
Topology and Traffic-Aware 

Two-Level Scheduler in a 

Heterogeneous Cluster 

Leila Eskandari, Jason Mair, 

Zhiyi Huang and David Eyers

University of Otago, New Zealand



Scheduling

∎Scheduling: The allocation of available 
resources to a set of tasks 

∎Data locality in store-data-then-process 

• Goal: to put the tasks near the data to avoid 
moving data across the nodes

∎Communication awareness in stream 
processing

• Goal: to put the communicating tasks near 
each other in order to prevent moving data 

2



Our Goal

3

• Find groups of communicating tasks 
and minimise the communication 
between the nodes

• Consider a potentially heterogeneous 
collection of resources within a 
cluster and reduce the inter-node 
traffic by using larger capacity nodes 



T3-Scheduler

∎We propose T3-Scheduler, a Topology 
and Traffic-aware Two-level scheduler

∎Why topology and traffic-aware?

• Find the traffic pattern between the 
communicating tasks

∎Why two-level?

• First level: Which tasks should go into the 
same node

• Second level: Which tasks should go into the 
same worker process

4



T3-Scheduler (Cont.)

∎Monitoring

∎Constructing a simplified graph

∎Node selection

∎First level of scheduling

∎Second level of scheduling

5



Monitoring

∎Monitors the execution of the stream 

application 

∎Measures data transfer rate and task 

loads

∎Regularly stores the collected values in a 

monitoring log 

∎Periodically reads when rescheduling 

6



Constructing a Simplified

Graph

∎Constructs a simplified graph based on the 

online profile

∎Vertex weight: sum of all the tasks load 

within each processing element

∎Edge weight: sum of data transfer rate of 

communicating tasks

7



An Example

Emit 
Topics

Rolling 
Count Int.

Rank
Final 
Rank

Emit 
Topics

Rolling 
Count

Int.
Rank

Final 
Rank

5α 4α9α 1α
Pair 1 45a Pair 2 36b Pair 3 4c

8

α a
b

c



Node Selection

∎Selects the highest capacity node 

∎Results in minimising the inter-node 

communication

∎Fills a node with as many communicating 

tasks as possible, up to its capacity, and 

then moves to the next highest capacity 

node 

9



First Level of 

Scheduling

∎Uses a greedy approach to find the group 

of tasks that communicate most

∎Finds a starting point 

∎Expands the subgraph by finding the most 

highly connected neighbors

∎Results in dividing the simplified graph into 

multiple parts

∎Assigns each part to a compute node

10



First Level of 

Scheduling (Cont. )

∎Fine grained group pair partitioning

∎Minimises edge cut, maximises task pairs

10
10

10

9
9
9

8
8
8

Group A Group B

10
10

10

9
9
9

8

8

8

Group A1 Group B1

Group A2 Group B2

1

2

3

4

5

6

1

2

3

4

5

6

10
10

10

9
9
9

8
8
8

Group A1 Group B1

1 4

5

6

3α 3α

α

α

α

α

α

α81

10
10

10

9
9
9

8
8
8

Group A1 Group B1

1

2

3

4

5

6

2

3

Group A Group B

3α 3α

81

Group A2 Group B2

Node Capacity 4α

11
Group A2 Group B2



First Level of 

Scheduling (Cont. )

