
Towards	Memory-Optimal	
Schedules	for	SDF	

Mitchell	Jones

Department	of	Computer	Science	
University	of	Illinois	at	Urbana-Champaign

Julian	Mestre

School	of	Information	Technologies
The	University	of	Sydney

Bernhard	Scholz

School	of	Information	Technologies
The	University	of	Sydney

Data-Flow	Computation

• Stream	programming	paradigm	based	on	Kahn’s	processing	model	
• Processes	large	unbounded	regular	sequences	of	data	forever
• Applications
• Digital	signal	processing,	audio,	video,	graphics,	networking,	and	for	big	data

• Computations
• Actors	communicate	via	data	channels	only
• Data-channel	connects producer	with	consumer
• Tokens	are	send	and	received	on	data	channels
• Actor	invocations	(aka.	firing)	require	coordination

• Otherwise	starvation	of	actors	or	memory	depletion

a

b c

Synchronous	Data-Flow	(SDF)

• Restricted	Data-Flow	Computational	model
• Permits	static	scheduling	/	run	in	steady	state
• Pre-computes	sequences	of	actor	invocations	(firings)

• Per	actor	firing	data	rates	are	fixed:
• Actor	produces	a	fixed	number	of	tokens	on	outgoing	channels
• Actor	consumes	a	fixed	number	of	tokens	from	ingoing	channels

• Data-channels	implemented	as	FIFO-buffers	
• Research	Questions:
• What	are	the	sizes	of	the	FIFO	buffers?

2-1

a

b c

Data-Channels	as	FIFO	Buffers

• Data	channels	implemented	as	FIFO	buffers
• Tokens	from	producer	stored	in	buffer
• Consumer	can	retrieve	them

• FIFO	buffers	require	memory
• Scarce	resource
• Cache	effects
• Small	memory	for	embedded	systems

• Different	FIFO	implementations
• Static	allocation	in	memory
• Dynamic	allocation
• In	hardware

a

cb
FIFO	buffer

1 1

2
2

1

1

Static	FIFO	Buffers	for	Data	Channels

• FiFO buffer	for	a	single	data-channel	between	actor	u and	actor	v
• Memory	is	not shared	between	FIFO	buffers;	size	is	fixed.

token queue_uv[SZ_uv]; // memory for data channel
int head_uv = 0, tail_uv = 0;

void produce_uv(token t) {
queue_uv[tail_uv++] = t;
tail_uv %= SZ_uv;}

token consume_uv() {
token t=queue_uv[head_uv++];
head_uv %= SZ_uv;
return t; }

•Minimize	the	sum	over	all	buffer	sizes	SZ_uv?

Dynamic	FIFO	Buffers	for	Data	Channels

• FiFO buffer	for	a	single	data-channel	between	actor	u and	actor	v
• Memory	for	tokens	is	shared	between	FIFO	buffers; size	is	variable.
tokenQ head_uv = NULL, tail_uv = NULL;
void produce_uv(token t) {
tokenQ p = alloc(t);
if (head_uv == NULL) head_uv = tail_uv = p;
else tail_uv->next = p;

}
token consume_uv() {
token t = head_uv->data;
tokenQ p = head_uv;
head_uv = head_uv->next; free(p);
if (head_uv == NULL) tail_uv = NULL;
return t; }

•Minimize	heap	memory	used	by	alloc/free!

Hardware	Implementation	for	Data	Channels

• Fixed-sized	FIFO	buffer	for	all	data-channels

• May	be	relevant	for	hardware/FPGA	implementations	for	SDF
• Minimize	the	total	memory	for	all	fixed	sized	FIFO	buffers

Same
Size

c1 c2 cm

Research	Result	for	Minimizing	FIFO	Buffers

• Our	research	results	for	minimizing	sizes	of	FIFO	buffers

• Main	Idea	for	Static	FIFOs	and	HW	FIFOs
• Exploit	properties	of	steady	state	scheduling	theory
• Online	algorithm	based	on	priority	queues

• Space	complexity	O(n);	run-time	complexity	O(log n) per actor invocation
• Priority	queue	contains	a	single	element	for	each	actor

Static	FIFOs Dynamic FIFOs Hardware	FIFOs

Minimal	in	P Minimal	in	NP Minimal	in	P

Steady-State	Schedule

• Static	periodic	finite	schedule	for	well-formed	SDF	programs
• Fill-state	of	buffers	is	the	same	before	and	after	executing	schedule

