£ Universidad ARCOS ||
%, i & Carlos Il de Madrid

SEVINTH FRAMEWORX
PROGRAMME

Supporting Advanced Patterns in GrPPI,
a Generic Parallel Pattern Interface

David del Rio, Manuel F. Dolz, Javier Fernandez. Daniel Garcia

University Carlos Il of Madrid

Autonomic Solutions for Parallel and Distributed Data Stream
Processing (Auto-DaSP) — Euro-Par 2017

Santiago de Compostela, August 29th, 2017

RE PHRASE

Ve LA

RePhrase Project: Refactoring Parallel Heterogeneous Software
— a Software Engineering Approach

(ICT-644235), 2015-2018, €3.6M budget

8 Partners, 6 European countries UK, Spain, Italy, Austria, Hungary, Israel

“ evopro

.||I

UNIVERSITA
DEGLISTUDI /¢ &2\
-4 DITORINO [aof $hece P2
: : : : [| ALMAUNIVERSITAS (A '
TAURINENSIS ¥
® 900 Programming Rescarch software competence center
hagenberg

UNIVERSITA DI PISA

http://www.rephrase-ict.eu

Thinking in Parallel B R PHRASE

= Fundamentally, programmers must learn to “think parallel”

= thisrequires new high-level programming constructs

= youcannot program effectively while worrying about deadlocks etc.
" they must be eliminated from the design!

= youcannot program effectively while handling with communication etc.
* thisneeds to be packaged/abstracted!

= youcannot program effectively without performance information
" thisneedstobeincluded!

= How this can be solved? We use two key technologies:

= Refactoring (changing the source code structure)
= Parallel Patterns (high-level functions of parallel algorithms)

GRPPI: A Generic and Reusable Parallel Pattern Interface

= Objectives: ®

= Provide a high-level parallel patterninterface for C++ applications
GRPPI

= A Generic and Reusable Parallel Pattern Interface (GrPPI)
= High-level C++interface based on metaprogramming and template-based techniques
= Support for different parallel programming frameworks as back ends
= Support for basic stream and data patterns and their composability

(c) Stencil.

Seeselooe

co-o

(d) MapReduce. (e) Divide&Conquer.

(c) Filter. (d) Accumulator.

GRPPI: A Generic and Reusable Parallel Pattern Interface

= Example of the Pipeline pattern interface:

Listing 1.1: Pipeline interface.

[

template <typename ExecMod, typename InFunc, typename ... Arguments>
2| void Pipeline(ExecMod m, InFunc in, Arguments ... sts);

Listing 1.2: Usage example of the Pipeline pattern.

Pipeline(parallel_execution<OMP>,
// Stage 0: read values from a file

(&1 O
1 auto r = read_list(is);
return (r.size() == 0) ? optional<vector<int>>{} : make_optional(r);
O })

|
L

2|

3|

|

1

7 | // Stage 1: takes the maximum value of the vector
| [&] (optional<vector<int>> v) {

| return (v->size() > 0) ?
|

L

2|

a

|

d

i

9
) make_optional(*max_element(begin(*v), end(*v))) :
make_optional(numeric_limits<int>::min());

1(

1,
// Stage 2: prints out the result
[&os] (optional<int> x) {

if (x) os << *x << endl;

1

1:
1
15
16
17

)3

Journal publication: D. R. Astorga, M. F. Dolz, J. Fernandez and J. D. Garcia, “A generic parallel pattern interface for stream and data
processing,” Concurrency and Computation: Practice and Experience, http://dx.doi.org/10.1002/cpe.4175. OpenAccess available.

https://github.com/arcosuc3m/grppi

GRPPI: A Generic and Reusable Parallel Pattern Interface

= Patternsvs. Parallel programming frameworks:
= Stream and data parallel patterns —They can be composed among them! .
. GRPPI
Basic patterns
Stream patterns Sequential OpenMP TBB C++ Threads CUDA Thrust
Pipeline v v v v X
Farm v v v v v
StreamFilter v v v v X
StreamAcumulator v v v v v
Streamlterator v v v v X
Data patterns Sequential OpenMP TBB C++ Threads CUDAThrust
Map v v v v v
Stencil v v v v X
Reduce v v v v v
MapReduce v v v v v
Divide&Conquer v v v v 3

