
Supporting	Advanced	Patterns	in	GrPPI,
a	Generic	Parallel	Pattern	Interface

David	del	Rio,	Manuel	F.	Dolz,	Javier	Fernández.	Daniel	Garcia
University	Carlos	III	of	Madrid

Autonomic	 Solutions	 for	Parallel	and	Distributed	Data	Stream	
Processing	(Auto-DaSP)	– Euro-Par	2017

Santiago	de	Compostela,	August	29th,	2017

ARCOS

RePhrase Project:	Refactoring	Parallel	Heterogeneous	Software
– a	Software	Engineering	Approach

(ICT-644235),		2015-2018,	€3.6M	budget

8	Partners,	6	European	countries	UK,	Spain,	Italy,	Austria,	Hungary,	Israel

0http://www.rephrase-ict.eu

Thinking	in	Parallel

§ Fundamentally,	programmers	must	learn	to	“think	parallel”
§ this	requires	new	high-level programming	constructs
§ you	cannot	program	effectively	while	worrying	about	deadlocks	etc.

§ they	must	be	eliminated	from	the	design!
§ you	cannot	program	effectively	while	handling	with	communication	etc.

§ this	needs	to	be	packaged/abstracted!
§ you	cannot	program	effectively	without	performance	information

§ this	needs	to	be	included!

§ How	this	can	be	solved?	We	use	two	key	technologies:
§ Refactoring	(changing	 the	source	code	structure)
§ Parallel	Patterns	(high-level	 functions	 of	parallel	algorithms)

3

GRPPI:	A	Generic and	Reusable	Parallel Pattern Interface

§ Objectives:
§ Provide a	high-level parallel pattern interface	for C++	applications

§ A	Generic and	Reusable	Parallel Pattern Interface (GrPPI)
§ High-level C++	interface	based on metaprogramming and	template-based techniques
§ Support for different parallel programming frameworks as	back	ends
§ Support for basic stream and	data	patterns and	their composability

4 D. DEL RIO ASTORGA ET AL.

Filter This pattern computes in parallel a filter over the items appearing on the input stream,
passing only to the output stream those items satisfying the boolean “filter” function (or predicate)
P : ↵ ! {true, false} (see Figure 1(c)). Basically, the pattern receives a sequence of input items
. . . , xi+1, xi, xi�1, . . . and produces a sequence of output items of the same type but with different
cardinality. The evaluation of the filtering function on an input item should be independent to any
other, i.e., the predicate should be a pure function.

Accumulator This pattern collapses items appearing on the input stream and delivers these results
to the output stream (see Figure 1(d)). The function used to collapse item values � should be a pure
binary function of type � : ↵⇥ ↵ ! ↵, being usually associative and commutative. Basically, the
pattern computes the function � over a finite sequence of input items . . . , xi+1, xi, xi�1, . . . to
produce a collapsed item on the output stream. The number of elements to be accumulated depends
on the window size set as parameter.

(a) Pipeline. (b) Farm. (c) Filter. (d) Accumulator.

Figure 1. Stream parallel patterns.

3.2. Data patterns

In this section we describe formally the data parallel patterns Map, Reduce, Stencil, MapReduce

and Divide&Conquer provided by GRPPI.

Map This data parallel pattern computes the function f : ↵ ! � over the elements of the input data
collection, where the input and output elements are ↵ and � types, respectively (see Figure 2(a)). The
output result is the collection of elements y1, y2, . . . , yN , where yi = f(xi) for each i = 1, 2, . . . , N
and xi is the i-th element of the input collection. The only requirement of the Map pattern is that
the function f should be pure.

Reduce This data parallel pattern aggregates the elements of the input data collection of type
↵ using the binary function � : ↵⇥ ↵ ! ↵, that is usually associative and commutative. Finally,
the result of the pattern is summarized in a single element y of type ↵ that is obtained performing
the operation y = x1 � x2 � . . . xN , where xi is the i-th data item of the input data collection (see
Figure 2(b)). The main constraint of this pattern is that the binary function should be pure.

Stencil This pattern is a generalization of the Map pattern in which an elemental function can
access, not only to a single element in an input collection, but also to a set of neighbors (see
Figure 2(c)). The function f : ↵⇤ ! ↵ used by the Stencil pattern receives the input item and a
set of neighbors (↵⇤) and produces an output element of the same type. The main requirement of
this pattern is that the function f should be pure.

MapReduce This pattern computes, in a first stage a Map-like pattern, a key-value function over
all the elements of an input collection, and delivers, in a second stage a Reduce-like pattern, a
set of unique key value pairs where the value associated to the key is the “sum” of the values
output for the same key (see Figure 2(d)). To do so, the MapReduce pattern computes in the
Map function f : ↵ ! {↵,Key} the elements in the input collection; afterwards it uses the Reduce

binary function � : � ⇥ � ! � to sum up the partial results with the same key. The result of this
pattern is a collection of data elements of type �, one per key. The requirements of the MapReduce

pattern is that both Map and Reduce-related functions should be pure.

