Stateful Load Balancing for Parallel
Stream Processing

Qingsong Guo, Yongluan Zhou
North University of China, University of Copenhagen

\j
Auto-DaSP 2017 - August 29, 2017

Stream Processing in 20 Years

e Data Stream Management Systems (DSMS)
» TelegraphCQ, STREAM, Gigscope, Aurora/Borealis, System S, etc.
* Continuous query (CQ)

Low-latency processing: batching = streaming

Query results: deterministic 2 non-deterministic

* etc.

* When stream meets big data

e S4, Storm, Spark Streaming, StreamScope, Flink, Kafka/Samza,
Millwheel/Dataflow, etc.

* 3Vs of big data: , .
* Scalability, elasticity, task scheduler, fault tolerance etc.
* Uniformed: batching + streaming

Achieve Real-time Processing

128-512GB
Leverage memory

The inputs of over 90% of jobs in Facebook,
Yahoo!, and Bing clusters are fitted into memory 16-24 cores

[~

0.2-1GB/s
(x10 disks) ;

40-60GB/s

1-4GB/s

) (x4 disks)

10-30TB &

High-end datacenter node

Increase parallelism O = = O

Reduce work per node improves latency

A
* Low latency scheduler @ — -\

* Globe state management

e Efficient failure recovery @ — -ﬁ O

e Optimization of communication patterns: e.g.,

shuffle, broadcast @ f— - /

Stateful Stream Processing

State is introduced for reasons such as window-based computation,
buffering, fault tolerance, etc.

mutable state

* Traditional model

input

= Processing pipeline of nodes records_’/
= Each node maintains mutable state node 1
= Each input record updates the state |
and new records are sent out input ___]
records

node 2

» Reconfiguration of computation
= Mutable state get lost if node fails

= State should be redistributed across nodes if the placement plan
changes

= Runtime adaptation for load variations, scale-out/scale-in
= All these cases involve state migration

State Migration

. . Example job: 4 operators, 3 nodes
Pause-mlgratlon-resume procedure

* Pause the execution (02) Migrate 02,
from node 1
* Install new operator on target node (02 to node 2
on node 2)
e Serialize state of 02 & send to new node
(node 2)
* Redirect tuples to new node (hode 1 2>
node 2) S
cale-out by

increase an
instance for 02

State migration is time-consuming and
dominate

1?l
o
:
K
N
S
I

|

\I)\i)\l)

Challenge from Load Variations

Problems of load variations

1. Unmatched provision: low resource
efficiency

2. Load imbalance: low processing
latency and bad system throughput

Handling load variations

Operator placement & Adaptations
1. Dynamic scaling
2. Load balancing

80

60

40

20

CPU Utilization of Google
cluster

M Streaming M Batch

Two Optimization Problems

Load variations, e.g., changes of data rate and data distribution
Commensurate provision: adaptive data partitioning to achieve load
balancing and to scale the number of parallel instances of each operator
to avoid over-provisioning or under-provisioning.

Reduce data shuffle

Optimizing the operator placement

to minimize cross-node communication can significantly reduce the
resource consumption in a DSPE.

————— ~ B2

—————————————————

N
_%)ﬁ
>

(\9]

x%

YN

os)

(\9]
\l)\ijklj
fV\fl\fV\

>

\9)

!l J]l)]

Project Enorm

Enorm was launched in 2013 at SDU, 1 faculty and 3 PhD students

A (DSPE) extends Apache Storm
with some essential properties such as

* flexible window computation,

» elastic resource management, operator placement strategies,

e automatic scaling,

* load balancing,

* globe state management,

* optimized fault-tolerance,

* etc.

Enorm borrows the basic concept from Storm

Basic Concepts of Storm

Ingest source streams from Kestrel and Kafka
queues or read data from Twitter streaming API

HDEFS, Hive, etc.

Processes input streams and produces new
streams. It could be user-defined functions or

standard SQL operators, such as Filters,
Aggregation, Joins, etc.

