Towards Memory-Optimal
Schedules for SDF

Mitchell Jones Julian Mestre Bernhard Scholz

Department of Computer Science School of Information Technologies School of Information Technologies
University of lllinois at Urbana-Champaign The University of Sydney The University of Sydney

Data-Flow Computation

e Stream programming paradigm based on Kahn’s processing model
* Processes large unbounded regular sequences of data forever

* Applications
* Digital signal processing, audio, video, graphics, networking, and for big data

* Computations
* Actors communicate via data channels only
e Data-channel connects producer with consumer
* Tokens are send and received on data channels

» Actor invocations (aka. firing) require coordination
* Otherwise starvation of actors or memory depletion

Synchronous Data-Flow (SDF)

* Restricted Data-Flow Computational model

* Permits static scheduling / run in steady state
* Pre-computes sequences of actor invocations (firings)

* Per actor firing data rates are fixed:
* Actor produces a fixed number of tokens on outgoing channels
e Actor consumes a fixed number of tokens from ingoing channels

e Data-channels implemented as FIFO-buffers .

v

V\'

* Research Questions:
 What are the sizes of the FIFO buffers?

Data-Channels as FIFO Buffers

e Data channels implemented as FIFO buffers

* Tokens from producer stored in buffer
e Consumer can retrieve them

* FIFO buffers require memory
 Scarce resource
* Cache effects
* Small memory for embedded systems

* Different FIFO implementations
 Static allocation in memory
* Dynamic allocation
* In hardware

FIFO buffer

Static FIFO Buffers for Data Channels

* FiFO buffer for a single data-channel between actor u and actor v
* Memory is not shared between FIFO buffers; size is fixed.

[SZ uv]; //
= O, = o;
() |
[++] = t;
3= SZ uv;}
() {
= [++1;
%=}SZ_uv,

* Minimize the sum over all buffer sizes SZ uv?

Dynamic FIFO Buffers for Data Channels

* FiFO buffer for a single data-channel between actor u and actor v
 Memory for tokens is shared between FIFO buffers; size is variable.

tokenQ head uv = NULL, tail_uv NULL;
void produce uv(token t) {

tokenQ p = alloc(t);

if (head_uv == NULL) head uv = tail uv

else tail uv->next pP;

P

token consume uv() {
token t = head uv->data;
tokenQ p = head uv;
head uv = head uv->next; free(p);
if (head uv == NULL) tail - uv = NULL;
return t; }

* Minimize heap memory used by alloc/free!

Hardware Implementation for Data Channels

* Fixed-sized FIFO buffer for all data-channels

Same
Size

* May be relevant for hardware/FPGA implementations for SDF
* Minimize the total memory for all fixed sized FIFO buffers

Research Result for Minimizing FIFO Buffers

* Our research results for minimizing sizes of FIFO buffers

M Dynamic FIFOs Hardware FIFOs

Minimal in P Minimal in NP Minimal in P

 Main Idea for Static FIFOs and HW FIFQOs

* Exploit properties of steady state scheduling theory

* Online algorithm based on priority queues
* Space complexity O(n); run-time complexity O(log n) per actor invocation
* Priority queue contains a single element for each actor

Steady-State Schedule

e Static periodic finite schedule for well-formed SDF programs

* Fill-state of buffers is the same before and after executing schedule
* Also known as steady-state

e Static periodic finite schedule is executable ad-infinitum
e Basic Balance Equations for Steady State Schedule:

p(u,v) - r(u) = c(u,v) - r(v) V(u,v) € E
r(u) >0 YVu eV

* Production rate p(u,v); consumption rate c(u,v); repetitions r(u)
* Null-space of topological matrix

Example: Steady-State Schedule

e Balance Equations

1-r(a) = 2-r(b)
1-r(a) = 1-r(c)
2.-r7r(b) = 1-r(c)
* Solution:
r(a) =2
r(b) =1 FIFO buffer

r(c) =2

Steady-State Schedules

* Repetition vector dictates the number of occurrences & length of schedule
e Exponential number of schedules |S| for steady-state

L = Z r(u)

uevV

S| = —X

H r(u)!

ueV

* Which schedule is beneficial for minimizing memory?
 Exhaustive search intractable
e State-of-the-art: finds an ad-hoc solution

Optimal Schedule

e Schedule

Tﬂﬂ-ﬂ-

Maximum Tokens: 1
Max fill-state:

* (a,b)=> 1

* (a,c)=>» 0

* (b,c)=>» 0

* Assume initial token on channel (a.,b)

Optimal Schedule

e Schedule

HTII-H-

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=>» 0

Optimal Schedule

e Schedule

ﬂﬂrﬂﬂ

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=> 2

Optimal Schedule

e Schedule

ﬂﬂﬂtﬂﬂ

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=> 2

Optimal Schedule

e Schedule

ﬂﬂﬂﬂr

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=> 2

Optimal Schedule

e Schedule

ﬂﬂﬂﬂﬂT

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=> 2

Greedy Algorithm

* Greedy algorithm developed by Battacharya, Murthy, and Lee
* An actor is fireable if incoming edges have enough tokens to fire actor

 An actor is deferrable if it is fireable and the consumers attached to its out-
going edges are fireable

* Favor fireable and non-deferrable nodes to minimize buffer sizes

* |f non-deferrable nodes do not exist, search for beneficial fireable
node

Greedy Algorithm

Algorithm 1 GrREEDY((V, E,p,c),t)

L L+ cv7(u)

2. let F' be the set of fireable actors in V' using fill-state ¢

3. let D be the set of deferrable actors in F

4. for =1 to L do

5. if F\ D # & then

6. u <— an actor from F'\ D

7. else

8. u < an actor in F' that increases total number of tokens the least
9. add u to the schedule s

10. r(u) < r(u) —1

11. invoke actor u

12. update F and D // An actor u is not fireable if r(u) < 1.