Copyright c� 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

4 D. DEL RIO ASTORGA ET AL.

Filter This pattern computes in parallel a filter over the items appearing on the input stream,
passing only to the output stream those items satisfying the boolean “filter” function (or predicate)
P : ↵ ! {true, false} (see Figure 1(c)). Basically, the pattern receives a sequence of input items
. . . , xi+1, xi, xi�1, . . . and produces a sequence of output items of the same type but with different
cardinality. The evaluation of the filtering function on an input item should be independent to any
other, i.e., the predicate should be a pure function.

Accumulator This pattern collapses items appearing on the input stream and delivers these results
to the output stream (see Figure 1(d)). The function used to collapse item values � should be a pure
binary function of type � : ↵⇥ ↵ ! ↵, being usually associative and commutative. Basically, the
pattern computes the function � over a finite sequence of input items . . . , xi+1, xi, xi�1, . . . to
produce a collapsed item on the output stream. The number of elements to be accumulated depends
on the window size set as parameter.

(a) Pipeline. (b) Farm. (c) Filter. (d) Accumulator.

Figure 1. Stream parallel patterns.

3.2. Data patterns

In this section we describe formally the data parallel patterns Map, Reduce, Stencil, MapReduce

and Divide&Conquer provided by GRPPI.

Map This data parallel pattern computes the function f : ↵ ! � over the elements of the input data
collection, where the input and output elements are ↵ and � types, respectively (see Figure 2(a)). The
output result is the collection of elements y1, y2, . . . , yN , where yi = f(xi) for each i = 1, 2, . . . , N
and xi is the i-th element of the input collection. The only requirement of the Map pattern is that
the function f should be pure.

Reduce This data parallel pattern aggregates the elements of the input data collection of type
↵ using the binary function � : ↵⇥ ↵ ! ↵, that is usually associative and commutative. Finally,
the result of the pattern is summarized in a single element y of type ↵ that is obtained performing
the operation y = x1 � x2 � . . . xN , where xi is the i-th data item of the input data collection (see
Figure 2(b)). The main constraint of this pattern is that the binary function should be pure.

Stencil This pattern is a generalization of the Map pattern in which an elemental function can
access, not only to a single element in an input collection, but also to a set of neighbors (see
Figure 2(c)). The function f : ↵⇤ ! ↵ used by the Stencil pattern receives the input item and a
set of neighbors (↵⇤) and produces an output element of the same type. The main requirement of
this pattern is that the function f should be pure.

MapReduce This pattern computes, in a first stage a Map-like pattern, a key-value function over
all the elements of an input collection, and delivers, in a second stage a Reduce-like pattern, a
set of unique key value pairs where the value associated to the key is the “sum” of the values
output for the same key (see Figure 2(d)). To do so, the MapReduce pattern computes in the
Map function f : ↵ ! {↵,Key} the elements in the input collection; afterwards it uses the Reduce

binary function � : � ⇥ � ! � to sum up the partial results with the same key. The result of this
pattern is a collection of data elements of type �, one per key. The requirements of the MapReduce

pattern is that both Map and Reduce-related functions should be pure.

Copyright c� 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe

GRPPI:	A	Generic and	Reusable	Parallel Pattern Interface

§ Example of	the Pipelinepattern interface:

https://github.com/arcosuc3m/grppi

Journal	publication:	 	D.	R.	Astorga,	M.	F.	Dolz,	J.	Fernandez	and	J.	D.	Garcia,	“A	generic	parallel	pattern	interface	for	stream	and	data	
processing,”	Concurrency	 and	Computation:	Practice	and	Experience,	http://dx.doi.org/10.1002/cpe.4175.	OpenAccess available.

GRPPI:	A	Generic and	Reusable	Parallel Pattern Interface

§ Patterns vs.	Parallel programming frameworks:
§ Stream and	data	parallel patterns – They can	be	composed among them!

Basic	patterns
Stream patterns Sequential OpenMP TBB C++	Threads CUDAThrust

Pipeline ü ü ü ü û
Farm ü ü ü ü ü

StreamFilter ü ü ü ü û
StreamAcumulator ü ü ü ü ü
StreamIterator ü ü ü ü û
Data patterns Sequential OpenMP TBB C++	Threads CUDAThrust

Map ü ü ü ü ü
Stencil ü ü ü ü û
Reduce ü ü ü ü ü

MapReduce ü ü ü ü ü
Divide&Conquer ü ü ü ü û

https://github.com/arcosuc3m/grppi

Journal	publication:	 	D.	R.	Astorga,	M.	F.	Dolz,	J.	Fernandez	and	J.	D.	Garcia,	“A	generic	parallel	pattern	interface	for	stream	and	data	
processing,”	Concurrency	 and	Computation:	Practice	and	Experience,	http://dx.doi.org/10.1002/cpe.4175.	OpenAccess available.

GRPPI:	A	Generic and	Reusable	Parallel Pattern Interface

§ Patterns vs.	Parallel programming frameworks:
§ Stream and	data	parallel patterns – They can	be	composed among them!
§ Weinclude advanced patterns!