• Also	known	as	steady-state
• Static	periodic	finite	schedule	is	executable	ad-infinitum
• Basic	Balance	Equations	for	Steady	State	Schedule:

• Production	rate	p(u,v);	consumption	rate	c(u,v);	repetitions	r(u)
• Null-space	of	topological	matrix		

p(u, v) · r(u) = c(u, v) · r(v) 8(u, v) 2 E
r(u) � 0 8u 2 V

Example:	Steady-State	Schedule

a

cb
FIFO	buffer

1 1

2
2

1

1

• Balance	Equations

• Solution:
r(a) = 2
r(b) = 1
r(c) = 2

1 · r(a) = 2 · r(b)
1 · r(a) = 1 · r(c)
2 · r(b) = 1 · r(c)

Steady-State	Schedules

• Repetition	vector	dictates	the	number	of	occurrences	& length	of	schedule
• Exponential	number	of	schedules	|S|	for	steady-state

• Which	schedule	is	beneficial	for	minimizing	memory?
• Exhaustive	search	intractable
• State-of-the-art:	finds	an	ad-hoc	solution

L =
X

u2V

r(u)

|S| = L!Y

u2V

r(u)!

Optimal	Schedule

• Schedule

• Assume initial token on channel (a,b)

a

b c

a b c a c

Maximum	Tokens:	1
Max	fill-state:
• (a,b)è 1
• (a,c)è 0
• (b,c)è 0

Optimal	Schedule

• Schedule

a

b c

a b c a c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 0

Optimal	Schedule

• Schedule

a

b c

a b c a c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 2

Optimal	Schedule

• Schedule

a

b c

a b c a c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 2

Optimal	Schedule

• Schedule

a

b c

a b c a c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 2

Optimal	Schedule

• Schedule

a

b c

a b c a c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 2

Greedy	Algorithm

• Greedy	algorithm	developed	by	Battacharya,	Murthy,	and	Lee	
• An	actor	is	fireable if	incoming	edges	have	enough	tokens	to	fire	actor
• An	actor	is	deferrable	if	it	is	fireable and	the	consumers	attached	to	its	out-
going	edges	are	fireable

• Favor	fireable and	non-deferrable	nodes	to	minimize	buffer	sizes
• If	non-deferrable	nodes	do	not	exist,	search	for	beneficial	fireable
node

Greedy	Algorithm
Algorithm 1 greedy((V,E, p, c), t)

1. L
P

u2V r(u)
2. let F be the set of fireable actors in V using fill-state t

3. let D be the set of deferrable actors in F

4. for i = 1 to L do

5. if F \D 6= ? then

6. u an actor from F \D
7. else

8. u an actor in F that increases total number of tokens the least
9. add u to the schedule s

10. r(u) r(u)� 1
11. invoke actor u
12. update F and D // An actor u is not fireable if r(u) < 1.
13. return s

the so-called balance equations :

p(u, v) · r(u) = c(u, v) · r(v) 8 (u, v) 2 E (1)

r(u) > 0 8u 2 V (2)

The balance equations of the example in Fig. 1 are given in the Fig. 1(e) with
the additional constraint that r(a) > 0, r(b) > 0, and r(c) > 0 where r(u)
are the repetitions for actor u, i.e., there must be r(u) occurrences of actor u
in the schedule s. Finding the smallest integral repetitions for actors can be
expressed as a problem of finding the smallest integral vector in the null-space
of the topological matrix [7]. It is known that for connected stream graphs, an
integral repetition vector satisfying Eq. (1) and Eq. (2) exists if and only if the
topological matrix of the stream graph has rank n � 1. The repetitions of the
motivating example in Fig. 1(a) is shown in Fig. 1(d).

For the example, actor a is invoked twice since it produces only one token
on the edge (a, b), but to fire b at least once it needs to consume two tokens on
(a, b). Actor c is invoked twice because a is invoked twice, and c only consumes
a single token for every token produced by a along the channel (a, c). No smaller
repetition vector can be found. To find a schedule s, a greedy heuristic was
devised by Battacharyya et al. [2] (cf. Sec. 3.3.2). The heuristic is outlined in
Algorithm 1. The goal of greedy is to minimize the sum of the maximum
number of tokens required for each channel over a periodic schedule. Given a
graph G, and the initial delay t as part of the input, it returns a schedule
s. Note that we say an actor v is fireable, if for every incoming edge (u, v),
f(u, v) � c(u, v). An actor v is deferrable if it is fireable, and for at least one of
its outgoing edges (v, u) (that is not a transitive edge4) it holds that f(v, u) �
4 We say that a directed edge (v, u) is a transitive edge in a graph G = (V,E) if there
exists a directed path from v to u in G using only the edges E \ {(v, u)}.