∎Fine grained single group partitioning

10
10

10

9
9
9

8
8
8

Group A Group B1

1

2

3

4

5

6

3α 3α

α

α

α

α

α

α81

Group B

3α

81

Remaining Node Capacity: 2α

12

Group A

Group B2



An Example

Rolling 
Count1

Int.
Rank

Final 
Rank

Pair 1-1 25a Pair 3 4c

a>b>c

5α 1α

Rolling 
Count2

4α

Emit 
Topics

Rolling 
Count1

Int.
Rank1

Final 
Rank

Pair 1-1 25a Pair 2-1 15b

Rolling 
Count2

3α

Pair 1-3 5a

5α

4α

3α 1α

1α

1α

Int.
Rank2

Rolling 
Count3

Pair 1-2 15a

5α

Emit 
Topics

Pair 1-2 20a

Pair 2-1 20b

Pair 2-2 16b

Pair 2-2 5b

Pair 2-3 9b

Pair 2-4 3b

Pair 2-5 3b

Pair 2-6 b

Pair 3-1 3c

Pair 3-2 c

13

Emit 
Topics

Rolling 
Count

Int.
Rank

Final 
Rank

5α 4α9α 1α
Pair 1 45a Pair 2 36b Pair 3 4c

The five worker nodes A, B, C, 
D and E have the capacities of 

10α, 6α, 6α, 5α and 4α 

respectively.

5α



Second Level of 

Scheduling

∎Use k-way partitioning to divide each 

subgraph of size t into a number of parts 

of size T

∎T: The number of tasks per worker process

∎Each part is assigned to a worker process

14



Remote 
client

METIS

Monitoring 
Log

Storm Cluster

Supervisor Daemon

Worker Node 1

Pool of Worker Nodes

.

.

.

...

.

.

.

.

.

.

...

.

.

.

Master Node

T3-Scheduler

Monitoring

Nimbus Daemon

Worker Node 2

Supervisor Daemon

.

.

.

...

.

.

.

.

.

.

...

.

.

.

...

Traffic 
statistics

T3-Scheduler in Storm

15



Online Scheduler

Worker Node 1

1 3

Worker Node 2

1

2 4

3

6

5

8

7

A B C D

5 7

2 4

6 8

1 3

5 7

2 4

6 8

JVM 1

JVM 2

JVM 3

JVM 4

1 4

2 3

Tasks to JVMs Final Assignment

JVMs to slots

3 5

4 6

1 3

2 4

3 6

4 5

5 7

6 8

6 7

5 8

16

Each task’s load is α.
The worker nodes 1 

and 2 have the 
capacity of 4α



T3-Scheduler

1

2 4

3

6

5

8

7

A B C D

Worker Node 1

1 3

Worker Node 2

2 4

5 7

6 8

17

2α 2α2α 2α

Pair 1 - 4a Pair 2 - 4a Pair 3 - 4a1

2 4

3

6

5

8

7

Each task’s load is α.
The worker nodes 1 

and 2 have the 
capacity of 4α



Experimental Setup

18

• A Storm cluster with 8 worker nodes, one master 
node and one ZooKeeper node 

• Each node has a 2.7 GHz Intel CPU
• Four nodes with 4 cores and 4 GiB of RAM and 

four slots 
• Four nodes with 2 cores and 2 GiB of RAM and 

two slots
• Connected by 1 Gbps network
• We use the average number of tuples executed 

in each bolt as performance metric



Micro-benchmark 

Topologies

19

100000

150000

200000

250000

300000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Linear Topology

25000

50000

75000

100000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Linear Topology

CPU-intensive Network-intensive



Micro-benchmark 

Topologies (Cont. )

20

50000

75000

100000

125000

150000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Diamond Topology

25000

50000

75000

100000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Diamond Topology

CPU-intensive Network-intensive



Micro-benchmark 

Topologies (Cont. )

21

100000

150000

200000

250000

300000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Star Topology

25000

50000

75000

100000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Star Topology

CPU-intensive Network-intensive



Top Trending Routes 

∎NYC frequent 

routes

Pre-
Process

Emit Count Int. Rank Final Rank

22

10000

20000

30000

200 400 600

Time(s)

A
v
e
ra

g
e
 t
h

ro
u

g
h

p
u
t 

(t
u

p
le

s
/1

0
s
) OLS

T3−Scheduler

Top Frequent Routes Topology



Conclusion and Future 

Work

∎We reduced inter-node communication by:

• Considering communication pattern 

• Prioritising nodes based on capacity and 

utilising each node

∎We will compare T3-Scheduler with 

optimal placement for common layouts

∎We will collect inter-node communication 

for our real-world application

23



24

Thank you!
Any questions?