Basic	patterns
Stream patterns Sequential OpenMP TBB C++	Threads CUDAThrust

Pipeline ü ü ü ü û
Farm ü ü ü ü ü

StreamFilter ü ü ü ü û
StreamAcumulator ü ü ü ü ü
StreamIterator ü ü ü ü û
Data patterns Sequential OpenMP TBB C++	Threads CUDAThrust

Map ü ü ü ü ü
Stencil ü ü ü ü û
Reduce ü ü ü ü ü

MapReduce ü ü ü û ü
Divide&Conquer ü ü ü ü û

Advanced patterns
Stream/data Sequential OpenMP TBB C++	Threads CUDAThrust

??? ??? ??? ??? ??? ???

https://github.com/arcosuc3m/grppi

Journal	publication:	 	D.	R.	Astorga,	M.	F.	Dolz,	J.	Fernandez	and	J.	D.	Garcia,	“A	generic	parallel	pattern	interface	for	stream	and	data	
processing,”	Concurrency	 and	Computation:	Practice	and	Experience,	http://dx.doi.org/10.1002/cpe.4175.	OpenAccess available.

ARCOS

Advanced parallel patterns

§ New	advanced patterns in	GrPPI: Pool,	Windowed-Farm and	Stream-Iterator

ARCOS

Advanced parallel patterns

§ The Pool	pattern:

§ Models the evolution of	a	population of	individuals
§ Applies iteratively the following functions on the population P:

Ø Selection (S):	Selects sepecific individuals (pure func.)
Ø Evolve (E):	Evolves individuals to	any number of	new	or modified individuals (pure func.)
Ø Filter (F):	Filters individuals and	inserts them back	into the population

Ø Termination (T):	Determines	whether the evolution should finish or continue

S=Selection;	E=Evolution;	
F=Filter;	T=Termination

ARCOS

Advanced parallel patterns

§ The Pool	pattern ismainly used in:
§ Symbolic computing domain:	Orbit patterns.
§ Evolutionary computing domain:	 Genetic algorithm patterns,	multiagent systems,	etc.
§ Example:	Travelling	salesman,	a	NP-problem computing the shortest path among cities.

§ GrPPI interface:

met, the Pool parallel pattern finishes and delivers the resulting population. On
the contrary, the whole process is repeated again with the evolved population.

The parallelism of this pattern is controlled via the execution model parame-
ter, which can be set to operate in sequential or in parallel, through the di↵erent
supported frameworks; e.g. to use C++ threads, the parameter should be set
to parallel execution thr. In this case, any execution model can optionally
receive, as an argument, the number of entities to be used for the parallel ex-
ecution, e.g., parallel execution thr{6} would use 6 worker threads. If this
argument is not given, the interface takes by default the number of threads set
by the underlying platform.

Listing 1.1: Pool interface.
1 < EM, P, S, E, F, T>
2 Pool(EM exec_mod, P &popul, S &&select, E &&evolve, F &&filt, T &&term, num_select);

Windowed-Farm The interface for the Windowed-Farm pattern, described in List-
ing 1.2, receives the execution model, the stream consumer (in), the Farm (task)
and the producer (out) functions. This pattern also receives the size and the
overlap factor of the windows.1 Specifically, the in function reads from the in-
put stream as many items as required to fill the window bu↵er. Next, this bu↵er
is forwarded to one of the concurrent entities, which will compute the func-
tion task in a Farm-like fashion. Therefore, the parallel implementation of this
GrPPI pattern is o↵ered by the Farm construction. Finally, the items collections
resulting from the task function are delivered to the output stream. Note that,
depending on the user requirements, this pattern can deliver items windows in
an ordered way by properly configuring the execution model.

Listing 1.2: Windowed-Farm interface.
1 < EM, I, WF, O>
2 WindowedFarm(EM exec_mod, I &&in, WF &&task, O &&out, win_size, overlap);

Stream-Iterator The GrPPI interface for the Stream-Iterator pattern, detailed
in Listing 1.3, takes the execution model, the stream consumer (in), the kernel
(task) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the
first step, the in function reads items from the input stream and a worker thread
executes the kernel task function for each item. Next, the termination function
term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function
decides whether an item should be delivered to the output stream or not.

Listing 1.3: Stream-Iterator interface.
1 < EM, I, F, O, T, G>
2 StreamIteration(EM exec_mod, I &&in, F &&task, O &&out, T &&term, G &&guard);

1Note that while the current Windowed-Farm pattern only supports count-based
windows, in the future we plan to extend its interface to cover time-based, slide-by-
tuple and delta-based windowing models.

Parallelism degree
(EM exec_mod)

Number of	 selections
(int num_select)

ARCOS

Advanced parallel patterns

§ TheWindowed-Farmpattern:

§ Stream pattern that deliverswindows of	processed items to	the output	stream
§ Performs the followingactions:

Ø The (pure)	function window-farm WF transforms consecutive windows of	size x	to	windows of	
size y.

Ø The output	 itemsmay contain the items from the input	windows collapsed in	a	specific way.

Ø The windows can	have an overlap factor.

prerequisites. This occurs in many algorithms that come from the evolution-
ary and symbolic computing [9] domain, wireless sensor networks algorithms [6]
or in real-time processing engines [17]. Therefore, we determine the need for
supporting advanced patterns in order to simplify the development of complex
algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Stream-Iterator, and Windowed-Farm.

