
Stateful Load Balancing for Parallel
Stream Processing

Qingsong Guo, Yongluan Zhou
North University of China, University of Copenhagen

Auto-DaSP 2017 - August 29, 2017

Stream Processing in 20 Years

• Data StreamManagement Systems (DSMS)
• TelegraphCQ, STREAM, Gigscope, Aurora/Borealis, System S, etc.
• Continuous query (CQ)
• Low-latency processing: batchingà streaming
• Query results: deterministicà non-deterministic
• etc.

• When stream meets big data
• S4, Storm, Spark Streaming, StreamScope, Flink, Kafka/Samza,
Millwheel/Dataflow, etc.

• 3Vs of big data: volume, velocity, variety
• Scalability, elasticity, task scheduler, fault tolerance etc.
• Uniformed: batching + streaming

Approach: Leverage Memory
Memory bus >> disk & SSDs
Many datasets fit into
memory
» The inputs of over 90% of jobs

in Facebook, Yahoo!, and Bing
clusters fit into memory
» 1TB = 1 billion records @ 1 KB

Memory density (still) grows
with Moore’s law
» RAM/SSD hybrid memories at

horizon

High-end datacenter node

16-24 cores

10-30TB

128-512GB

1-4TB

10Gbps

0.2-1GB/s
(x10 disks) 1-4GB/s

(x4 disks)

40-60GB/s
Leverage memory
The	inputs	of	over	90%	of	jobs in	Facebook,	
Yahoo!,	and	Bing clusters	are fitted into	memory

Increase parallelism
Reduce	work	per	node	improves	latency
• Low	latency	scheduler
• Globe state management
• Efficient	failure	recovery
• Optimization	of communication	patterns:	e.g.,	

shuffle,	broadcast
…

Achieve Real-time Processing

• Traditional model
§ Processing pipeline of nodes
§ Each node maintains mutable state
§ Each input record updates the state
and new records are sent out

Stateful Stream Processing

• Reconfiguration of computation
§ Mutable state get lost if node fails
§ State should be redistributed across nodes if the placement plan
changes

§ Runtime adaptation for load variations, scale-out/scale-in
§ All these cases involve state migration

State is introduced for reasons such as window-based computation,
buffering, fault tolerance, etc.

Pause-migration-resume procedure
• Pause	the execution (o2)
• Install new	operator	on	target node	(O2	
on	node	2)

• Serialize state of O2	&	send	to	new	node	
(node	2)

• Redirect tuples to	new	node	(node	1	à
node	2)

Example job:	4	operators,	3	nodes

1

4

3

2 Migrate O2,
from	node	1
to	node	2

State Migration

1

4

3

2

2

Scale-out by
increase an
instance for O2State migration is time-consuming and

dominate

A1 B1

A2

B3

B2

A3

A B
q

h(K1) h(K2)
p

A1 B1

A2

A3 B3

B2

0

20

40

60

80

CPU Utilization of Google
cluster

Streaming	 Batch

Problems of load variations
1. Unmatched provision: low resource

efficiency
2. Load imbalance: low processing

latency and bad system throughput

Handling load variations
Operator placement & Adaptations
1. Dynamic scaling
2. Load balancing

Challenge from Load Variations

Dynamic reconfiguration
Load	variations, e.g., changes of	data rate	and data distribution
Commensurate provision: adaptive data	partitioning	to	achieve	load	
balancing	and	to scale	the	number	of	parallel	instances	of	each	operator	
to	avoid	over-provisioning or	under-provisioning.

Communication minimization
Reduce data shuffle
Optimizing	the	operator placement
to	minimize	cross-node	communication	can	significantly	reduce the	
resource	consumption	in	a	DSPE.

A B
p q

C

A B
p q

C

Two Optimization Problems

A1 B1

A2

A3 B3

B2

(b)

A1 B1

A2

A3 B3

B2

(c)

Project Enorm

Enorm borrows the basic concept from Storm
• Spout, Bolt, Topology (operator graph)
• Task & its execution model
• Stream grouping schemes

Enorm was launched in 2013 at SDU, 1 faculty and 3 PhD students
A distributed stream processing engine (DSPE) extends Apache Storm
with some essential properties such as
• flexible window computation,
• elastic resource management, operator placement strategies,
• automatic scaling,
• load	balancing,
• globe state management,
• optimized	fault-tolerance,
• etc.

Spout
Ingest source streams from Kestrel	and Kafka
queues or read	data from	Twitter	streaming	API
HDFS, Hive, etc.

Bolts

Processes	input	streams	and	produces	new	
streams. It could be user-defined functions or
standard SQL operators, such as Filters,
Aggregation, Joins, etc.

