORS

~{Ml+>
FF bound shmem FIFO channel

Single-Producer-Single-Consumer
lock-free fence-free queue

-}
FF unbound shmem FIFO channel

Single-Producer-Single-Consumer
lock-free fence-free queue

—> —>

FF (lock-free) distributed memory channel
RDMA or TCP

&

channel name channel name

or channel or channel
node

HO—»

channel name channel name
or channel or channel

channel
name

or channel

-

channel
names

m1l-node

channel channe/
name fHﬁBS
/

or channe
mo-node

—
s

network
symmetric
or asymmetric
(scatter, gather, etc)

-— ——— o

\\-//
distributed
node

(GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

Composing via mediator guarantee
correctness (data races & deadlock freedom)

(GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

@D O
c{?&@@»@ e -0

G]/ AN/

62 o
()

€ € v

L o

Composing via mediator guarantee
correctness (data races & deadlock freedom)

(GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

C{@»@»@—@ o0 0020
ol Co o-g
I

€ € v

0 oG

Composing via mediator guarantee
correctness (data races & deadlock freedom)

Possible
data race

PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA

DEPENDENCIES (THUS NO ATOMICS AR

Standard pointers
I.e.
synchronisation capabilities

- no atomic read-update
write operations read
\

\\1 L3/ /L3

shared memory

Shared-memory cache-coherent or
non-coherent multicore

= NEEDED)

Synchronisations are in
a message-passing
style, but designers are
not forced to think in a
distributed way

No copies are needed,
the memory fences are
but asynchrony helps

PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA

DEPENDENCIES (THUS NO ATOMICS AR

Standard pointers
I.e.
synchronisation capabilities

- no atomic read-update
write operations read
\

\\1 L3/ /L3

shared memory

Shared-memory cache-coherent or
non-coherent multicore

= NEEDED)

PGAS/opaque pointers
I.e.
synchronisation capabilities

no atomic read-update

write operations read
L3 PGAS /L3 |}
| TR |
One-sided

either eager “put” or lazy “get”

Distributed GAM

BASED ON SINGLE-WRITER-SINGLE-READER FIFO

+ Does not require atomic
No fence under TSO, WriteFence under WO

J. Giacomoni et al. Fastforward for efficient pipeline parallelism: a

cache-optimized concurrent lock-free queue. PPoPP 08

M. Aldinucci et al. An Efficient Unbounded [Lock-Free Queue for Multi-

core Systems. Euro-Far 2012

- Enough to support Producer-Consumer

Inherently asynchronous

orogra

Powerful enoug

Mmming m

N to bulld a general purpose parallel

odel

nanoseconds

FastFlow unbound queue
core-to-core message latency

Xeon E7-4820 @2.0GHz Sandy Bridge

45

40 |
35 |
30 |
25 |

20
15
10

same core, different context m—

different CPUs m—

0 i § §
64

1024 8192
buffer size

FASTFLOW

http://calvados.di.unipi.it/paragroup/

- Compared in performance and features against:
openMP, TBB, Pthreads, OpenSs, MPI,

« M. Aldinucci, M. Meneghin, and M. Torquati,
“Efficient Smith-Waterman on multi-core with
FastFlow,” Euromicro PDP 2010.

« 80+ papers from 2010

r

Bringing Parallel Patterns out of the corner:

the P°’ARSEC Benchmark Svite
© X &

A Benchmark Suite for Parallel Pattern design Implementation with
parallel patterns-based of 12 out of 13 PARSEC FastFlow and SkePU2
applications benchmark applications publicly available

Comparison over 3 different shared memory multicore architectures
(Infel Xeon, Intel Xeon Phi, IBM Power 8) using different implementations

™ FastFlow B SkePU2
100 --§-
85 --§-
/0 --§-
55 --§-
Execution Time* Lines of Code*

*Normalized with respect to Pthreads, averaged over all the benchmarks (the lower the better)

Detailed results and comparison with additional frameworks can be found in:

D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli and M. Danelutto,
“Bringing Parallel Patterns out of the corner: the P°PARSEC Benchmark Suite”
Under Review in ACM Transactions on Architecture and Code Optimization

M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and M. Torquati,
“P>ARSEC: towards parallel patterns benchmarking”
in Proceedings of the 32nd annual ACM Symposium on Applied Computing (SAC 2017)

WINDOWED STREAM PROCESSING

window

WINDOWED STREAM PROCESSING

Windows approximate infinite stream history

- tuple signitficance is often time-decaying

window
- only the most recent tuples are kept - QO OO]0 ’(A)
COFIOEA - IN(A)
- Different windowing policies N *(S)
IN(B) >(B)
- Sliding windows: window size + sliding tactor Nellalololeol

- Session windows [Apache Flink, Apache Beam...]

- Common implementation = Worker-side windowing (more
parallelism)

KEY-PARTITIONING (KP)

WINDOW-FARMING (WF)

A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS
DISTRIBUTED FASTFLOW V.2 — C++ GLOBAL MEMORY STACK

- Communication Library

GAM
Nets

~ Task

‘ RTS ‘ EEE

Smart Global Pointers

libfabric, MPI...