Pool This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four di↵erent functions that are applied iter-
atively to a population P of individuals of type ↵ (see Fig. 1(a)). First, the
selection function S : ↵⇤ ! ↵

⇤ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E : ↵⇤ ! ↵

⇤, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F : ↵⇤ ! ↵

⇤, and eventually inserted into the population. Finally, the termina-

tion function T : ↵⇤ ! {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side e↵ects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1: Advanced parallel patterns.

ARCOS

Advanced parallel patterns

§ TheWindowed-Farmpattern can	be	used in:
• Real-time	processing engines.
• Wireless	 sensor	networks.
• Example:	compute	averagewindow values from sensor	 readings.

§ GrPPI interface

prerequisites. This occurs in many algorithms that come from the evolution-
ary and symbolic computing [9] domain, wireless sensor networks algorithms [6]
or in real-time processing engines [17]. Therefore, we determine the need for
supporting advanced patterns in order to simplify the development of complex
algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Stream-Iterator, and Windowed-Farm.

Pool This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four di↵erent functions that are applied iter-
atively to a population P of individuals of type ↵ (see Fig. 1(a)). First, the
selection function S : ↵⇤ ! ↵

⇤ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E : ↵⇤ ! ↵

⇤, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F : ↵⇤ ! ↵

⇤, and eventually inserted into the population. Finally, the termina-

tion function T : ↵⇤ ! {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side e↵ects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1: Advanced parallel patterns.

met, the Pool parallel pattern finishes and delivers the resulting population. On
the contrary, the whole process is repeated again with the evolved population.

The parallelism of this pattern is controlled via the execution model parame-
ter, which can be set to operate in sequential or in parallel, through the di↵erent
supported frameworks; e.g. to use C++ threads, the parameter should be set
to parallel execution thr. In this case, any execution model can optionally
receive, as an argument, the number of entities to be used for the parallel ex-
ecution, e.g., parallel execution thr{6} would use 6 worker threads. If this
argument is not given, the interface takes by default the number of threads set
by the underlying platform.

Listing 1.1: Pool interface.
1 < EM, P, S, E, F, T>
2 Pool(EM exec_mod, P &popul, S &&select, E &&evolve, F &&filt, T &&term, num_select);

Windowed-Farm The interface for the Windowed-Farm pattern, described in List-
ing 1.2, receives the execution model, the stream consumer (in), the Farm (task)
and the producer (out) functions. This pattern also receives the size and the
overlap factor of the windows.1 Specifically, the in function reads from the in-
put stream as many items as required to fill the window bu↵er. Next, this bu↵er
is forwarded to one of the concurrent entities, which will compute the func-
tion task in a Farm-like fashion. Therefore, the parallel implementation of this
GrPPI pattern is o↵ered by the Farm construction. Finally, the items collections
resulting from the task function are delivered to the output stream. Note that,
depending on the user requirements, this pattern can deliver items windows in
an ordered way by properly configuring the execution model.

Listing 1.2: Windowed-Farm interface.
1 < EM, I, WF, O>
2 WindowedFarm(EM exec_mod, I &&in, WF &&task, O &&out, win_size, overlap);

Stream-Iterator The GrPPI interface for the Stream-Iterator pattern, detailed
in Listing 1.3, takes the execution model, the stream consumer (in), the kernel
(task) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the
first step, the in function reads items from the input stream and a worker thread
executes the kernel task function for each item. Next, the termination function
term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function
decides whether an item should be delivered to the output stream or not.

Listing 1.3: Stream-Iterator interface.
1 < EM, I, F, O, T, G>
2 StreamIteration(EM exec_mod, I &&in, F &&task, O &&out, T &&term, G &&guard);

1Note that while the current Windowed-Farm pattern only supports count-based
windows, in the future we plan to extend its interface to cover time-based, slide-by-
tuple and delta-based windowing models.

Parallelism degree
(EM exec_mod)

Window size
and	overlap

(int win_size,
int overlap)

ARCOS

Advanced parallel patterns

§ The stand-alone and	farmed Stream-Iterator pattern:

§ Stream pattern that recurrently computes	a	given pure function
§ Applies the following functions on the input	stream items:

§ Farm (F):	transforms a	single	stream input;	 it can	be	computed in	parallel (pure func.).
§ Termination (T):	determines	whether the computation of	F	should be	continued or not.
§ Guard (G):	determines	in	each iteration if the result of	the function F	should delivered to	

the output	 stream or not.

F=Farm;	T=Termination;	G=Guard

prerequisites. This occurs in many algorithms that come from the evolution-
ary and symbolic computing [9] domain, wireless sensor networks algorithms [6]
or in real-time processing engines [17]. Therefore, we determine the need for
supporting advanced patterns in order to simplify the development of complex
algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Stream-Iterator, and Windowed-Farm.

Pool This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four di↵erent functions that are applied iter-
atively to a population P of individuals of type ↵ (see Fig. 1(a)). First, the
selection function S : ↵⇤ ! ↵

⇤ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E : ↵⇤ ! ↵

⇤, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F : ↵⇤ ! ↵

⇤, and eventually inserted into the population. Finally, the termina-

tion function T : ↵⇤ ! {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side e↵ects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1: Advanced parallel patterns.

ARCOS

Advanced parallel patterns

§ The stand-alone and	farmed Stream-Iterator patterns:
• Real-time	processing applications
• Example:	reduce	to	different resolutions the frames appearing on an

input	video.	The resolution is halved in	each iteration.