Topology (operator graph)

A directed acyclic graph(DAG) of	spouts	and	bolts

Basic Concepts of Storm

Task & execution
Spouts	and	bolts	execute	as many	tasks
Tasks	are scheduled and spread	across	the	storm cluster

Stream grouping
It defines how to dispatch output tuples.
Shuffle	grouping:	pick	a	random	task
Fields	grouping:	mod	hashing	on	a subset	of	tuple	fields
All	grouping:	send	to	all	tasks

Parallel Stream Processing with Storm

Operator model
Input, output: relational stream
Function, sliding window
Processing state, e.g., stateful or stateless
Partition key for stream	grouping

1. Shuffle	grouping for stateless operator
2. Key	grouping for stateful operator

...

...

Parallel processing
Operator instances
Substreams
Assignment

Plan 1:
Plan 2:

Operator Model

Component
An induced subgraph C of the operator graph is said to be a component if
and only if C is connected and its operators are compatible.
Compatibility: A set of operators are compatible	iff the	intersection	of	
their partitioning keys	is	not	empty. It is non-transitive.
Connectivity: Communication in a node is replaced by local memory
access and thus intra-component communications are eliminated.

Example
A simplified version of Linear Road Benchmark that calculates tolls with
a position-speed stream
5 operators: traffic statistics, accident detection, toll calculation ,…
Partitioning compatibility: Operators has common attribute

{Ts, Vid, XWay, Dir, O1:Forwarder

O3:AvgSpeed {Vid, XWay, Dir, Seg}
O2:AcdDetector {Ts, Vid}

O5:TollCalculator {Xway, Dir, Seg}
O4:SegVolume {Xway, Dir, Seg}

Partition KeyOperator

 Seg, Spd, Pos, Type}
O1

O2

O3

O4

O5src
S0

S1

S2

S3

S4

S6

S5 S7 sink

Component-based Parallelization(CBP)

Optimization goals
1. Runtime resource reconfiguration:

Unmatched provision, imbalance
2. Communication	cost	minimization:

Operator placement, task allocation

CBP essentials
Leverage the compatibility of operators
Intra-query parallelism
Intra-operator parallelism
Scalability of OBP

o4
src sink

o1
o2

o3

o15

src sink

o11
o12

o13

o25o21
o22

o23

(a) Operator Graph

o15

src sink

o11

o12

o13

o25o21 o22

o23
s1

s2

s3

s4

s0 s5

s0, s1, s2:(Ts,Vid,Wid,Dir,Spd,Pos)

s5:(Vid,Dir,Seg,Toll)

s3:(Ts,Vid,Dir,Seg,AvgSpd)
s4:(Ts,Dir,Seg,VehNum)

(a) OBP (b) CBP

o4
src sink

o1
o2

o3

o15

src sink

o11
o12

o13

o25o21
o22

o23

(a) Operator Graph

o15

src sink

o11

o12

o13

o25o21 o22

o23
s1

s2

s3

s4

s0 s5

s0, s1, s2:(Ts,Vid,Wid,Dir,Spd,Pos)

s5:(Vid,Dir,Seg,Toll)

s3:(Ts,Vid,Dir,Seg,AvgSpd)
s4:(Ts,Dir,Seg,VehNum)

(a) OBP (b) CBP

O1

O2

O3

O4

O5
S0

S1

S2
S3

S4

S6

S5 S7

Component-based Parallelization

A1

A2

A3
Split

p

p1����

p2(22)

p3(14)

(a)
A4

Key grouping and state movement
Load balancing in adaptation
Each substream is marked with the number of tuples
The same number of state partition with its load
Change	the assignment

16 state movements

Grouping Schemes

Problem Statement
• Given	a uneven assignment F1, the execution of load

balancing is to compute a new assignment F2 that
balances load for all instances.

• The MCLB problem asks for such an assignment F2	with
the minimum state movements.

Minimum Cost Load Balancing (MCLB)

• Bi-objective optimization problem
• Complexity
• NP-hard
• Approximate solutions

• Substreams statistic windows of length
• Histogram

• yit records the load for si at the t-th window

Statistics Measurement

Yt = (y1t, y2t, . . . , ypt)
T

• Substream si can be represented as a load series

∆

Xi = (yi1, . . . , yim)

s1 . . . sp

⎧

⎨

⎩

ȳt =
1

p

p
∑

i=1

yit

var(Yt) = E[Y 2

t]−
(

E[Yt]
)2

⎧

⎨

⎩

E[Xi] =
1

m

m
∑

t=1

yit

var(Xi) = E[X2

i
]−

(

E[Xi]
)2

{

cov(X1, X2) = E[X1X2]− E[X1]E[X2]

ρ12 =
cov(X1,X2)

√

var(X1)·
√

var(X2)