Platform

M. Drocco. Parallel Programming with Global
Asynchronous Memory: Models, C++ APIs

and Implementations. PhD. Thesis proposal,
University of Torino, 2017 (not yet defended).

Aldinucci, S. Campa, M. Danelutto, P.
Kilpatrick, and M. Torquati, “Targeting
Distributed Systems in FastFlow,” in Euro-Par
2012 Workshops,

GLOBAL ASYNCHRONOUS MEMORY

A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS (BASED ON FF)

- From MPI Style:

communicate pointers
(a.k.a., capabilities)

- From DSM Style:
shared address space

= Capability = both data reference
and synchronization token

data coordination

M

PUBLIC CAPABILITIES

- Read-only (single assignment)
- Cacheable

- Can be copiec

PRIVATE CAPABILITIES

.- Exclusive read-write
- Not cacheable

. Can be moved

GAM MEMORY MODEL

- (Trivial) Sequential Consistency

- Avoiding consistency issues @

(vs solving as in DSM/PGAS) |

. SWITCH |

- SWMR cache-coherence invariant:

- public = (NW)MR
- private = SWSR M

SMART GLOBAL POINTERS

- Rooted in modern C++

Intentional programming:
public = shared, private = unique

- Automatic Memory Management — the C++ way

- Smartness = memory-reference litetime binding
No memory leaks, no dangling pointers

No garbage collection (vs Java & friends)

PUBLIC POINTERS

public _ptr(T * const, Deleter);
public _ptr<T> make public(Argsé&&..) ;

//copy constructor/assignment. ..
//move constructor/assignment. ..

public ptr(private ptr<T> &&) ;
public ptr& operator=(private ptr<T> &&) ;

std::shared ptr<T> local(); _ enables
plain C++ code

void push(executor 1id to);
public_ptr<T> pull_public(const exec_1id from);
public _ptr<T> pull_public();

PRIVATE POINTERS

private ptr(T * const, Deleter);
private ptr<T> make private(Argsé&&..) ;

| enables
//move constructor/assignment.. pkﬂn(3++-code

"4

gam unique ptr<T> local(); //unique ptr + custom deleter

//NO copy constructor/assignment

void push(executor 1d to);
private ptr<T> pull _private(const exec 1d from);
private ptr<T> pull private();

SMARTNESS FOR PUBLIC POINTERS

author

- Distributed reference counting protocol
- Creation/copy/push trigger +1, destruction triggers -1

- C++ shared pointers: atomic-based reference counting

SMARTNESS FOR PRIVATE POINTERS

author

(g, ()
X

- Distributed memory releasing protocol
- Destruction triggers releasing
- C++ unique pointers: destruction-triggered release

- Inherently simpler than public pointers (as unique vs shared)

KP - INHERENTLY EFFICIENT

- Disjoint IN(A)/IN(B)

- each tuple accessed “exclusively”

- GAM implementation

OHOEE

- private pointers - exclusive capabilities N

-1 RMA access per tuple

WF - INHERENTLY COMPLEX

- IN(A) = IN(B) = IN

- each tuple accessed "by-any”

- GAM implementation

. OEHOER -
- public pointers - read-only replicas N

- multiple RMA accesses per tuple

GAM ADVANTAGES

- Passing capabilities versus data

efficient worker-side windowing

extreme case: static dispatching not viable

window
- OF<CEHE - IN(A) (A)
~ S)

> B
,,-\' ,,-\' ,,o\' ,,-\. ,,-\.
I)) \ \ \ cee
\.ll ~~'l \.0, ‘.f’ ‘.l,

deo Restoration

=P Vi

Ive noise

90% impuls

Ive noise

50% impuls

ISE

impulsive noi

10%

inal Baboon
1024x 1024

g

Or

Restored

H P Video Restoration

A GAM implementation of ordering farm

communicator

C++/GPU code
[GTC 2014]

Throughput (fps)

H | P Video Restoration

/20p Video Stream

|

%
l!

|

)

PAL

30% /0%

Noise

‘ -, = iy FES— PSRN W 0 T —— W — s e s L s < -

‘ % " “ 5 ' L - > 3 .

v¥ L > “. 4 - .

f B & v . W e e rit s T VI » - W . @s Wﬂllw‘u
- ' . X :

. : . by =S Phs, a | YRR - 2
—_ _ ' . “ . . - ' . 2.
> ‘. ! - iy it - " . --l'v'.' " o . '
e .~ A ey . o~ T — - [» ~— — - A 'L""Y‘,’* . 2 0N ' v b . : = .
et , : . Y T . N i i : T aads)] 1, TR s
' 5 ", <=9 _ . - e - A =
: . -) . ' — . - - » .
» : - '] : 3) e 4 ‘1 = r
- . q 2 & v
: | 5 : ! .

EuroPar 2018
Torino, ltaly — 27-31 August 2018

Co-chairs: M. Aldinucci, L. Padovani, M. Torquati

