
STREAMING IN THE PGAS ERA

Marco Aldinucci, Maurizio Drocco

University of Torino, Italy

Autonomic Solutions for Parallel and Distributed Data
Stream Processing (Auto-DaSP) - Euro-Par 2017 Workshop

1

OUTLINE

• Programming models

• Distributed Memories: the PGAS model
• Some example

• Streaming
• Some example

• Streaming with PGAS

2

LOW-LEVEL PARALLEL PROGRAMMING MODELS

• Message-Passing
• Scalability and performance

• Developer-based precise knowledge of code and overhead

• Processes + communications (symmetric/collective, blocking/nonblocking)

• Shared-Memory
• Productivity

• Global and uniform vision of data layout

• Threads + synchronisations mechanisms (mutex, atomics, transactions, …)

3

MPI IS LIKE A CAR, YOU CAN DRIVE DATA WHERE YOU LIKE
–D.K. Panda, leader MVAPICH project at Ohio state Uni.

MPI-3

4

EXPECTATIONS

Val D’Orcia, Tuscany, Italy

Car

5

REALITY

Irregular data

Hot data spotsTransposed data

6

32 Exascale Computing Project

No. of ECP Application Proposals a Software is Mentioned in

ANYWAY, MPI IS NO. 1 IN HPC Courtesy of P. Messina, director of ECP.  
No. of software proposals in US ECP 2017

7

P1 P2

Mem
Manager

P3 P4

Mem
Manager

Shared Virtual Memory

invocation response

Distributed Shared Memory

Node1 Node2

DISTRIBUTED SHARED (VIRTUAL)
MEMORY — DSM OR DVSM

• Physically separated memories can be
addressed as one logically shared
address space

• Hardware or software. Conceptually
similar to Virtual Memory

• Designed to distributed platform
transparent to programmer i.e.
“simplify programming”

• “Vanilla” API
• read(addr)

• write(value, adds)

• lock/unlock

8

Already mature 20 years ago,
now quite rotten

P. Jelica, M. Tomasevic, and V. Milutinovic. "Distributed shared
memory: Concepts and systems." IEEE Parallel & Distributed
Technology: Systems & Applications 4.2 (1996): 63-71.

9

DSM: WHY THEY FAILED

• Started to simplify distributed code

• To make them efficient, we made the memory consistency
model very complex

• This seriously affect the coding effort

10

PGAS PROGRAMMING MODEL (DSM EVOLVED)

• A set of processor, each with own local memory

• Part managed as private, part as shared
• Sharing implemented HW or SW

• Explicitly NUMA
• Each location has an affinity with a processor

• Model differentiates between local and remote data partitions

• Explicitly partitioned
• Collective synchronisations, i.e. barriers and fences

12

PGAS SYSTEM AT BARE BONES

13

P1

M

P2

M

Pn

M

Network

private

…

shared

A[…]

affine=P1

Partitioned Global Address Space (PGAS)

APPROACHES

Languages

• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

• STAPL

• Titanium

Libraries

• UPC++

• OpenSHMEM

• Global Arrays

• DASH
• …

14

DASH Hello World K. Furlinger, C. Glass, J. Gracia, et al. DASH: Data Structures and Algorithms with Support for Hierarchical
Locality. In Euro-Par Workshops, 2014.

15

OpenSHMEM “symmetric”
memory model formerly know as Cray SHMEM (1993)

OPENSHMEM
A OLD FASHIONED PGAS

• Perform computations in separate address spaces and explicitly pass data to
and from different processes in the program

• API
• Library Setup: init, query

• Symmetric Data Object Management: allocation, deallocation, reallocation:

• Remote Memory Access: get (private←shared), put (shared←private)

• Atomics: swap, inc, add, was, fetch_add

• Synchronisation and Ordering: fence (i.e. flush inflight ops), quiet (ensure other completion), barrier
• Collective Communication: broadcast, collection (i.e. gather), reduction

• Mutual Exclusion: lock, testlock, unlock

17

OPENSHMEM HELLO WORLD!