Average load &
load variance

Average load &
load variance

Metrics

Load imbalance
var(Lt) =

1

n

n∑

i=1

(lit − l̄t)
2

State movements
Given an uneven assignment F1 and a new assignment F2, a
state partition psi will be moved to another instance if the
allocations given by F1 and F2 are different, i.e., F1(si) ̸= F2(si)

ψ(F1,F2) = x · d =
p∑

i=1

xidi

d = (d1, . . . , dp)
T

xi is a binary variable,
xi = 1 if F1(si) ̸= F2(si)

|max−min|Normally we use

to measure imbalance

• Encoding the assignment as a matrix

• For instances , the load vector

at t-th window is given by a linear transformation

(o1, . . . , on) Lt = (l1t, l2t, . . . , lnt)
T

A
T
Yt = l̄t

A = [aij]p×n

a_ij=1 if s_i is assigned
to instance o^j

Phase 1: identify overloaded and underloaded instances
§ Calculate load vector with and

§ Calculate overall load , average load ,

and new parallelism

§ Add/remove and identify overloaded instance set OI and under

loaded instances UI by compare their load with

Basic idea
- ELB performs LB eagerly for each statistic window and attempts to
reduce state movements as many as possible
- Heuristics:
§ (1) Distribute hot spots as evenly as possible
§ (2) Fit the load of each instance into [v, u] and make it close to

Eager Load Balancing (ELB)

v + u

2

Lt = (l1t, . . . , lnt) Yt F1

w =

n∑

j=1

ljt l̄ =
w

π

π = ⌈
2w

u+ v

⌉

|π − n|

l̄ =
w

π

Eager Load Balancing (example)

Phase 2: identify substreams to be reassigned
1. Each time we choose the largest substream from an

overloaded instance <

Phase 3: reassign the identified substreams in PQ
1. Substreams in UI are listed a descending order of loads
2. The reassignment processes in a first-fit procedure
3. The instance will be removed from UI and added into OI if it is

overloaded

θ = min{ljt − l̄t,
u− v

2
}

Correlation-based Load Balancing (CLB)

n∑

i=1

var(Ni) =
1

m

n∑

i=1

m∑

j=1

l2ij −

n∑

i=1

η2i

The equivalence

min
m∑

j=1

var(Lj) ⇔ min
n∑

i=1

var(Ni)

m
∑

j=1

var(Lj) =
m
∑

j=1

(1

n

n
∑

i=1

l
2

ij − l̄
2

j

)

=
1

n

m
∑

j=1

n
∑

i=1

l
2

ij −

m
∑

j=1

l̄
2

j

Overall load imbalance

Si = {s1, . . . , sr}For the i-th instance assigned with substreams

ηi = E(Ni) =
|Si|∑

si∈Si

E(Xi)

Basic idea
1. CLB execute a LB every m (m>1) statistic windows with an assignment that fits
for the m histograms
2. The cost for state movements can	be	ignored	if	m	is	large	enough.
3. Substreams are view as load series and to reduce imbalance by minimize
correlation among the substreams assigned to the same instance.

Y = (Y1, . . . , Ym)

Ni = X1 + · · ·+XrLoad series

Correlation-based Load Balancing (cont.)

The right component is cross covariance which counts the covariance of
the substreams that falls into different subsets

min !(F) ⇔ max var(X)−
n∑

k=1

var(Nk)

var(X) = var(X1 + · · ·+Xp)

X = X1 + · · ·+XpLoad series

var(X)−
n∑

k=1

var(Nk) = 2
∑

Xi∈Sk,Xj∈Sz ,k ̸=z

cov(Xi, Xj)

In addition

Minimize load imbalance , is equivalent to a partition of S
into subsets S1…Sn that maximize

!(F)
var(X)−

n∑

k=1

var(Nk)

Experimental Evaluation

Tested solutions
ELB, CLB
PKG: Implements key grouping that tuples are randomly distributed to two
downstream instances, but it is designed for stateless LB
UHLB: Universal hash function rather than key grouping

Simulation
• A simple topology with 3 operators
• Load imbalance
• Percentage of state movements

Processing latency
• A simple topology for counting words

every 1 minute
• Processing latency
• Speedup of throughput

aa

ab

acad

ae

af

Figure 7: Relation Graph

u o v

CI1

. . .

