
Container-based Support for Autonomic Data

Stream Processing through the Fog

Antonio Brogi, Gabriele Mencagli, Davide Neri, Jacopo Soldani and Massimo Torquati

Department of Computer Science, University of Pisa, Italy

{brogi, mencagli, davide.neri, soldani, torquati}@di.unipi.it

Santiago De Compostela, 29 August 2017

Outline

➢Problem & goal

➢Motivating examples

➢Container-based architecture

➢Preliminary results

➢Conclusions

Container-based Support for Autonomic Data Stream Processing through the Fog

2

Problem

Container-based Support for Autonomic Data Stream Processing through the Fog 3

Solutions for dynamic management of

resources within and across Fog nodes.

Intensive data flows with latency and/or

bandwidth requirements.

Autonomic data stream parallel

applications on Fog infrastructure.

Goal

Container-based Support for Autonomic Data Stream Processing through the Fog 4

Autonomic Data Stream

Parallel Applications.

*

Container-based architecture for supporting autonomic data stream

processing applications on Fog infrastructure.

(* is the autonomic control logic)

Motivating examples

Container-based Support for Autonomic Data Stream Processing through the Fog 5

Two examples motivating the development of our infrastructure:

1. Intra-fog node scenario: management of the resources of a Fog

node (e.g. memory, CPU) assigned to applications.

2. Inter-fog node scenario: management of applications among

different Fog nodes (e.g. migration of an application).

Intra-fog scenario: resources of a fog node

Container-based Support for Autonomic Data Stream Processing through the Fog 6

Arrival rate increase => the

autonomic control logic may ask

to the architecture to increase

the concurrency level of the

component to process input

data faster.

Component runs

sliding-window model

according to a feasible

parallel pattern.

Inter-fog scenario: migration

Container-based Support for Autonomic Data Stream Processing through the Fog 7

Filtering Comp.

Moving data provider

Migrate Filtering

S. Runs top-k

query to extract

best items among

the recent items

received.

F. processes data items at high

speed discarding irrelevant

items. It must exploit

geographical proximity.

System architecture

Container-based Support for Autonomic Data Stream Processing through the Fog 8

FN: Devices with limited

resources running Parallel Apps.

FNC: assigns resources to Apps

and schedule Apps among FNs.

App: stream data applications

AC: Autonomic control loop of

App that interacts with the FNC to

scale up/down resources (e.g.

memory, CPU).

FNC-FNC inter-node communication

(e.g., overlay network)

FNC-AC intra-node communication

(e.g., socket)

Container-based architecture

Container-based Support for Autonomic Data Stream Processing through the Fog 9

Containers and Docker benefits (some):

• Isolates parallel Applications running in a Fog node.
• Meters the resources (e.g., memory, CPUs) assigned to a container ($

docker update --cpuset-cpus 0,1 ubuntu)

• Provides Checkpoint and Restore mechanisms of a running container.

Docker container

System architecture: fog node join/detach

Container-based Support for Autonomic Data Stream Processing through the Fog

Fog node joins the architecture

1. The FNC of the new FN connects
to one or more existing FNCs.

2. FNC communicates the resources
of the new FN.

3. The resources information of the
new FN are sent to the other
FNCs.

10

Fog Node detaches from the architecture2:

1. FNC communicates that the FN is

going to detach to the others

FNCs.

2. FNCs remove the FN from their

view.

3. The Apps of the detached node

are migrated to another FN.

2 The availability of FN must be monitored for detecting unexpected detach (e.g., heartbeat)

System architecture: deploy an App

Container-based Support for Autonomic Data Stream Processing through the Fog 11

Step for deploying an App:

1. User connects to one FNC

indicating the App to be deployed

and the deployment constraints.

2. FNC identifies the FN that satisfy

the deployment constraints.

3. FNC of the selected FN (i)

downloads the Docker images, (ii)

assigns the initial resources, and

(iii) starts the App.

4. FNC interacts with the AC to scale

the resources (when necessary)
APP

Con

strai

nts

System architecture: resources management

Container-based Support for Autonomic Data Stream Processing through the Fog 12

FNC scale up/down the resources assigned to

an App (e.g., CPU, memory) by limiting the

Docker container resources.

Two policies:

• Reactive: AC realizes that app needs

more resources and sends a request

to the FNC.
• Predictive: FNC needs to remove some

of the resources assigned to an app.Fog node

FNC

App/AC

System architecture: migrate an App

Container-based Support for Autonomic Data Stream Processing through the Fog 13

Steps for migrating an App:

1. FNC sends a migration request

to the AC of the App to be

migrated.

2. AC stores the current state of

the App (if any) and sends

migration reply

3. FNC migrate the app and the

state on the new FN.

Preliminary results

Container-based Support for Autonomic Data Stream Processing through the Fog 14

https://github.com/di-unipi-socc/ffdocker/

Feasibility of using Docker:

1. Intra-fog: time to increase/decrease the CPUs to a container.

2. Inter-fog: time to migrate a container.

https://github.com/di-unipi-socc/ffdocker

Intra-fog scenario

The experiment:

• Fog Node: machine with 20 cores.

• App: consumes the cores of the fog node

using the cpuburn1 tool:

• Every 5 secs AC asks to the FNC to

increase/decrease the number of cores

assigned to App.

• FNC: waits for incoming requests from AC

and increases or decreases the assigned

cores to the App.

Container-based Support for Autonomic Data Stream Processing through the Fog 15

App

AC*
FNC

Fog Node (20 cores)

[1] https://patrickmn.com/projects/cpuburn/

App and FNC run in Docker containers,

communicating via a shared Socket

https://patrickmn.com/projects/cpuburn/

Intra-fog scenario (cont.)

Container-based Support for Autonomic Data Stream Processing through the Fog 16

Results:

• ~ 80 μs (std 16 μs): time required

by the FNC to assign the requested

cores to App.

• Socket file communication on the

same Fog node is feasible.

• Docker permits limiting the

resources assigned to parallel

applications.

Inter-fog scenario

Container-based Support for Autonomic Data Stream Processing through the Fog 17

Filtering

AC*

Selection

AC*
Stream

of integers

FNC

Steps of the test:

• Filtering produces a stream of data (100

integers every sec)

• Selection receives and prints the data.

• After 5 sec FNC sends to the Filtering a

migration request

• Filtering received the request, performs a clean-

up phase, sends migration reply to FNC.

• FNC receives migration reply and perform a

checkpoint of the Filtering

• Immediately after, FNC restores the Filtering

component

Inter-fog scenario (cont.)

Container-based Support for Autonomic Data Stream Processing through the Fog 18

Results:

• ~5 secs downtime

experienced by the Selection

component.

• Time to checkpoint and

restore a container is quite

high1.

1Docker checkpoint and restore are under development and we expect to see further optimization in next releases

Conclusions

➢Data Stream processing and Fog computing should still be explored and

analysed.

➢Container-based technology can be exploited for deploying parallel streaming

applications on Fog.

➢We propose a Docker-based architecture for deploying autonomic application

in Fog infrastructure.

➢Preliminary results show that Docker is a viable approach for fog-oriented

framework.

Container-based Support for Autonomic Data Stream Processing through the Fog 19

Future work

Container-based Support for Autonomic Data Stream Processing through the Fog 20

Implement the architecture

Exploit Docker platform

Run real parallel apps

Q&A

Thank You
davide.neri@di.unipi.it

Container-based Support for Autonomic Data Stream Processing through the Fog 21

GitHub - https://github.com/di-unipi-socc/ffdocker