#include	<stdio.h>		
#include	<mpp/shmem.h>		
int	main	(int	argc,	char	**argv){ 

int	me,	npes;	
 
start_pes	(0);	/*Library	Initialization*/		
me	=	_my_pe	();		
npes	=	_num_pes	();	
printf	("Hello	World	from	node	%d	of	%d\n",	me,	npes);		
return	0;		
}	

OPENSHMEM EXAMPLE

CHAPEL LIST WALK

class	Node	{	
		var	data:	real;	
		var	next:	Node;	
}	

//	List	init	(seq,	with	remote	operations)	
var	head				=	new	Node(0);	
var	current	=	head;	
for	i	in	1..numLocales-1	do	
		on	Locales[i]	{	
				current.next	=	new	Node(i);	
				current						=	current.next;	
		}	

//	List	walk	(seq)	

current	=	head;	
while	current	{	
		writeln("node	with	data	=	",	current.data,	"	on	locale	
",	current.locale.id);	
		current	=	current.next;	
}	
writeln();	

//	Data-driven	List	walk	(work	done	in	parallel	
//	Each	locale	WRITE	its	own	data	(own-compute)		

current	=	head;	
while	current	{	
		on	current	{	
				writeln("node	with	data	=	",	current.data,	"	on	locale	
",	here.id);	
				current	=	current.next;	
		}	

//	Deallocate	(seq)	

current	=	head;	
while	current	{	
		on	current	{	
				var	ptr	=	current;	
				current	=	current.next;	
				delete	ptr;	
		}	
}	
}

20

PGAS

• Overcomes some DSM criticality

• Aiming at productivity for large scale
• To overcome MPI —- not succeeding yet

• Most of them build on top or interoperate with MPI

• Designed for weak scalability (own-compute) → Data
Parallelism
• Not for streaming

Coroutines: McIlroy: 1968

Streams! Coroutines: McIlroy, 1968

Notables – Novosibirsk - 1972

McCarthy

F. AllenPaterson

M. Engeler

J. Schwartz

Ershov Milner

Miller

Bahrs
Luckham

Igarashi
Dennis

Warren

Hoare

Symposium on Theoretical Programming Novosibirsk – 1972

Data Flow Workshop MIT Endicott House – 1977

DennisArvindGita

IEEE STC DATAFLOW AND BEYOND
HTTP://DFSTC.CAPSL.UDEL.EDU

• Data Stream Processing (DaSP)

• Real-time processing of continuous data streams

• Processed on-the-fly with stringent Quality of Service (QoS)

• Potentially irregular flows of data must be timely processed
• detect anomalies, real-time incremental responses, etc.

Stream processing applications D. Turaga, H. Andrade, B. Gedik, et al. Design principles for
developing stream processing applications. Softw. Pract.
Exper. 2010; 40:1073–1104

INTERSECTING DIFFERENT CS AREAS

• Control Systems (and CPS)
• Including network processors, FPGAs, etc

• Parallel Computing (shared memory)
• StreamIt (2006), TBB, FastFlow (2009), RaftLib (2013), StreamBox (2016), …

• BigData Analytics
• Lambda, Kappa architectures

• Apache + x ∈ {Kafka, Flink, Storm, Apex, Spark, … and counting}

• Tensorflow (2015)

STREAMING: CORE PARADIGM

Tiziano De Matteis and Gabriele Mencagli. Keep Calm and React with Foresight: Strategies
for Low- Latency and Energy-Efficient Elastic Data Stream Processing, PPoPP 2016.

NETWORK OF EXECUTORS VS TASK GRAPH

• Graph of tasks
• Dataflow — typically DAG

• Each node is a task

• E.g. a C++ object

• Problems: firing, scheduling, etc.

• Network of executors
• “Controlflow" — typically cyclic graph

• E.g. threads or processes

• Problems: pinning, mapping, pooling, etc.