§ GrPPI interface

prerequisites. This occurs in many algorithms that come from the evolution-
ary and symbolic computing [9] domain, wireless sensor networks algorithms [6]
or in real-time processing engines [17]. Therefore, we determine the need for
supporting advanced patterns in order to simplify the development of complex
algorithms related to the aforementioned application domains.

In the following, we describe formally three new parallel patterns that can
be eventually incorporated during the parallelization task of such applications:
Pool, Stream-Iterator, and Windowed-Farm.

Pool This pattern models the evolution of a population of individuals matching
many evolutionary computing algorithms in the state-of-the-art [2]. Specifically,
the Pool pattern is comprised of four di↵erent functions that are applied iter-
atively to a population P of individuals of type ↵ (see Fig. 1(a)). First, the
selection function S : ↵⇤ ! ↵

⇤ selects a subset of individuals belonging to P.
Next, the selected individuals are processed by means of the evolution function
E : ↵⇤ ! ↵

⇤, which may produce any number of new or modified individuals. The
resulting set of individuals computed by E are filtered through a filter function
F : ↵⇤ ! ↵

⇤, and eventually inserted into the population. Finally, the termina-

tion function T : ↵⇤ ! {true, false} determines in each iteration whether the
evolution process should be finished or continued. To guarantee the correctness
of the parallel version of this pattern, both functions S and E should be pure,
i.e., they can be computed in parallel with no side e↵ects.

(a) Pool. (b) Windowed-Farm.

(c) Stream-Iterator. (d) Farm–Stream-Iterator.

Fig. 1: Advanced parallel patterns.

Parallelism degree
(EM exec_mod)

met, the Pool parallel pattern finishes and delivers the resulting population. On
the contrary, the whole process is repeated again with the evolved population.

The parallelism of this pattern is controlled via the execution model parame-
ter, which can be set to operate in sequential or in parallel, through the di↵erent
supported frameworks; e.g. to use C++ threads, the parameter should be set
to parallel execution thr. In this case, any execution model can optionally
receive, as an argument, the number of entities to be used for the parallel ex-
ecution, e.g., parallel execution thr{6} would use 6 worker threads. If this
argument is not given, the interface takes by default the number of threads set
by the underlying platform.

Listing 1.1: Pool interface.
1 < EM, P, S, E, F, T>
2 Pool(EM exec_mod, P &popul, S &&select, E &&evolve, F &&filt, T &&term, num_select);

Windowed-Farm The interface for the Windowed-Farm pattern, described in List-
ing 1.2, receives the execution model, the stream consumer (in), the Farm (task)
and the producer (out) functions. This pattern also receives the size and the
overlap factor of the windows.1 Specifically, the in function reads from the in-
put stream as many items as required to fill the window bu↵er. Next, this bu↵er
is forwarded to one of the concurrent entities, which will compute the func-
tion task in a Farm-like fashion. Therefore, the parallel implementation of this
GrPPI pattern is o↵ered by the Farm construction. Finally, the items collections
resulting from the task function are delivered to the output stream. Note that,
depending on the user requirements, this pattern can deliver items windows in
an ordered way by properly configuring the execution model.

Listing 1.2: Windowed-Farm interface.
1 < EM, I, WF, O>
2 WindowedFarm(EM exec_mod, I &&in, WF &&task, O &&out, win_size, overlap);

Stream-Iterator The GrPPI interface for the Stream-Iterator pattern, detailed
in Listing 1.3, takes the execution model, the stream consumer (in), the kernel
(task) and the producer (out) functions. This pattern also receives two boolean
functions: the termination (term) and output guard (guard) functions. In the
first step, the in function reads items from the input stream and a worker thread
executes the kernel task function for each item. Next, the termination function
term is evaluated with the resulting item to determine if the kernel should be
re-executed on the same input item. Additionally, the output guard function
decides whether an item should be delivered to the output stream or not.

Listing 1.3: Stream-Iterator interface.
1 < EM, I, F, O, T, G>
2 StreamIteration(EM exec_mod, I &&in, F &&task, O &&out, T &&term, G &&guard);

1Note that while the current Windowed-Farm pattern only supports count-based
windows, in the future we plan to extend its interface to cover time-based, slide-by-
tuple and delta-based windowing models.

ARCOS

§ Composability features:	 Stream-Iterator +	Pipeline

Advanced parallel patterns
e.g., Farm or Pipeline. As an example of composition, the code in Listing 1.4
implements a Stream-Iterator, in which the kernel task function has been com-
posed with the Pipeline pattern. Therefore, the kernel is computed in parallel by
2 worker threads. As can be seen, thanks to GrPPI, it is possible to compose
advanced with basic parallel patterns in order to increase the parallelism degree.

