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Scheduling

∎Scheduling: The allocation of available 
resources to a set of tasks 

∎Data locality in store-data-then-process 

• Goal: to put the tasks near the data to avoid 
moving data across the nodes

∎Communication awareness in stream 
processing

• Goal: to put the communicating tasks near 
each other in order to prevent moving data 
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Our Goal
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• Find groups of communicating tasks 
and minimise the communication 
between the nodes

• Consider a potentially heterogeneous 
collection of resources within a 
cluster and reduce the inter-node 
traffic by using larger capacity nodes 



T3-Scheduler

∎We propose T3-Scheduler, a Topology 
and Traffic-aware Two-level scheduler

∎Why topology and traffic-aware?

• Find the traffic pattern between the 
communicating tasks

∎Why two-level?

• First level: Which tasks should go into the 
same node

• Second level: Which tasks should go into the 
same worker process
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T3-Scheduler (Cont.)

∎Monitoring

∎Constructing a simplified graph

∎Node selection

∎First level of scheduling

∎Second level of scheduling
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Monitoring

∎Monitors the execution of the stream 

application 

∎Measures data transfer rate and task 

loads

∎Regularly stores the collected values in a 

monitoring log 

∎Periodically reads when rescheduling 
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Constructing a Simplified

Graph

∎Constructs a simplified graph based on the 

online profile

∎Vertex weight: sum of all the tasks load 

within each processing element

∎Edge weight: sum of data transfer rate of 

communicating tasks
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An Example
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Node Selection

∎Selects the highest capacity node 

∎Results in minimising the inter-node 

communication

∎Fills a node with as many communicating 

tasks as possible, up to its capacity, and 

then moves to the next highest capacity 

node 
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First Level of 

Scheduling

∎Uses a greedy approach to find the group 

of tasks that communicate most

∎Finds a starting point 

∎Expands the subgraph by finding the most 

highly connected neighbors

∎Results in dividing the simplified graph into 

multiple parts

∎Assigns each part to a compute node
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First Level of 

Scheduling (Cont. )

∎Fine grained group pair partitioning

∎Minimises edge cut, maximises task pairs
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First Level of 

Scheduling (Cont. )

∎Fine grained single group partitioning
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An Example
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Second Level of 

Scheduling

∎Use k-way partitioning to divide each 

subgraph of size t into a number of parts 

of size T

∎T: The number of tasks per worker process

∎Each part is assigned to a worker process
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Online Scheduler
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Each task’s load is α.
The worker nodes 1 

and 2 have the 
capacity of 4α



T3-Scheduler
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Experimental Setup
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• A Storm cluster with 8 worker nodes, one master 
node and one ZooKeeper node 

• Each node has a 2.7 GHz Intel CPU
• Four nodes with 4 cores and 4 GiB of RAM and 

four slots 
• Four nodes with 2 cores and 2 GiB of RAM and 

two slots
• Connected by 1 Gbps network
• We use the average number of tuples executed 

in each bolt as performance metric



Micro-benchmark 

Topologies
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Micro-benchmark 

Topologies (Cont. )
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Micro-benchmark 

Topologies (Cont. )
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Top Trending Routes 

∎NYC frequent 

routes

Pre-
Process

Emit Count Int. Rank Final Rank
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Conclusion and Future 

Work

∎We reduced inter-node communication by:

• Considering communication pattern 

• Prioritising nodes based on capacity and 

utilising each node

∎We will compare T3-Scheduler with 

optimal placement for common layouts

∎We will collect inter-node communication 

for our real-world application
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Thank you!
Any questions?