FastFlow
http://mc-fastflow.sourceforge.net/

• Toreador (EC-RIA, H2020, ICT-16-2015 big data): TrustwOrthy model-
awaRE Analytics Data platfORm (2016, 36 months, total cost 6.5M €)

• Rephrase (EC-RIA, H2020, ICT-2014-1): Refactoring Parallel
Heterogeneous Resource-Aware Applications – a Software
Engineering Approach (2015, 36 months, total cost 3.5M €)

• HyVar (EC-RIA, H2020, ICT-2014-1): Scalable Hybrid Variability for
Distributed Evolving Software Systems (2015, 36 months, total cost
2.8M €) 

• REPARA (EC-STREP, 7th FP): Reengineering and Enabling
Performance And poweR of Applications (2013, 36 months, total cost
3.5M €)

• ParaPhrase (EC-STREP, 7th FP): Parallel Patterns for Adaptive
Heterogeneous Multicore Systems (2011, 42 months, total cost 4.2M €)

• IBM Research 3 faculty awards 2015 (50K $)
• Noesis Solutions: Machine learning for engineering 2015 (75K €)
• A3CUBE Inc.: FastFlow/PGAS with in memory fabric 2014
• NVidia Corp: CUDA Research Center at University of Torino 2013

SWSR QUEUES + MEDIATORS

node

mi-node

channel
name

or channel

channel
names

. . .

mo-node

channel
names

channel
name

or channel
. . .

channel name
or channel

channel name
or channel

GPU

GPU
node

channel name
or channel

channel name
or channel

distributed
node

network
symmetric

or asymmetric
(scatter, gather, etc)

mo mi

n

n

n

process

FF bound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

FF unbound shmem FIFO channel
Single-Producer-Single-Consumer

lock-free fence-free queue

FF (lock-free) distributed memory channel
RDMA or TCP

GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

Composing via mediator guarantee
correctness (data races & deadlock freedom)

GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

S1

S1

S1

...

S0 S2 S3

E

W1

W2

Wn

...

E

W1

W2

Wn

C...

E C

...

GPU-1

GPU-n

E

W1

W2

Wn

C E C

...

GPU-1

GPU-k

...

E

W1

W2

Wn

...

S1

E

11

21

n1

...

12

22

n2

C

S1 S2 Sn...

S1 S2 Sn... S1 Sn...

GPU

S2

Composing via mediator guarantee
correctness (data races & deadlock freedom)

...

...
...

GENERATE THE NETWORK
TRUE DATA DEPENDENCIES MOVES ACROSS ARROWS

S1

S1

S1

...

S0 S2 S3

E

W1

W2

Wn

...

E

W1

W2

Wn

C...

E C

...

GPU-1

GPU-n

E

W1

W2

Wn

C E C

...

GPU-1

GPU-k

...

E

W1

W2

Wn

...

S1

E

11

21

n1

...

12

22

n2

C

S1 S2 Sn...

S1 S2 Sn... S1 Sn...

GPU

S2

Composing via mediator guarantee
correctness (data races & deadlock freedom)

...

...
...

Possible
data race

PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA
DEPENDENCIES (THUS NO ATOMICS ARE NEEDED)

standard pointers
i.e.

synchronisation capabilities

shared memory

L3 L3

write read
no atomic read-update

operations

Shared-memory cache-coherent or
non-coherent multicore

Synchronisations are in
a message-passing
style, but designers are
not forced to think in a
distributed way

No copies are needed,
the memory fences are
but asynchrony helps

PROGRAMMING MODEL: SYNCHRONISATIONS HAPPEN BY WAY OF P2P DATA
DEPENDENCIES (THUS NO ATOMICS ARE NEEDED)

PGAS/opaque pointers
i.e.

synchronisation capabilities

PGASL3 L3

write read
no atomic read-update

operations

One-sided
either eager “put” or lazy “get”

standard pointers
i.e.

synchronisation capabilities

shared memory

L3 L3

write read
no atomic read-update

operations

Shared-memory cache-coherent or
non-coherent multicore Distributed GAM

BASED ON SINGLE-WRITER-SINGLE-READER FIFO

• Does not require atomic
• No fence under TSO, WriteFence under WO

• J. Giacomoni et al. Fastforward for efficient pipeline parallelism: a
cache-optimized concurrent lock-free queue. PPoPP 08