Listing 1.4: Example of Stream-Iterator-Pipeline composition.
1 StreamIteration(parallel_execution_thr{4},
2 [&]() -> optional< > { // Consumer function
3 value = read_value(is);
4 (value > 0) ? value : {};
5 },
6 Pipeline(// Kernel function
7 [](e) { e + 2*e; },
8 [](e) { e - 1; }
9),

10 // Producer function
11 [&](e){ os << e << endl; },
12 // Termination function
13 [] (e){ e < 100; },
14 // Output guard function
15 [] (e){ e % 2 == 0; }
16);

5 Evaluation

In this section, we perform an experimental evaluation of the three novel ad-
vanced patterns from the usability and performance points of view. To do so, we
use the following hardware and software components:

– Target platform. The evaluation has been carried out on a server platform
comprised of 2⇥ Intel Xeon Ivy Bridge E5-2695 v2 with a total of 24 cores
running at 2.40GHz, 30MB of L3 cache and 128GB of DDR3 RAM. The
OS is a Linux Ubuntu 14.04.2 LTS with the kernel 3.13.0-57.

– Software. To develop the parallel versions and to implement the proposed
interfaces, we leveraged the execution environments C++11 threads and
OpenMP 4.5, and the pattern-based parallel framework Intel Threading
Building Blocks (TBB). The C++ compiler used to assemble GrPPI is
GCC v5.0.

– Use cases. To evaluate the advanced patterns, we use three di↵erent synthetic
use cases targeting problems from di↵erent domains.
• The Pool pattern has been evaluated on a benchmark that solves the

traveling salesman problem (TSP) using a regular evolutive algorithm.
This NP-problem computes the shortest possible route among di↵erent
cities, visiting them only once and returning to the origin city.

• To evaluate the Windowed-Farm, we use a benchmark that computes
average window values from an emulated sensor readings.

• For the Stream-Iterator, we leverage a benchmark that reduces the res-
olution of the images appearing in the input stream, and produces the
images with concrete resolutions to the output stream.

ARCOS

§ Usability and	performance evaluationof	the parallel patterns:

§ Target	platform:	2x	Intel	Xeon Ivy Bridge	E5-2695	(24	cores)

§ Parallel technologies:	C++11	threads,	OpenMPand	Intel	TBB

§ Benchmarks:
§ Pool	pattern:	travelling	salesman (TSP)	using a	regular	evolutionary algorithm.	

NP-problem computing the shortest route among different cities,	visiting them
only once	and	returning to	the origin city.

§ Window-Farm pattern:	computation of	average window values from an
emulated sensor	readings.

§ Stream-Iteration pattern:	reduction of	the resolution of	the images appearing in	
the input	stream ,	and	producing images of	different resolutions to	the output	
stream.

Experimental	evaluation

ARCOS

Experimental	evaluation

§ Usability	performance
§ Analysis	of	the	modified	 lines	of	code	(LOCs)	w.r.t	the	sequential	version

§ C++	threads	requires	more	modified	 LOCs	than	other	 frameworks	providing	
high-level	interfaces	(OpenMP	 and	Intel	TBB)

§ Windowed-Farm	and	Stream-Iterator	are	more	difficult	 to	parallelize!

§ GrPPI	requires	less	modified	 LOCs	than	any	other	framework

• For the Stream-Iterator, we leverage a benchmark that reduces the res-
olution of the images appearing in the input stream, and produces the
images with concrete resolutions to the output stream.

In the following sections, we analyze the usability, in terms of lines of code,
and the performance of theGrPPI advanced patterns using the above-mentioned
benchmarks with varying configurations of parallelism degree, problem size and
execution frameworks.

5.1 Usability analysis

In this section we analyze the usability and flexibility of the advanced pattern
interfaces. To analyze these aspects, we assess the number of modified lines of
code (LOCs) required to implement the parallel versions of the use case algo-
rithms. Then, we compare the modified LOCs leveraging the GrPPI interface
with respect to using directly the supported frameworks. Table 1 summarizes the
percentage of modified LOCs in the sequential algorithm in order to implement
the parallel versions of the use cases algorithms. As observed, the OpenMP and
TBB versions require less LOCs, given that these frameworks provide high-level
interfaces hiding away the complexity behind concurrency mechanisms. For in-
stance, OpenMP 4.5 o↵ers the depend clause in task directives which enforces
additional constraints on the scheduling of tasks. However, the analogous imple-
mentation in C++ threads requires the use of explicit communication channels
(e.g. multiple-produce/multiple-consumer queues) and synchronization mecha-
nisms (e.g. locks, condition variables and atomic variables). On the other hand,
using the GrPPI interface for parallelizing a given application is simpler than
using directly the above-mentioned programming frameworks. On average, the
LOCs that have to be modified in order to incorporate an advanced GrPPI
pattern, is 28%. An additional advantage of GrPPI is its capability to easily
switch among execution frameworks, since it is only required to replace a single
argument in the pattern function call.

Table 1: Percentage of modified lines of code w.r.t. the sequential version.