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	1
Max	fill-state:
• (a,b)è 1
• (a,c)è 0
• (b,c)è 0

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 0

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 1
• (b,c)è 2

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	5
Max	fill-state:
• (a,b)è 2
• (a,c)è 2
• (b,c)è 2

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	5
Max	fill-state:
• (a,b)è 2
• (a,c)è 2
• (b,c)è 2

Greedy	Schedule

• Schedule

a

b c

a b a c c

Maximum	Tokens:	3
Max	fill-state:
• (a,b)è 2
• (a,c)è 2
• (b,c)è 2

Fill-State	of	Channels	

• Define	a	fill-state	function	for	channels	(u,v)
• Tracks	fill-state	of	data-channel	for	a	schedule

where	s is	the	schedule,	i is	the	step	in	the	schedule.
• Initial	fill-state	is	known	as	delay.

actor. Therefore, given the initial fill-state, we can easily compute the fill-state
after the i-th step of the schedule execution. The fill-state function f i

s : E ! N
defines the fill-state of channel (u, v) after the i-th execution step of schedule s
and may be defined as f0

s (u, v) = t(u, v) for the first step, and

f i+1
s (u, v) =

8
><

>:

f i
s(u, v) + p(u, v), if u = s(i + 1),

f i
s(u, v) � c(u, v), if v = s(i + 1),

f i
s(u, v), otherwise.

where t(u, v) is initial fill-state of (u, v) at the beginning of the execution of s.
A periodic schedule and an initial fill-state are said to be admissible if the

schedule can be executed without ever running out of tokens on any channel.

Definition 1. Finite periodic schedule s with initial fill-state t is admissible, if

f i
s(u, v) � 0, 8(u, v) 2 E, i 2 {0, . . . , L}

f0
s (u, v) = fL

s (u, v), 8(u, v) 2 E

It is worth noting that for each periodic schedule s 2 S there exists an initial
fill-state that makes it admissible. Therefore, all we need is a method for deciding
which periodic schedule to use.

We study three objective functions that capture the memory utilization of
the system under di↵erent implementations of the FIFO bu↵ers. In each case
the goal is to compute an admissible schedule (s, t), the only di↵erence is the
objective being optimized:

(P1) min(s,t) max0iL max(u,v)2E f i
s(u, v)

(P2) min(s,t)

P
(u,v)2E max0iL f i

s(u, v)

(P3) min(s,t) max0iL
P

(u,v)2E f i
s(u, v)

The objective (P1) minimizes the maximum bu↵er requirement across all bu↵ers.
This objective captures a simplistic implementation of FIFO bu↵ers where space
is allocated ahead of time and bu↵ers have uniform length. The objective (P2)

minimizes the sum of the maximum requirements. This objective captures a sim-
ple implementation of FIFO bu↵ers where space is allocated ahead of time, but
di↵erent bu↵ers can di↵er in size. The objective (P3) minimizes the maximum
combined size of all bu↵ers at any point in time. This objective capture a more
sophisticated implementation where bu↵er space can be acquired and released
dynamically.

4 Scheduling to Minimize Memory Usage

In this section we consider the objectives defined in Section 3 under the as-
sumption that the initial fill-state of each bu↵er can be set arbitrarily. In other
words, given an instance (V,E, c, p), the goal is to compute a schedule s and an

Problem	Definitions	with	Fill-States

• Minimize	Buffers

• (P1)	<=>	HW	buffers;	(P2)	<=>	static	buffers;	(P3)	<=>	dynamic	buffers

(P1) min(s,t) max

0IL
max

(u,v)2E
f I
s (u, v)

(P2) min(s,t)

X

(u,v)2E

max

0IL
f I
s (u, v)

(P3) min

(s,t)
max

0IL

X

(u,v)2E

f I
s (u, v)