A directed acyclic graph(DAG) of spouts and bolts

/\ 0\

\/

Parallel Stream Processing with Storm

Task & execution

Spouts and bolts execute as many tasks
Tasks are scheduled and spread across the storm cluster

> =

i
|

Nimbus (process) Slots

Stream grouping

It defines how to dispatch output tuples. e e
Shuffle grouping: pick a random task O—
Fields grouping: mod hashing on a subset of tuple fields O—
All grouping: send to all tasks O—

Operator Model

Input, output: relational stream
Function, sliding window
Processing state, e.g., stateful or stateless

Partition key for stream grouping
1. Shuffle grouping for stateless operator
2. Key grouping for stateful operator

Operator instances 7 = {ol, - -,0™}
Substreams § = {sl...sP}
Assignment Fe:S — 7
Plan 1: s1,s4 — 01,52 — 02,53 — 03
Plan 2: g1 — 01,52 — 02,53 54 — 03

O : Operator
IB : Input Buffer
OB : Onput Buffer

PS : Processing State

input

IB

PS

OB | -

output

Component-based Parallelization(CBP)

Component

An induced subgraph C of the operator graph is said to be a component if
and only if Cis connected and its operators are compatible.
Compatibility: A set of operators are compatible iff the intersection of
their partitioning keys is not empty. It is non-transitive.

Connectivity: Communication in a node is replaced by local memory
access and thus intra-component communications are eliminated.

Example

A simplified version of Linear Road Benchmark that calculates tolls with
a position-speed stream

5 operators: traffic statistics, accident detection, toll calculation,...
Partitioning compatibility: Operators has common attribute

Operator | Partition Key

O1:Forwarder T{Ts, Vid, XWay, Dir,
|

\ Seg, Spd, Pos, Type}
sink O2:AcdDetector |{Ts, Vid}

O3:AvgSpeed '{Vid, XWay, Dir, Seg}
O4:SegVolume | {Xway, Dir, Seg}
O5:TollCalculator,{Xway, Dir, Seg}

SIcC

Component-based Parallelization

1. Runtime resource reconfiguration:
Unmatched provision, imbalance

2. Communication cost minimization:
Operator placement, task allocation

Leverage the compatibility of operators
Intra-query parallelism

Intra-operator parallelism

Scalability of OBP

Grouping Schemes

Key grouping and state movement

Load balancing in adaptation
Each substream is marked with the number of tuples
The same number of state partition with its load
Change the assignment

16 state movements

1 3 2 3 3 SRRy S . 4
Al 1| 2 | 2 3 3 4 4 | { 5
24
Pl 48 8 8 3 3 . A 5|
5(22), A2 111 2 | 2 3 3 5 5{
p . 1
— Split 3(14) L = 3 3 8
:\k> A3 b) 3 4 5 1
e 4 5 4 2
\ "-----------T------—----T --------- r-
A4 ! 5 l 5 l '

Minimum Cost Load Balancing (MCLB)

Problem Statement

* Given a uneven assignment F1, the execution of load
balancing is to compute a new assignment F2 that
balances load for all instances.

* The MCLB problem asks for such an assignment F2 with
the minimum state movements.

* Complexity
* NP-hard
* Approximate solutions

Statistics Measurement

- Substreams Sj ... S, statistic windows of length A

+ Histogram Y; = (y1s, Yot - - -, Upt)
records the load for si at the t-th window

load variance

p
Average load & {yt —]lg Z Vit

- Substream sican be represented as a load series X; = (y;;, ..

(

1N
Average load &) E[Xi| = m t_zjl Yit
load variance — 5
\var(X;) = B[X7] — (E[Xi])

(cov(X1, X5) = E[X, X5] — E[X1|E[X,]
S D1y = cov(X1,X2)
L \/var(X1)-\/var(X2)

< yzm)

a_ij=1if s_i is assigned
to instance o/j

Metrics

» Encoding the assignment as a matrix A = [aij]pm

+ Forinstances (o', ..., 0"), the load vector Ly = (I, los, . .., Lnt)”

at t-th window is given by a linear transformation A'Y; =1,

Load imbalance .

var(L;) = %ZU“ — [

i=1 Normally we use |max — man|

to measure imbalance

State movements

Given an uneven assiiqnment F1 and a new assignment F2, a
state partition psi will be moved to another instance if the
allocations given by F1 and F2 are different, i.e., Fi(s;) # Fao(s;)

x; is a binary variable,

p
U(F1, Fo) S xfd = ;xidi x; = 1if Fi(s;) # Fals;)

d=(d,...,d,)"

Eager Load Balancing (ELB)

- ELB performs LB eagerly for each statistic window and attempts to
reduce state movements as many as possible

- Heuristics:

= (1) Distribute hot spots as evenly as possible e
= (2) Fit the load of each instance into [v, u] and make it close to —

= Calculate load vector Lt = (L1t - - -, lnt lwith Y, and F;

n

I

- w
= (Calculate overall load w = Z l;;, averageload [= —
2W

s
u—H)W
= Add/remove |™ — n| and identify overloaded instance set Ol and under

. g=l
and new parallelism =

- w
loaded instances Ul by compare their load with | = =

Eager Load Balancing (example)

