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Data Stream Processing 
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Data Stream Processing (DSP) applications: 
• processing of data streams generated by distributed sources 
• To extract information in a (near) real-time manner 

 

To increase scalability and availability, reduce latency, network 
traffic, and power consumption 

Exploit distributed and near-edge computation 
(distributed cloud and Fog computing) 

 
 



Old and New Challenges 
Distributed Environment 
• Geographic distribution, network latencies are not-negligible 
• Computing and network resources can be heterogeneous 

(e.g., capacity, energy consumption, business constraints) 
• Data cannot be quickly moved among computing nodes 
 

DSP Applications are long running  

 

Reconfigure the application deployment 
• has a non negligible cost!  
• can negatively affect application performance in the short term 

– Application freezing times, especially for stateful operators 
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State of the art 

4 

Centralized approaches:  
• most of the proposed approaches designed for clusters  
• do not scale well in a distributed environment 

Decentralized approaches: 
• several proposal 
• their inherent lack of coordination might result in frequent reconfigurations 

 

MAPE (Monitor, Analyze, Plan and Execute)  
 
 
 
 
 

 



Decentralized MAPE 
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• Many Patterns, each with pro and cons 

D. Weyns, B. Schmerl, V. Grassi, S. Malek, et al. On patterns for decentralized control in self-adaptive 
systems. In Software Engineering for Self-Adaptive Systems II, vol. 7475 of LNCS, Springer, 2013. 

Master-worker Regional pattern Hierarchical control pattern 

Coordinated control pattern Information sharing pattern 



Goals 
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• Design a hierarchical distributed approach to the autonomous 
control of DSP applications 
 

• Support run-time adaptation 
– Elasticity 

automatically scale in/out the number of operator instances 
– Stateful Migration 

relocate operators without compromising application integrity 

 
• Design a simple control policy 
 
• Integration of our solution in Storm 



Hierarchical MAPEs in Storm 
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• New components in Apache Storm to realize a Hierarchical MAPE pattern 
 

• Operator Manager vs Application Manager 
– Concerns and time scale separation 

 



Hierarchical MAPEs in Storm 
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Operator Manager  
• Monitors operator and local resources 

– e.g., Thread CPU utilization,  
• Determines whether a Migration  

  and/or Scale operation is needed 
• Executes the reconfiguration 

– If gets the permission to 
 

Application Manager 
• Monitors Application Performance 

– SLA enforcement 
• Coordinates operator reconfigurations 

– Grants permission to enact reconfigurations 
– Controls reconfiguration frequencies 

 

General Framework for 
Distributed Optimization 



Simple Distributed Heuristic: Operator Manager  
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• issues reconfiguration plans: 

action, gain, cost 

• action: migrates an operator replica 
– threshold based policy on CPU utilization  
– new location: probabilistic selection from the neighborhood 
– cost: estimated stateful migration time 

• action: operator scaling 
– threshold based policy on Sα percent of CPU time used by the replica α  
– scale in: if removing a replica does not significantly increase load on 

other replicas  
– cost: estimated time to relocate the operator state (if any) 

• gain function:  scale-out > migration > scale-in 



Simple Distributed Heuristic: Application Manager  
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Token-based policy 
• Considers time divided in intervals 
• Generates reconfiguration tokens based on application performance 
• Grants as many reconfigurations as available tokens 

– Prioritizing by gain to cost ratio 

Token Bucket 

control interval 

Reconfiguration 
Requests 

Granted 
Reconfiguration 

Time 



Evaluation 
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Infrastructure 
• 5 worker nodes + 1 host for Nimbus and ZooKeeper 
• each node Intel Xeon 8 cores@2Ghz, 16 GB RAM 

 
Application 
• DEBS 2015 Grand Challenge: top10 frequent routes NYC taxis in the last 30 min 
• Requires: max Response Time Rmax = 200 ms 
 

 
 
 
 

Policy parameters 
• Operator Manager policy: thresholds on utilization to 70%  (c = 0.75) 
• Application Manager policy: token bucket capacity = 1 token 



Evaluation 
Application Manager policy: grants all reconfiguration requests 
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up and running 
93.7% of time 

median of 
response time 

130.6 ms 



Evaluation 
Application Manager policy: 1 token/min if response time > 50% Rmax 

13 

up and running 
93.4% of time 

median of 
response time 

117.0 ms 



Evaluation 
Application Manager policy: 1 token/min if response time > 75% Rmax 
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up and running 
98.3% of time 

median of 
response time 

80.4 ms 



Conclusions 
• We designed a hierarchical distributed architecture for the autonomous 

control of DSP applications 

• We developed a simple control policy 

• We integrated our solution in Storm 

• We evaluated the effectiveness of our solution 

 

Future Works 
• Extend distributed heuristic: reduce oscillations, without compromising 

scalability 

• Design new multi-time scale heuristics which capture the system 
dynamics (e.g., MDP) or learn from experience (e.g., Reinf. Learning) 
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Thank you! 

 
Matteo Nardelli 

nardelli@ing.uniroma2.it 
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