
Towards Hierarchical Autonomous Control for
Elastic Data Stream Processing in the Fog

Valeria Cardellini, Francesco Lo Presti,
Matteo Nardelli, Gabriele Russo Russo

University of Rome Tor Vergata, Italy

Data Stream Processing

2

Data Stream Processing (DSP) applications:
• processing of data streams generated by distributed sources
• To extract information in a (near) real-time manner

To increase scalability and availability, reduce latency, network
traffic, and power consumption

Exploit distributed and near-edge computation
(distributed cloud and Fog computing)

Old and New Challenges
Distributed Environment
• Geographic distribution, network latencies are not-negligible
• Computing and network resources can be heterogeneous

(e.g., capacity, energy consumption, business constraints)
• Data cannot be quickly moved among computing nodes

DSP Applications are long running

Reconfigure the application deployment
• has a non negligible cost!
• can negatively affect application performance in the short term

– Application freezing times, especially for stateful operators

 3

State of the art

4

Centralized approaches:
• most of the proposed approaches designed for clusters
• do not scale well in a distributed environment

Decentralized approaches:
• several proposal
• their inherent lack of coordination might result in frequent reconfigurations

MAPE (Monitor, Analyze, Plan and Execute)

Decentralized MAPE

5

• Many Patterns, each with pro and cons

D. Weyns, B. Schmerl, V. Grassi, S. Malek, et al. On patterns for decentralized control in self-adaptive
systems. In Software Engineering for Self-Adaptive Systems II, vol. 7475 of LNCS, Springer, 2013.

Master-worker Regional pattern Hierarchical control pattern

Coordinated control pattern Information sharing pattern

Goals

6

• Design a hierarchical distributed approach to the autonomous
control of DSP applications

• Support run-time adaptation
– Elasticity

automatically scale in/out the number of operator instances
– Stateful Migration

relocate operators without compromising application integrity

• Design a simple control policy

• Integration of our solution in Storm

Hierarchical MAPEs in Storm

7

• New components in Apache Storm to realize a Hierarchical MAPE pattern

• Operator Manager vs Application Manager
– Concerns and time scale separation

Hierarchical MAPEs in Storm

8

Operator Manager
• Monitors operator and local resources

– e.g., Thread CPU utilization,
• Determines whether a Migration

 and/or Scale operation is needed
• Executes the reconfiguration

– If gets the permission to

Application Manager
• Monitors Application Performance

– SLA enforcement
• Coordinates operator reconfigurations

– Grants permission to enact reconfigurations
– Controls reconfiguration frequencies

General Framework for
Distributed Optimization

Simple Distributed Heuristic: Operator Manager

9

• issues reconfiguration plans:

action, gain, cost

• action: migrates an operator replica
– threshold based policy on CPU utilization
– new location: probabilistic selection from the neighborhood
– cost: estimated stateful migration time

• action: operator scaling
– threshold based policy on Sα percent of CPU time used by the replica α
– scale in: if removing a replica does not significantly increase load on

other replicas
– cost: estimated time to relocate the operator state (if any)

• gain function: scale-out > migration > scale-in

Simple Distributed Heuristic: Application Manager

10

Token-based policy
• Considers time divided in intervals
• Generates reconfiguration tokens based on application performance
• Grants as many reconfigurations as available tokens

– Prioritizing by gain to cost ratio

Token Bucket

control interval

Reconfiguration
Requests

Granted
Reconfiguration

Time

Evaluation

11

Infrastructure
• 5 worker nodes + 1 host for Nimbus and ZooKeeper
• each node Intel Xeon 8 cores@2Ghz, 16 GB RAM

Application
• DEBS 2015 Grand Challenge: top10 frequent routes NYC taxis in the last 30 min
• Requires: max Response Time Rmax = 200 ms

Policy parameters
• Operator Manager policy: thresholds on utilization to 70% (c = 0.75)
• Application Manager policy: token bucket capacity = 1 token

Evaluation
Application Manager policy: grants all reconfiguration requests

12

up and running
93.7% of time

median of
response time

130.6 ms

Evaluation
Application Manager policy: 1 token/min if response time > 50% Rmax

13

up and running
93.4% of time

median of
response time

117.0 ms

Evaluation
Application Manager policy: 1 token/min if response time > 75% Rmax

14

up and running
98.3% of time

median of
response time

80.4 ms

Conclusions
• We designed a hierarchical distributed architecture for the autonomous

control of DSP applications

• We developed a simple control policy

• We integrated our solution in Storm

• We evaluated the effectiveness of our solution

Future Works
• Extend distributed heuristic: reduce oscillations, without compromising

scalability

• Design new multi-time scale heuristics which capture the system
dynamics (e.g., MDP) or learn from experience (e.g., Reinf. Learning)

15

Thank you!

Matteo Nardelli

nardelli@ing.uniroma2.it

http://www.ce.uniroma2.it/~nardelli

	Towards Hierarchical Autonomous Control for�Elastic Data Stream Processing in the Fog
	Data Stream Processing
	Old and New Challenges
	State of the art
	Decentralized MAPE
	Goals
	Hierarchical MAPEs in Storm
	Hierarchical MAPEs in Storm
	Simple Distributed Heuristic: Operator Manager
	Simple Distributed Heuristic: Application Manager
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusions
	Thank you!