1

Lower-Bound	on	Fill-State

• Assume	production	rate	p,	consumption	rate	c

• Lower-Bound	for	FIFO	buffer	size
• LB(u,v) = p(u,v) + c(u,v) + gcd(p(u,v), c(u,v))
• ∀i: LB(u,v) ≤	f i(u,v)

• Follows Euclid’s argument (cf. Lemma 1)
• Lower-bound is maintainable as upper-bound (cf. Lemma 2)

u v
p(u,v) c(u,v)

Canonical	Algorithm

• (P1)	and	(P2)	permit	an	optimal	algorithm	in	P
• Requires	an	arbitrary	total	order	for	actors	π
• Compute	initial	fill-state	for	data-channels
• Each	actor	has	a	priority	x and	is	added	to	a	priority	queue

• Initial	priority	of	an	actor	is	0 and added to queue
• Ties	are	broken	with	total	order
• New	priority	is	x’=x+[1/r(u)] where x is old priority of an actor

• Use	a	priority	queue	in	size	of	the	number	of	actors
• Break	ties	with	a	fixed	order	

• (P3)	is	a	NP	hard	problem
• Reduction	uses	the	Minimum	Feedback-Arc-set	(FAS)	Problem
• See	Appendix	of	paper

Canonical	Algorithm

Algorithm 2 canonical((V,E, p, c),⇡)

1. for (u, v) 2 E do

2. t⇡(u, v)
(
c(u, v)� gcd(p(u, v), c(u, v)) if ⇡(u) < ⇡(v)

c(u, v) if ⇡(v) < ⇡(u)
3. let Q be an empty priority queue
4. for u 2 V do

5. insert u with priority 0 into Q

6. while true do

7. (u, x) delete-min(Q) // break ties using the ⇡ order
8. execute actor u
9. insert u with priority x+ 1

r(u) into Q

A simple proof by induction finishes the argument if a | b then we are at
the base of the inductive proof. Otherwise, the size of the bu↵er for the channel
(u, v) must be at least

lb(a, b� a) + a = a + b� a� gcd(a, b� a) + a

= a + b� gcd(a, b� a)

= a + b� gcd(a, b),

where the last equality follows by Euclid’s algorithm.

Now that we have a lower bound on the size of each bu↵er, we will prove that
these bounds are attained simultaneously by our algorithm.

Lemma 2. For any permutation ⇡, the schedule (s⇡, t⇡) is admissible and for

each channel (u, v) the maximum size of the bu↵er during the execution of the

schedule is p(u, v) + c(u, v) � gcd(p(u, v), c(u, v)).

Proof. We prove the bounds on the size of the bu↵er for a fixed, but arbitrary,
channel (u, v). For sake of brevity, let us denote p(u, v) with a and c(u, v) with

b. Recall that Balance Eq. (1) for channel (u, v) implies r(u)
r(v) = b

a .

First, consider the case ⇡(u) < ⇡(v). Notice that the 1st execution of v is
preceded by an execution of u. In general, the k+ 1st execution of v is preceded
by $

k 1
r(v)
1

r(u)

%
+ 1 =

�
k
r(u)

r(v)

⌫
=

�
kb

a

⌫
+ 1

executions of u. Therefore, the fill-state of the channel after the k+1st execution
of v is precisely

t⇡(u, v) + a

✓�
kb

a

⌫
+ 1

◆
� (k + 1)b.

Experiments:	Quality	&	Runtime
Instance canonical greedy

|V | (P1) (P2) time (s) (P2) time (s)
10 20 586 0.0030 1226 0.0097
15 28 1048 0.0047 2937 0.0362
20 32 2483 0.0081 7818 0.1124
25 48 6131 0.0143 30306 0.5421
30 60 9486 0.0188 47979 1.6658
35 70 16782 0.0291 68126 5.0272
40 80 22927 0.0352 149469 8.3609
45 84 29781 0.0454 244380 17.6809
50 100 46203 0.0567 347676 39.5296

Table 1. Performance comparison on randomly generated instances.

directed, acyclic graphs as a synthetic benchmark suite. We generated the graphs
as follows: We start with a directed graph G = (V,E) of n nodes, and number
the vertices v1, v2, . . . vn. For each vertex vi 2 V , we select a random repetition
value r(vi) uniformly at random from the range {1, . . . , n}. We then iterate
through every pair of vertices vi, vj 2 V . If i 6= j and i < j, we add the directed

edge (vi, vj) to E, with p(vi, vj) = r(vj)
gcd(r(vi),r(vj))

and c(vi, vj) = r(vi)
gcd(r(vi),r(vj))

.