Advanced % of modified lines of code

pattern C++ Threads OpenMP Intel TBB

Pool +55.0% +70.0% +55.0% +22.5%

Windowed-Farm +152.1% +75.8% +51.7% +31.0%

Stream-Iterator +153.5% +56.4% +46.1% +30.8%

5.2 Performance analysis of the Pool pattern

Next, we evaluate the Pool pattern on a benchmark that solves the TSP problem
using a population of 50 individuals representing feasible routes. We also set
the benchmark to perform a total of 200 iterations, each of them making 200
selections. Fig. 2(a) shows the performance gains when varying the number of
threads, from 2 to 24, and using the three available GrPPI back-ends: C++
threads, OpenMP and Intel TBB, with respect to the sequential version. As

ARCOS

Experimental	evaluation

§ Pool	pattern pattern evaluation using the travelling	salesman problem:
§ Population of	50	individuals representing feasible routes

Number of	selections =	200																																																		Number of	threads =	12

a) Good speedup scaling w.r.t number of	threads,	however Intel	TBB	and	OpenMP back	ends
perform better

b) The speedup grows with the number of	selections ->	only selection and	evolution functions
are	parallelized!	

can be seen, the speedup increases roughly at a linear rate when increasing the
number of threads for all frameworks. Concretely, we observe that between 2 and
12 threads the e�ciency is sustained in the range of 91%–98%. However, for 24
threads the frameworks OpenMP and Intel TBB deliver an e�ciency of 80%,
while for C++ threads it slightly decreases to 77%. This is mainly due to the
better resource usage made by the OpenMP and Intel TBB runtime schedulers.

As a complementary evaluation, we set the number of threads to 12 and vary
the number of selections from 10 and 200. According to the results shown in
Fig 2(b), the speedup grows hand in hand with the number of selections, since
the Pool pattern only parallelizes the selection and evolution functions. This
indicates that increasing the number of selections improves the load balance
among the worker threads and pays o↵ the parallelization overheads related to
thread synchronizations and communications.

 0

 4

 8

 12

 16

 20

2 4 8 12 24

S
p

ee
d

u
p

Number of threads

C++ Threads
Intel TBB
OpenMP

(a) Speedup vs. number of threads.

 0

 2

 4

 6

 8

 10

 12

10 50 100 150 200

S
p

ee
d

u
p

Number of selections

C++ Threads
Intel TBB
OpenMP

(b) Speedup vs. number of selections.

Fig. 2: Pool speedup varying with varying number of threads and selections.

5.3 Performance analysis of the Windowed-Farm pattern

In this section, we evaluate the performance of the Windowed-Farm using a syn-
thetic benchmark that computes average window values from an input stream of
sensor readings. Specifically, the sensor in this benchmark has been configured
to read samples at 1 kHz and the pattern window size has been set to 100 ele-
ments with 90% of overlap among windows. Fig 3(a) shows the speedup when
the number of threads increases from 2 to 24. The main observation is that all
execution frameworks scale with the increasing number of threads and behave
similarly, given that the OpenMP and Intel TBB runtime schedulers do not
provide any major advantage over the C++ threads implementation in this con-
crete use case. This is because the internal Farm pattern leads, by nature, to well
balanced workloads among threads. Note that a Farm is comprised of a pool of
threads that constantly retrieve items from the input stream and apply the same
function over them. On the other hand, we also observe an almost linear scaling
for increasing number of threads. This is mainly caused because the Farm pattern
can theoretically scale up to Tf

Ta
, being Tf the computation time of the window

average value and Ta the interarrival time of windows in the input stream. To
demonstrate this strong scaling, we experimentally measured the computation
time of the average function, which was, on average, 220ms and the interarrival
window time that was 10ms. Therefore, applying the aforementioned formula,
we get 22 as for the maximum theoretical speedup.

ARCOS

Experimental	evaluation

§ Windowed-Farm pattern evaluationusinga	benchmark computingaverage
windowvalues from an input	sensor	readings:
§ Sensor	sampling frequency is set	to	1	kHz
§ Fixed overlapping factor	among windows is 90%

Window size =	100																																																				Number of	threads =	12

a) Good speedup scaling w.r.t number of	threads,	no	difference among frameworks.

b) The speedup descreases with increasing the window sizes ->	number of	non-overlapping items
grows.

 0
 3
 6
 9

 12
 15
 18
 21

2 4 8 12 24

S
p

ee
d

u
p

Number of threads

C++ Threads
Intel TBB
OpenMP

(a) Speedup vs. number of threads.

 0

 2

 4

 6

 8

 10

 12

100 250 400 550 700

S
p

ee
d

u
p

Window size

C++ Threads
Intel TBB
OpenMP

(b) Speedup vs. window size.

Fig. 3:Windowed-Farm speedup with varying number of threads and window size.

As an additional experiment, we evaluate the behavior of the Windowed-Farm

pattern when increasing the window size, using 12 threads and the aforemen-
tioned configuration that uses a fixed overlapping factor of 90%. As can be
observed from Fig. 3(b), the speedup decreases for increasing window sizes, as
the number of non-overlapping items among windows also increases. This ba-
sically occurs because the interarrival time of window Ta increases, restricting
proportionally the maximum parallelism degree.

5.4 Performance analysis of the Stream-Iterator pattern

Finally, we analyze the performance of the GrPPI Stream-Iterator pattern us-
ing the above-mentioned benchmark, in charge of processing square images and
halving their sizes on each iteration until reaching concrete resolutions. Specifi-
cally, the size of the input images is fixed to 8,192 pixels, and the output images,
for each input, have sizes of 128, 512 and 1,024. Fig. 4(a) illustrates the bench-
mark speedup when varying the number of threads from 2 to 24 for the di↵erent
GrPPI back-ends. In this case, when the number of threads ranges between 2
and 12, the e�ciency attained is roughly 75%, while for 24 this is degraded to
48% for all programming frameworks. This e↵ect is mainly caused by the fact
that each of the threads involved in the Farm pattern, part of the Stream-Iterator,
are simultaneously accessing to di↵erent input images. Therefore, these memory
accesses become a bottleneck due to constant cache misses when the threads
perform the computation of the task function of the pattern. In general, these
results suggest a memory bandwidth limitation in this particular benchmark.