Journal publication: D. R. Astorga, M. F. Dolz, J. Fernandez and J. D. Garcia, “A generic parallel pattern interface for stream and data
processing,” Concurrency and Computation: Practice and Experience, http://dx.doi.org/10.1002/cpe.4175. OpenAccess available.

https://github.com/arcosuc3m/grppi

GRPPI: A Generic and Reusable Parallel Pattern Interface

= Patternsvs. Parallel programming frameworks:

= Stream and data parallel patterns —They can be composed among them!
= Weinclude advanced patterns!

GRPPI

Basic patterns
Stream patterns Sequential OpenMP TBB C++ Threads CUDA Thrust
Pipeline v v v v X
Farm v v v v v
StreamFilter v v v v x
StreamAcumulator v v v v v
Streamlterator v v v v X
Data patterns Sequential OpenMP TBB C++ Threads CUDAThrust
Map v v v v v
Stencil v v v v X
Reduce v v v v v
MapReduce v v v X v
Divide&Conquer v v v v 3
Advanced patter@
Stream/data Sequential OpenMP TBB C++ Threads CUDAThrust
2?? 2?2? 2?? 2?? 2?2? 2??

Journal publication: D. R. Astorga, M. F. Dolz, J. Fernandez and J. D. Garcia, “A generic parallel pattern interface for stream and data
processing,” Concurrency and Computation: Practice and Experience, http://dx.doi.org/10.1002/cpe.4175. OpenAccess available.

https://github.com/arcosuc3m/grppi

Advanced parallel patterns

= New advanced patternsin GrPPI: Pool, Windowed-Farm and Stream-Iterator

(c) Stream-lterator. (d) Farm—Stream-lIterator.

i S W*’g, .
ARCOS EE_D g ® Univers

Advanced parallel patterns

= The Pool pattern:

& &=
S=Selection; E=Evolution;

F=Filter; T=Termination

= Modelsthe evolution of a population of individuals

= Appliesiteratively the following functions on the population P:

» Selection (S): Selects sepecific individuals (pure func.)

» Evolve (E): Evolves individuals to any number of new or modified individuals (pure func.)
» Filter (F): Filters individuals and inserts them back into the population
>

Termination (T): Determines whether the evolution should finish or continue

g R Universidad
% i 4 Carlos Il de Madrid

ARCOS (!

RE PHRASE

Advanced parallel patterns

= The Pool patternis mainlyusedin:
= Symbolic computing domain: Orbit patterns.
= Evolutionary computing domain: Genetic algorithm patterns, multiagent systems, etc.
= Example: Travelling salesman, a NP-problem computing the shortest path among cities.

= @GrPPl interface:

Listing 1.1: Pool interface.

—_

template <typename EM, typename P, typename S, typename E, typename F, typename T>
2| void Pool(EM exec_mod, P &popul, S &&select, E &&evolve, F &&filt, T &&term, int num_select);

g e 9
. Number of selections
Parallelism degree <

(EM exec mod) E E@E (int num_select)
- = -

(a) Pool.

%’; Universidad
Carlos III de Madrid

ARCOS (!

RE PHRASE

VNS

Advanced parallel patterns

= The Windowed-Farm pattern:

?
%5@5?3:

= Stream pattern that delivers windows of processed items to the output stream

= Performs the followingactions:

>

The (pure) function window-farm WF transforms consecutive windows of size x to windows of
sizey.

The output items may contain the items from the input windows collapsed in a specific way.

The windows can have an overlap factor.

g R Universidad
% i 4 Carlos Il de Madrid

ARCOS [

RE PHRASE

Advanced parallel patterns

= The Windowed-Farm pattern can be used in:
* Real-time processing engines.
* Wireless sensor networks.
 Example: compute average window values from sensor readings.