This generation template guarantees that a repetition vector exists, and the
topological matrix of this directed, acyclic graph has rank n� 1.

Fig. 2. Visualizing the performance on randomly generated instances.

Using this approach, we generated graphs of size n = 10, 15, . . . , 50 and ran
both algorithms. As before, we timed the execution of each algorithm, taking the
average over twenty runs. The numerical results of these experiments are shown
in Table 1 and are visualized in Fig. 2.

Two observations stand out from Fig. 2. First, canonical seems to be
asymptotically faster greedy. We suspect that that this is due to the fact that
as the graph becomes denser, there will be many “fireable” actors in each it-
eration, leading greedy to spend nearly quadratic time per iteration, whereas
canonical, is guaranteed to spend at most logarithmic time. Second, greedy
was never able to find an optimal schedule and the quality of the solutions it
produced deteriorated as n grew.

• Greedy	
• computation	of	fireable /	deferrable	takes	too	long.	
• uses	more	memory	

Instance canonical greedy

|V | (P1) (P2) time (s) (P2) time (s)
10 20 586 0.0030 1226 0.0097
15 28 1048 0.0047 2937 0.0362
20 32 2483 0.0081 7818 0.1124
25 48 6131 0.0143 30306 0.5421
30 60 9486 0.0188 47979 1.6658
35 70 16782 0.0291 68126 5.0272
40 80 22927 0.0352 149469 8.3609
45 84 29781 0.0454 244380 17.6809
50 100 46203 0.0567 347676 39.5296

Table 1. Performance comparison on randomly generated instances.

directed, acyclic graphs as a synthetic benchmark suite. We generated the graphs
as follows: We start with a directed graph G = (V,E) of n nodes, and number
the vertices v1, v2, . . . vn. For each vertex vi 2 V , we select a random repetition
value r(vi) uniformly at random from the range {1, . . . , n}. We then iterate
through every pair of vertices vi, vj 2 V . If i 6= j and i < j, we add the directed

edge (vi, vj) to E, with p(vi, vj) = r(vj)
gcd(r(vi),r(vj))

and c(vi, vj) = r(vi)
gcd(r(vi),r(vj))

.

This generation template guarantees that a repetition vector exists, and the
topological matrix of this directed, acyclic graph has rank n� 1.

23 24 25 26

n

2�9

2�7

2�5

2�3

2�1

21

23

25

27

R
un

ti
m

e
(s

ec
on

ds
)

GREEDY

CANONICAL

10 20 30 40 50

n

0

1

2

3

4

5

6

7

8

9

(P
2)

G
R

E
E

D
Y

/(
P2

)C
A

N
O

N
IC

A
L

Fig. 2. Visualizing the performance on randomly generated instances.

Using this approach, we generated graphs of size n = 10, 15, . . . , 50 and ran
both algorithms. As before, we timed the execution of each algorithm, taking the
average over twenty runs. The numerical results of these experiments are shown
in Table 1 and are visualized in Fig. 2.

Two observations stand out from Fig. 2. First, canonical seems to be
asymptotically faster greedy. We suspect that that this is due to the fact that
as the graph becomes denser, there will be many “fireable” actors in each it-
eration, leading greedy to spend nearly quadratic time per iteration, whereas
canonical, is guaranteed to spend at most logarithmic time. Second, greedy
was never able to find an optimal schedule and the quality of the solutions it
produced deteriorated as n grew.

Experiments

• Canonical:	faster	and	better	performance	for	random	instances

Conclusion

• Minimizing	buffer	sizes	for	SDF	programs	is	important
• Impact	on	data	caches
• large	data	to	process
• increases	with	complex	SDFs

• Three	notions	of	memory	optimality
• Static	FIFO	buffers	(in	P)
• Dynamic	FIFO	buffers	(in	NP)
• Hardware	FIFO	buffers	(in	P)

• Introduce	Canonical	Algorithm	using	a	Priority	Queue
• Show	that	lower-bound	is	maintainable	as	upper-bound
• Faster	than	state-of-the-art	algorithm
• Optimality	guarantees
• Space	complexity	O(n);	run-time	complexity	O(log n) per actor invocation

• Provided	some	preliminary	experimental	results