Phase 2: identify substreams to be reassigned
1. Each time we choose the largest substream from an
overloaded instance < 6 = min{l;; — [, %}
Phase 3: reassign the identified substreams in PQ
1. Substreams in Ul are listed a descending order of loads
2. The reassignment processes in a first-fit procedure

3. The instance will be removed from Ul and added into Ol if it is
overloaded

Correlation-based Load Balancing (CLB)

1. CLB execute a LB every statistic windows with an assignment that fits
for the m histograms Y = (Y1,...,Y},)

2. The cost for state movements can be ignored if m is large enough.

3. Substreams are view as load series and to reduce imbalance by minimize
correlation among the substreams assigned to the same instance.

Overall load imbalance

Suerlt) =3 (35— = 356D
j=1 1= j 1 =1 j=1
For the instance a55|gned with substreams S, = {s1,...,s,}

n S
Svarti = 2358 ST = mvy = 3 B
1=1 =1 j5=1 1=1 $;E€S5;

Load series N, = X; +---+ X,

min E UCLT <:>mm E ”UCL?"

Correlation-based Load Balancing (cont.)

Load series X = X; + -+ X,
In addition var(X) =var(X; +--- + X))

var(X)|— Zvar(Nk) =|2 Z cov(X;, X;)

The right component is which counts the covariance of
the substreams that falls into different subsets

Minimize load imbalance i(F), is equivalent to a partition of S
into subsets S1...Sn that maximize var(X) - var(Vy)

n k=1

min A(F) < maxvar(X) — Z var(Ny)

Experimental Evaluation

ELB, CLB

PKG: Implements key grouping that tuples are randomly distributed to two
downstream instances, but it is designed for stateless LB

UHLB: Universal hash function rather than key grouping

* Asimple topology with 3 operators @ =@ :@
* Load imbalance
* Percentage of state movements

SO S1 S2

\ 4
\ 4

\4

src WordCounter sink

WordSplitter

* Asimple topology for counting words
every 1 minute

* Processing latency
« Speedup of throughput

Load Imbalance

Simulation Results O—0)—0)

Synthetic stream s1, s2

Data rate: Poisson process X(t) A\ : Prob{Z,, <7} =1 —e ", A = 10000
Distribution: Gaussian and Zipf

80000 ‘ ‘ ‘ ‘ ‘ 1x107 ‘ 50 ‘ ‘ ‘ ‘ ‘ 50
70000 ELB /= PKG —— PKG ===
s CLB === UHLB —— UHLB ===
8x10° - UHLB 1 40 ELB b 40 |- ELB 7
60000 b - PKG CLB
50000 iy 8
6x10° |- S 30 f 30 |-
|
40000 B g
8
6| 2 L
30000 |) 4x10 = 20 20 W
)
CLB ——
20000 ELB —— i
UHLB 2x10° | . 10 - y 10 -
10000 FIge
0 L L L L L 0 0 Il Il Il Il Il O
0 20 40 60 80 100 120 Algorithm 0 20 40 60 80 100 120 Algorithm
Time(minutes) Overall imbalance Time(minutes) Percentage of movemements %

Fig.1 Load imbalance over time Fig.2 Percentage of state movements

Processing Latency . g :

src WordSplitter WordCounter

A

A4

sink

A

The experiments are conducted on EC2 with medium VM instances.

We evaluated the processing latency by explicitly scaling out the operator
WordCounter that counts the occurrence for each word every 1 minute over
the Twitter stream.

—_
o)}

s -

_ . —— ,
latency CLB ELB PKG UHLB 0 e V/,&///*]
max 1103.13 1109.51 1551.30 1505.13 gop L 7 |
mean 076 073 092 101 5 8 / I
o 6 wZ: -

median 030 033 038 038 2 74
95% 1.12 068 170 1.89 a4 7 |
2t -
P
0 | | | | | | |

0 2 4 6 8 10 12 14 16
Number of instances n

Table 1. Processing latencies (ms)

Fig 3. Speedup of throughput

Conclusions and Future Work

* Enorm Project
* Problems in stream processing
* Stateful stream computation
e Challenge of load variation

e Stateful load balancing

* Formulate the minimum cost load balancing as bi-objective
optimization problem

* Two approximate algorithms

* Experimental results shows the effectiveness of ELB and CLB
* Future work

" More effective algorithms

= Experimental comparisons

THANKS

Questions?