= GrPPlinterface
Listing 1.2: Windowed-Farm interface.

1| template <typename EM, typename I, typename WF, typename 0>
2| void WindowedFarm(EM exec_mod, I &&in, WF &&task, 0 &&out, int win_size, int overlap);

e X :
Window size

and overlap

> oome (int win size,
int overlap)

Parallelism degree <
(EM exec mod)

5
563

%’; Universidad
Carlos III de Madrid

ARCOS (!

RE PHRASE

VNS

Advanced parallel patterns

= The stand-alone and farmed Stream-lterator pattern:

0

F=Farm; T=Termination; G=Guard

(c) Stream-lterator. (d) Farm—Stream-Iterator.

= Stream patternthatrecurrently computes a given pure function
= Appliesthefollowingfunctionsontheinputstreamitems:

= Farm (F): transforms a single stream input; it can be computed in parallel (pure func.).
= Termination (T): determines whether the computation of F should be continued or not.

= Guard (G): determines in each iteration if the result of the function F should delivered to
the output stream or not.

e &7’7 Universidad
%, it & Carlos III de Madrid

ARCOS [

RE PHRASE

Advanced parallel patterns

» The stand-alone and farmed Stream-lterator patterns:
* Real-time processing applications
 Example: reduce to different resolutions the frames appearing on an
input video. The resolution is halved in each iteration.

= GrPPlinterface
Listing 1.3: Stream-Iterator interface.

1| template <typename EM, typename I, typename F, typename 0, typename T, typename G>
2| void StreamIteration(EM exec_mod, I &&in, F &&task, 0 &&out, T &&term, G &&guard);

~ o Go
Parallelism degree < S]
(EM exec_mod) com{-© ° . \ e ° Lrmes

ARCOS [

RE PHRASE

LAY 4™

&7’; Universidad
Carlos III de Madrid

Advanced parallel patterns

= Composability features: Stream-Iterator + Pipeline

1| StreamIteration(parallel_execution_thr{4},
2 [&]1 () -> optional<int> { // Consumer function
3 auto value = read_value(is);
4 return (value > 0) ? value : {};
5 },
6 Pipeline(// Kernel function
7 [1C int e) { return e + 2xe; 1},
8 [1C int e) { return e - 1; }
9),
10 // Producer function
11 [&](int e){ os << e << endl; 1},
12 // Termination function
13 [(int e){ return e < 100; 1%},
14 // Output guard function
15 [l (int e){ return e % 2 == 0; }
16]);

ARCOS () R Universidad
R E P -TRASE '—[[—U—'ﬁ Carlos III de Madrid

Experimental evaluation

= Usability and performance evaluation of the parallel patterns:
= Targetplatform:2x Intel Xeon lvy Bridge E5-2695 (24 cores)
* Parallel technologies:C++11 threads, OpenMP and Intel TBB

" Benchmarks:
= Pool pattern: travelling salesman (TSP) using a regular evolutionary algorithm.
NP-problem computing the shortest route among different cities, visiting them
only once and returning to the origin city.

= Window-Farm pattern: computation of average window values from an
emulated sensor readings.

= Stream-lteration pattern: reduction of the resolution of the images appearingin
the input stream, and producing images of different resolutions to the output
stream.

] ARCOS (-]
a0 RE P+1RASE [gy |

® Universidad
QT & Carlos III de Madrid

Experimental evaluation

= Usability performance
= Analysis of the modified lines of code (LOCs) w.r.t the sequential version

Advanced % of modified lines of code
pattern C++4 Threads | OpenMP | Intel TBB | GrPPI
Pool +55.0 % +70.0 % +55.0% +22.5%
Windowed-Farm +152.1 % +75.8% +51.7% +31.0%
Stream-lterator +153.5% +56.4 % +46.1 % +30.8%

= C++ threads requires more modified LOCs than other frameworks providing
high-level interfaces (OpenMP and Intel TBB)

= Windowed-Farm and Stream-lterator are more difficult to parallelize!