• M. Aldinucci et al. An Efficient Unbounded Lock-Free Queue for Multi-
core Systems. Euro-Par 2012

• Enough to support Producer-Consumer
• Inherently asynchronous
• Powerful enough to build a general purpose parallel

programming model
 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

64 1024 8192

n
a

n
o

s
e

c
o

n
d

s

buffer size

same core, different context
different cores, same CPU

different CPUs

FastFlow unbound queue
core-to-core message latency

Xeon E7-4820 @2.0GHz Sandy Bridge

Bringing Parallel Patterns out of the corner:
the P3ARSEC Benchmark Suite

Comparison over 3 di erent shared memory multicore architectures
(Intel Xeon, Intel Xeon Phi, IBM Power 8) using di erent implementations

 A Benchmark Suite for
parallel patterns-based

applications

Parallel Pattern design
of 12 out of 13 PARSEC
benchmark applications

Implementation with
FastFlow and SkePU2

publicly available

paragroup@di.unipi.it

M. Danelutto, T. De Matteis, D. De Sensi, G. Mencagli, and M. Torquati,
“P3ARSEC: towards parallel patterns benchmarking”

in Proceedings of the 32nd annual ACM Symposium on Applied Computing (SAC 2017)

100

90

80

70

Execution Time*

*Normalized with respect to Pthreads, averaged over all the benchmarks (the lower the better)

Pthreads OmpSs FastFlow SkePU2

100

85

70

55

Lines of Code*

D. De Sensi, T. De Matteis, M. Torquati, G. Mencagli and M. Danelutto,
“Bringing Parallel Patterns out of the corner: the P3ARSEC Benchmark Suite”

Under Review in ACM Transactions on Architecture and Code Optimization

Detailed results and comparison with additional frameworks can be found in:

 Software available at:

http://calvados.di.unipi.it/paragroup/

http://github.com/paragroup/p3arsec

FASTFLOW

http://calvados.di.unipi.it/paragroup/

• Compared in performance and features against:
openMP, TBB, Pthreads, OpenSs, MPI, …

• M. Aldinucci, M. Meneghin, and M. Torquati,
“Efficient Smith-Waterman on multi-core with
FastFlow,” Euromicro PDP 2010.

• 80+ papers from 2010

WINDOWED STREAM PROCESSING

S
A

B

8 9 787…

…

…

IN

IN(A)

IN(B)

window

…

…

…

WINDOWED STREAM PROCESSING

• Windows approximate infinite stream history
• tuple significance is often time-decaying

• only the most recent tuples are kept

• Different windowing policies
• Sliding windows: window size + sliding factor

• Session windows [Apache Flink, Apache Beam…]

• Common implementation = Worker-side windowing (more
parallelism)

S
A

B

8 9 787…

…

…

IN

IN(A)

IN(B)

window
…

…

…

KEY-PARTITIONING (KP)

S
A

B

8 9 787…

9 78…

9 78…

IN

IN(A)

IN(B)

…

…

…

WINDOW-FARMING (WF)

S
A

B

8 9 787…

…

…

IN

IN(A) = IN

IN(B) = IN

8 9 787

8 9 87

…

…

…

A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS
DISTRIBUTED FASTFLOW V.2 — C++ GLOBAL MEMORY STACK

Platform

GAM  
Nets

GAM

Smart Global Pointers

Communication Library  
libfabric, MPI…

Task
RTS …

M. Drocco. Parallel Programming with Global
Asynchronous Memory: Models, C++ APIs
and Implementations. PhD. Thesis proposal,
University of Torino, 2017 (not yet defended).