 0

 2

 4

 6

 8

 10

 12

2 4 8 12 24

S
p

ee
d

u
p

Number of threads

C++ Threads
Intel TBB
OpenMP

(a) Speedup vs. number of threads.

 0
 2
 4
 6
 8

 10
 12
 14
 16

2048 4096 8192 12288 16384

S
p

ee
d

u
p

Image size

C++ Threads
Intel TBB
OpenMP

(b) Speedup vs. image size.

Fig. 4: Stream-Iterator speedup with varying number of threads and image size.

To gain insights into the performance degradation detected in the previous
analysis, we perform an additional experiment in which we set the number of

ARCOS

Experimental	evaluation

§ Stream-Iterationpattern evaluation using a	benchmark that halves the resolution
of	a	stream of	images and	delivers them in	concrete	resolutions.
§ Input	square images of	resolution 8,192	pixels
§ Output	square image resolutions of	128,	512	and	1,024	pixels

Input	square image resolution =	8,192																																							Number of	threads =	12

a) Good speedup scaling until 12	threads (75%	of	efficiency),	but strong degradation for 24	threads
à This benchmark is memory-boundwhen the threads access simultaneously to	the input	images.

b) Speedup descrease with increasing image sizes ->	images accessed by the threads do	not
completely fit into L2/L3	(30	MB)	of	the target	platform.

 0
 3
 6
 9

 12
 15
 18
 21

2 4 8 12 24

S
p
ee

d
u
p

Number of threads

C++ Threads
Intel TBB
OpenMP

(a) Speedup vs. number of threads.

 0

 2

 4

 6

 8

 10

 12

100 250 400 550 700

S
p
ee

d
u
p

Window size

C++ Threads
Intel TBB
OpenMP

(b) Speedup vs. window size.

Fig. 3:Windowed-Farm speedup with varying number of threads and window size.

As an additional experiment, we evaluate the behavior of the Windowed-Farm

pattern when increasing the window size, using 12 threads and the aforemen-
tioned configuration that uses a fixed overlapping factor of 90%. As can be
observed from Fig. 3(b), the speedup decreases for increasing window sizes, as
the number of non-overlapping items among windows also increases. This ba-
sically occurs because the interarrival time of window Ta increases, restricting
proportionally the maximum parallelism degree.

5.4 Performance analysis of the Stream-Iterator pattern

Finally, we analyze the performance of the GrPPI Stream-Iterator pattern us-
ing the above-mentioned benchmark, in charge of processing square images and
halving their sizes on each iteration until reaching concrete resolutions. Specifi-
cally, the size of the input images is fixed to 8,192 pixels, and the output images,
for each input, have sizes of 128, 512 and 1,024. Fig. 4(a) illustrates the bench-
mark speedup when varying the number of threads from 2 to 24 for the di↵erent
GrPPI back-ends. In this case, when the number of threads ranges between 2
and 12, the e�ciency attained is roughly 75%, while for 24 this is degraded to
48% for all programming frameworks. This e↵ect is mainly caused by the fact
that each of the threads involved in the Farm pattern, part of the Stream-Iterator,
are simultaneously accessing to di↵erent input images. Therefore, these memory
accesses become a bottleneck due to constant cache misses when the threads
perform the computation of the task function of the pattern. In general, these
results suggest a memory bandwidth limitation in this particular benchmark.

 0

 2

 4

 6

 8

 10

 12

2 4 8 12 24

S
p
ee

d
u
p

Number of threads

C++ Threads
Intel TBB
OpenMP

(a) Speedup vs. number of threads.

 0
 2
 4
 6
 8

 10
 12
 14
 16

2048 4096 8192 12288 16384

S
p
ee

d
u
p

Image size

C++ Threads
Intel TBB
OpenMP

(b) Speedup vs. image size.

Fig. 4: Stream-Iterator speedup with varying number of threads and image size.

To gain insights into the performance degradation detected in the previous
analysis, we perform an additional experiment in which we set the number of

ARCOS

Conclusions

• Most	programming	models	are	too	low-level
§ Ease	the	parallelization	task!

• Patterns	hide	away	the	complexity	of	parallel	programming
§ GrPPI is	an	usable,	 simple,	generic	and	highlevel parallel	pattern	interface
§ The	overheads	of	GrPPI are	negligible	 with	respect	to	using	directly	parallel	

programming	 frameworks
§ Advanced	patterns	can	aid	in	developing	 complex	applications	from	different	

specific	domains
§ Parallelizing	code	with	GrPPI only	requires	 to	modify	~30%	the	number	of	 lines	of	

the	sequential	code

• Future	work
§ Support	 for	other	parallel	programming	 frameworks:	FastFlow

THANK	YOU!

22