= GrPPI requires less modified LOCs than any other framework

ARCOS (]

£ Y Universidad
% i Carlos III de Madrid

RE P+RASE

Experimental evaluation

= Pool pattern pattern evaluation usingthe travellingsalesman problem:

= Population of 50 individuals representing feasible routes

Number of selections =200 Number of threads = 12
20 ‘ ‘ ‘ 12 ‘ ‘ ‘
16 | 10 | N ‘
o =9 8 f
3 127 3
D 19} 6 f
2] 2,
2 C++ Threads —+— 2 4t C++ Threads —+— 1
4+ Intel TBB 7L Inte]l TBB
0 r | | OpenMP - 0 | | OpenMP -
2 4 8 12 24 10 50 100 150 200
Number of threads Number of selections
(a) Speedup vs. number of threads. (b) Speedup vs. number of selections.

a) Good speedup scaling w.r.t number of threads, however Intel TBB and OpenMP back ends
perform better

b) The speedup grows with the number of selections -> only selection and evolution functions

are parallelized!
ARCOS (]-{
RE P-HRASE |_gmigmy Jm

VNS

%’; Universidad
Carlos III de Madrid

Experimental evaluation

= Windowed-Farm pattern evaluationusinga benchmark computingaverage
window values from an input sensor readings:
= Sensor sampling frequency is set to 1 kHz
= Fixed overlapping factor among windows is 90%

Window size = 100 Number of threads = 12

21 12 C++ Threads —+—
L) o reads
18 0F—— Intel TBB
= 15 | s | & 8+ ™~ OpenMP - 1
g 12 3 ~
) K D 6 <
S 9¢ _ 1 2. T
n 6t s C++ Threads —+— | N 4 ¢ T «
3L o Intel TBB] 2t - ¥
"l | OpenMP ; | | |
2 4 8 12 24 100 250 400 550 700
Number of threads Window size
(a) Speedup vs. number of threads. (b) Speedup vs. window size.

a) Good speedup scaling w.r.t number of threads, no difference among frameworks.

b) The speedup descreases with increasing the window sizes -> number of non-overlapping items
grows.

&7’7 Universidad
Carlos III de Madrid

ARCOS (7]

o RE PHRASE

Experimental evaluation

= Stream-Iteration pattern evaluation using a benchmark that halves the resolution
of a stream of images and delivers them in concrete resolutions.
= |nputsquareimages of resolution 8,192 pixels
= Qutput square image resolutions of 128,512 and 1,024 pixels

Input square image resolution = 8,192 Number of threads =12
12 ‘ ‘ 16
10 e %421 7
g 8 g 10
S 6 /5’< > 8t
= | — | £ 6 1
»n 4 o C4++ Threads —+— »n 4 C++ Threads —+—
ol Intel TBB] Intel TBB
0 x ‘ ‘ OpenMP X (2) ‘ ‘ OpenMP x|
2 4 8 12 24 2048 4096 8192 12288 16384
Number of threads Image size
(a) Speedup vs. number of threads. (b) Speedup vs. image size.

a) Good speedup scaling until 12 threads (75% of efficiency), but strong degradation for 24 threads
- This benchmark is memory-bound when the threads access simultaneously to the input images.

b) Speedup descrease with increasing image sizes -> images accessed by the threads do not
completely fit into L2/L3 (30 MB) of the target platform.

) ARCOS ({7
i RE P1RASE B

&7’; Universidad
Carlos III de Madrid

Conclusions

* Most programming models aretoo low-level

Ease the parallelization task!

* Patterns hide away the complexity of parallel programming

GrPPI is an usable, simple, generic and highlevel parallel pattern interface

The overheads of GrPPI are negligible with respect to using directly parallel
programming frameworks

Advanced patterns canaid in developing complex applications from different
specific domains

Parallelizing code with GrPPI only requires to modify ~30% the number of lines of
the sequential code

e Futurework

Support for other parallel programming frameworks: FastFlow

R Universidad
& Carlos Il de Madrid

ARCOS g;%
E PH1RASE *

THANK YOU!