Aldinucci, S. Campa, M. Danelutto, P.
Kilpatrick, and M. Torquati, “Targeting
Distributed Systems in FastFlow,” in Euro-Par
2012 Workshops,

GLOBAL ASYNCHRONOUS MEMORY
A NEW PROPOSAL FOR A STREAM-ORIENTED PGAS (BASED ON FF)

• From MPI Style:  
communicate pointers  
(a.k.a., capabilities)

• From DSM Style:  
shared address space

➡Capability = both data reference
and synchronization token

P

P

P

P

M

data coordination

PUBLIC CAPABILITIES

• Read-only (single assignment)

• Cacheable

• Can be copied

PRIVATE CAPABILITIES

• Exclusive read-write

• Not cacheable

• Can be moved

GAM MEMORY MODEL

• (Trivial) Sequential Consistency

• Avoiding consistency issues  
(vs solving as in DSM/PGAS)

• SWMR cache-coherence invariant:
• public → (NW)MR

• private → SWSR

P P

M

P

SWITCH

SMART GLOBAL POINTERS

• Rooted in modern C++
• Intentional programming:  

public → shared, private → unique

• Automatic Memory Management — the C++ way
• Smartness = memory-reference lifetime binding

• No memory leaks, no dangling pointers

• No garbage collection (vs Java & friends)

PUBLIC POINTERS

public_ptr(T * const, Deleter);  
public_ptr<T> make_public(Args&&…);

//copy constructor/assignment...
//move constructor/assignment...

public_ptr(private_ptr<T> &&);
public_ptr& operator=(private_ptr<T> &&);

std::shared_ptr<T> local();

void push(executor_id to);
public_ptr<T> pull_public(const exec_id from);
public_ptr<T> pull_public();

enables
plain C++ code

PRIVATE POINTERS

private_ptr(T * const, Deleter);  
private_ptr<T> make_private(Args&&…);

//move constructor/assignment…

//NO copy constructor/assignment

gam_unique_ptr<T> local(); //unique_ptr + custom deleter

void push(executor_id to);
private_ptr<T> pull_private(const exec_id from);
private_ptr<T> pull_private();

enables
plain C++ code

SMARTNESS FOR PUBLIC POINTERS

• Distributed reference counting protocol

• Creation/copy/push trigger +1, destruction triggers -1

• C++ shared pointers: atomic-based reference counting

+/-1

+/-1

A

rt

B

C
ref. cnt

author

context unmap

+1
A rt B C

author

push

SMARTNESS FOR PRIVATE POINTERS

• Distributed memory releasing protocol

• Destruction triggers releasing

• C++ unique pointers: destruction-triggered release

• Inherently simpler than public pointers (as unique vs shared)

x
A rt B

author

context unmap

KP - INHERENTLY EFFICIENT

• Disjoint IN(A)/IN(B)
• each tuple accessed “exclusively”

• GAM implementation
• private pointers - exclusive capabilities

• 1 RMA access per tuple

S
A

B

8 9 787…

9 78…

9 78…

IN

IN(A)

IN(B)

…

…

…

WF - INHERENTLY COMPLEX

• IN(A) = IN(B) = IN
• each tuple accessed “by-any”

• GAM implementation
• public pointers - read-only replicas

• multiple RMA accesses per tuple

S
A

B

8 9 787…

…

…

IN

IN(A) = IN

IN(B) = IN

8 9 787

8 9 87

…

…

…

GAM ADVANTAGES

• Passing capabilities versus data
• efficient worker-side windowing

• extreme case: static dispatching not viable

S
A

B

8 9 787…

…

…

IN

IN(A)

IN(B)

window
…

…

…

HTP Video Restoration

10% impulsive noise 50% impulsive noise 90% impulsive noiseOriginal Baboon
1024x1024

Restored

• A GAM implementation of ordering farm

HTP Video Restoration

GAM worker

I ORR RR

. . .

mutli-core/GPU
filterpre post

GAM worker

mutli-core/GPU
filterpre post

GAM 
node

GAM 
communicator

C++/GPU code
[GTC 2014]

HTP Video Restoration
720p Video Stream

Th
ro

ug
hp

ut
 (f

ps
)

0

55

110

165

220

Noise
30% 70%

PAL

GAM+GPU GPU [GTC 2014]

OCCAM cluster @ UniTO
4x GPU nodes

Nvidia Tesla k40 GPUs

EuroPar 2018
Torino, Italy — 27-31 August 2018 Co-chairs: M. Aldinucci, L. Padovani, M. Torquati