CI⇡ CI⇡+1 CI⇡+k

Figure 8: Dynamic Scaling and State Migration

4

O1

O2

O3

O4

O5src
S0

S1

S2

S3

S4

S6

S5 S7 sink

O1

O2

O3

O5
S0

S1

S2

S3

S4

S5

src sink

S0 S1 S2
src sinkWordSplitter WordCounter

Fig.1 Load imbalance over time Fig.2 Percentage of state movements

Synthetic stream s1, s2
Data rate: Poisson process X(t)
Distribution: Gaussian and Zipf

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 20 40 60 80 100 120

Lo
ad

 Im
ba

la
nc

e

Time(minutes)

CLB
ELB

UHLB
PKG

 0

 2x106

 4x106

 6x106

 8x106

 1x107

Algorithm
Overall imbalance

ELB
CLB

UHLB
PKG

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

Lo
ad

 Im
ba

la
nc

e

Time(minutes)

PKG
UHLB
ELB

 0

 10

 20

 30

 40

 50

Algorithm
Percentage of movemements %

PKG
UHLB
ELB
CLB

aa

ab

acad

ae

af

Figure 7: Relation Graph

u o v

CI1

. . .

CI⇡ CI⇡+1 CI⇡+k

Figure 8: Dynamic Scaling and State Migration

4

λ : Prob{Zm ≤ τ} = 1− e−λτ ,λ = 10000

Simulation Results

The experiments are conducted on EC2 with medium VM instances.
We evaluated the processing latency by explicitly scaling out the operator
WordCounter that counts the occurrence for each word every 1 minute over
the Twitter stream.

Table 1. Processing latencies (ms)

Fig. 3: Load imbalance over time. Fig. 4: Percentage of state movements.
Table 1: Mean and standard deviation

1/f CLB ELB PKG UHLB

1
µ — 5.1E+4 3.1E+4 2.9E+4
� — 1806.8 1018.8 770.4

24
µ 6.1E+4 — — —
� 5133.7 — — —

Table 2: Processing latencies(ms)
latency CLB ELB PKG UHLB

max 1103.13 1109.51 1551.30 1505.13
mean 0.76 0.73 0.92 1.01

median 0.30 0.33 0.38 0.38
95% 1.12 0.68 1.70 1.89

of imbalance var(Lt) of all algorithms. The average percentage of state movements for
CLB is 48.4% when 1/f = 24. The value drops to 1.6% when we amortize them over
the statistic windows.

By looking at Fig. 3, we can observe that ELB performs better than CLB on load
imbalance, which is determined by their optimization objective and hence justifies the
assertion we addressed earlier. CLB aims at minimizing the overall load imbalance
~(L) by greedily reducing the covariance. In contrast, ELB executes load balancing
eagerly at each statistic window. Fig. 4 shows the comparison of state movements. The
left figure plots the percentage of movements for ELB, UHLB, and PKG. By looking
at the figure, it is apparent ELB has much smaller state movement than UHLB and
PKG. The average percentages of PKG, UHLB, and ELB is 21.2%, 24.2%, and 14.5%
respectively. In the right figure, we compared the average percentages of PKG, UHLB,
and ELB with the amortized percentage of CLB. As we expected the state movements
of CLB is negligible comparing to the other three algorithms.

5.2 Processing Latency

We implemented the algorithms in Enorm [6,7], which extends Apache Storm [1] by
integrating the ability of dynamic reconfiguration at runtime [8]. The experiments are
conducted on Amazon’s EC2 with medium VM instances, where each has 1.7 GB of
RAM, moderate IO performance and 1 EC2 compute unit.We evaluated the metric by
explicitly scaling out an operator WordCounter that counts the occurrence for each word
every 1 minute over the Twitter stream. To exclude the interference from other factors,
we fix the processing capacity of each VM to 1000 tuples/s. The data rate of Twitter
stream starts at 1000 tuples/s and linearly grows to 16,000 tuples/s, and Storm scales
out the operator by adding one more instances each time.

Processing latency with respect to data rate— Statistics of processing latency
is illustrated in Tab. 2, where 95% is the 95-th percentile. By examining the 95-th per-
centile, we know that most tuples have processing latency less than 1.89 ms. In contrast,
a very small portion of tuples have very high latencies. It confirms that state movement

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

Sp
ee

du
p

of
 th

ro
ug

hp
ut

Number of instances n

CLB
ELB

UHLB
PKG
Idea

Fig 3. Speedup of throughput

Processing Latency

O1

O2

O3

O4

O5src
S0

S1

S2

S3

S4

S6

S5 S7 sink

O1

O2

O3

O5
S0

S1

S2

S3

S4

S5

src sink

S0 S1 S2
src sinkWordSplitter WordCounter

Conclusions and Future Work

• Enorm Project
• Problems in stream processing
• Stateful stream computation
• Challenge of load variation

• Stateful load balancing
• Formulate the minimum cost load balancing as bi-objective
optimization problem

• Two approximate algorithms
• Experimental results shows the effectiveness of ELB and CLB

• Future work
§ More effective algorithms
§ Experimental comparisons

THANKS
Questions?