13. return s

Greedy Schedule

e Schedule

THIIH--

Maximum Tokens: 1
Max fill-state:

* (a,b)=> 1

* (a,c)=>» 0

* (b,c)=>» 0

Greedy Schedule

e Schedule

HTEE--

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=>» 0

Greedy Schedule

e Schedule

HIIF--

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

e (a,c)=> 1

* (b,c)=> 2

Greedy Schedule

e Schedule

an--

Maximum Tokens: 5
Max fill-state:

* (a,b)=>» 2

* (a,c)=> 2

* (b,c)=> 2

Greedy Schedule

e Schedule

HIIH-T-

Maximum Tokens: 5
Max fill-state:

* (a,b)=>» 2

* (a,c)=> 2

* (b,c)=> 2

Greedy Schedule

e Schedule

Maximum Tokens: 3
Max fill-state:

* (a,b)=>» 2

* (a,c)=> 2

* (b,c)=> 2

Fill-State of Channels

* Define a fill-state function for channels (u,v)
* Tracks fill-state of data-channel for a schedule

| fi(u,v) + p(u,v), ifu=s(i+1),
f;“(u,v) = ¢ fY(u,v) — c(u,v), ifv=s(i+1),
fi(u,v), otherwise.

where s is the schedule, i is the step in the schedule.
* Initial fill-state is known as delay.

Problem Definitions with Fill-States

* Minimize Buffers

: I
(Pl) NI (5 #) OISHIaSXL (uril)?gE fs (u7 ?J)

(P2) ming max f, (u,v)

(P3) min max Z i (u,v)

(s,t) OS<I<L

* (P1) <=> HW buffers; (P2) <=> static buffers; (P3) <=> dynamic buffers

Lower-Bound on Fill-State

e Assume production rate p, consumption rate c

0@

* Lower-Bound for FIFO buffer size
* LB(u,v) = p(u,v) + c(u,v) + ged(p(u,v), c(u,v))
o Vi:LB(u,v) < fi(u,y)

* Follows Euclid’s argument (cf. Lemma 1)

* Lower-bound is maintainable as upper-bound (cf. Lemma 2)

Canonical Algorithm

* (P1) and (P2) permit an optimal algorithm in P
* Requires an arbitrary total order for actors it
 Compute initial fill-state for data-channels

Each actor has a priority x and is added to a priority queue
* Initial priority of an actor is 0 and added to queue
* Ties are broken with total order
* New priority is x’=x+[1/r(u)] where x is old priority of an actor

Use a priority queue in size of the number of actors
Break ties with a fixed order

e (P3) is a NP hard problem

e Reduction uses the Minimum Feedback-Arc-set (FAS) Problem
e See Appendix of paper

Canonical Algorithm

Algorithm 2 canonicaL((V, E,p,c),)

1. for (u,v) € £ do

2. te(u,v) c(u,v) — ged(p(u, v), c(u, v)) ?f m(u) < 7(v)
c(u, v) if w(v) < mw(u)
. let @@ be an empty priority queue
. for u € V do

insert u with priority O into ()

while true do
(u,x) < delete-min(Q) // break ties using the 7 order
execute actor u

insert u with priority x + ﬁ into ()

© 00N O U A W

Experiments: Quality & Runtime

Instance CANONICAL GREEDY
V] |[(P1)]| (P2)|time (s)|| (P2)|time (s)
10 20| 586| 0.0030|] 1226| 0.0097
15 28| 1048 0.0047|| 2937 0.0362
20 32| 2483| 0.0081|] 7818 0.1124
25 48| 6131 0.0143|| 30306| 0.5421
30 60| 9486| 0.0188| 47979| 1.6658
35 70116782 0.0291|] 68126 5.0272
40 80122927 0.0352{/149469| &.3609
45 84129781| 0.0454(/244380| 17.6809
50 100146203| 0.0567(|347676| 39.5296

* Greedy

e computation of fireable / deferrable takes too long.
* uses more memory

Runtime (seconds)

Experiments

9
e GREEDY g 3
== == CANONICAL E
7
@)
2
<6
N5
)
|
2
_ o 3
=
U 2 | |
N 1
-
0
23 24 25 26 10 20 30 40 50

* Canonical: faster and better performance for random instances

Conclusion

* Minimizing buffer sizes for SDF programs is important
* Impact on data caches
* large data to process
* increases with complex SDFs

Three notions of memory optimality
 Static FIFO buffers (in P)
e Dynamic FIFO buffers (in NP)
* Hardware FIFO buffers (in P)

Introduce Canonical Algorithm using a Priority Queue
* Show that lower-bound is maintainable as upper-bound
* Faster than state-of-the-art algorithm
* Optimality guarantees
* Space complexity O(n); run-time complexity O(log n) per actor invocation

Provided some preliminary experimental results

