
Chalmers University  
of Technology

Göteborg, Sweden

 1

Viper: Communication-Layer Determinism
and Scaling in Low-Latency Stream

Processing

Ivan Walulya, Yiannis Nikolakopoulos, Vincenzo Gulisano  

Marina Papatriantafilou and Philippas Tsigas  

Auto-DaSP 2017

 2

o Process infinite streams of data
• High throughput
• Low latency

o High resource requirements (multiple cores/nodes)

Stream Processing Applications

Input Operator Queue Operator
 event SinkQueue

 2

o Process infinite streams of data
• High throughput
• Low latency

o High resource requirements (multiple cores/nodes)
o Abstraction: Data-flow graphs of operators and streams

• Expose pipeline and task parallelism

Stream Processing Applications

Input Operator Queue Operator
 event SinkQueue

 3

Introduction

Operator Operator
 event

SinkQueue QueueInput

PE PE

PE – Processing Element

 3

o Parallel processing:
• Pipeline parallelism
• Task parallelism

Introduction

Operator Operator
 event

Sink

Operator sink

PE

Queue QueueInput

PE PE

PE – Processing Element

 3

o Parallel processing:
• Pipeline parallelism
• Task parallelism

Introduction
✓ Compilers
✓ Run-time Schedulers  

❖ Limited by data graph

Operator Operator
 event

Sink

Operator sink

PE

Queue QueueInput

PE PE

PE – Processing Element

 4

Introduction

Operator Operator
 event

Queue QueueInput

PE PE

Operator..O4O3O2O1

 4

o Data or operator parallelism:
• Bottlenecks at operator level
• Split the data and replicate the operator

Introduction

Operator Operator
 event

Queue QueueInput

PE PE

Operator

OperatorQueue

•

•

•

•

•

•

•

•

Operator

Queue

PE

O4O1

O3O2

 4

o Data or operator parallelism:
• Bottlenecks at operator level
• Split the data and replicate the operator

Introduction

Operator Operator
 event

Queue QueueInput

PE PE

Operator

OperatorQueue

•

•

•

•

•

•

•

•

Operator

Queue

PE

O4O1

O3O2

✓ Not limited by data-flow graph  

❖ Trade latency for high throughput
❖ Preserve sequential semantics

 5

o Determinism: preserve sequential semantics (safety)

Motivation

Operator Operator
 event

Queue QueueInput

PE PE

Operator

OperatorQueue

•

•

•

•

•

•

•

•

Operator

Queue

PE

O4O1

O3O2

 5

Merger

o Determinism: preserve sequential semantics (safety)
• Merge operators

▪ Enforce ordering amongst the output tuples.

Motivation

Operator Operator
 event

QueueInput

PE PE

Operator

OperatorQueue

•

•

•

•

•

•

•

•

Operator

PE

O4O1

O3O2

 5

Merger

o Determinism: preserve sequential semantics (safety)
• Merge operators

▪ Enforce ordering amongst the output tuples.
▪ Compiler generated [Schneider 2013].
▪ Left to Application or Library developer [Apache Storm, Flink].

Motivation

Operator Operator
 event

QueueInput

PE PE

Operator

OperatorQueue

•

•

•

•

•

•

•

•

Operator

PE

O4O1

O3O2

 6

Problem Statement

Operator layer
M1A21F1

M2A22F2 A2-M2

A2-M1

M-M2

M-M1

Communication layer

Dedicated merge-sorting operators

Dedicated channel between
each pair of operator instances

 6

Problem Statement

o Overheads of Merge operators:
• Introduce computation overhead
• Higher latency due to increase in operators
• Become processing bottleneck
• Considerable burden on the developers

o Challenge: How to apply data-parallelism transparently and safely

Operator layer
M1A21F1

M2A22F2 A2-M2

A2-M1

M-M2

M-M1

Communication layer

Dedicated merge-sorting operators

Dedicated channel between
each pair of operator instances

 7

Our Solution

o Communication-layer determinism:
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

Operator layer
M1A21F1

M2A22F2 A2-M2

A2-M1

M-M2

M-M1

Communication layer

Dedicated merge-sorting operators

Dedicated channel between
each pair of operator instances

 7

Our Solution

o Communication-layer determinism:
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 7

Our Solution

o Communication-layer determinism:
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

• Extends the ScaleGate [Gulisano et. al. 2016].
• Modularly take the logic of deterministic away from developer  

(Viper).

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 7

Our Solution

o Communication-layer determinism:
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

• Extends the ScaleGate [Gulisano et. al. 2016].
• Modularly take the logic of deterministic away from developer  

(Viper).
• Evaluate our implementation on Apache Storm.

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 8

Viper Module

o Overall Approach
• Replace merge operators and channels with a Viper module

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 8

Viper Module

o Overall Approach
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 8

Viper Module

o Overall Approach
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

• Channel is either a thread-safe concurrent queue or a ScaleGate object

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 8

Viper Module

o Overall Approach
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

• Channel is either a thread-safe concurrent queue or a ScaleGate object

• Sorting overhead shared by threads assigned to the same instance

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 8

Viper Module

o Overall Approach
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

• Channel is either a thread-safe concurrent queue or a ScaleGate object

• Sorting overhead shared by threads assigned to the same instance

• Watermarking mechanism to handle back-pressure

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between
each operator instance and
its upstream peers

 9

ScaleGate Data Structure

o API:

addTuple(tuple,sourceID)  
allows a tuple from sourceID to be merged by ScaleGate in the resulting sorted stream of
ready tuples.

getNextReadyTuple(readerID)  
provides to readerID the next ready tuple that has not been yet consumed by the former.

https://github.com/dcs-chalmers/ScaleGate_Java

[Gulisano et. al. 2016].

 10

Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get
timestamp-sorted tuples from the channel.

Operator

Operator

•

•

•

Operator

 10

Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get
timestamp-sorted tuples from the channel.

addTuple(channel, sourceID, tuple)  
Add tuple from a given source sourceID to the specified channel

Operator

Operator

•

•

•

Operator

 10

Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get
timestamp-sorted tuples from the channel.

addTuple(channel, sourceID, tuple)  
Add tuple from a given source sourceID to the specified channel

getReadyTuple(channel, readerID)  
Retrieve the next ready tuple (if any) for the specified readerID from the channel

Operator

Operator

•

•

•

Operator

 11

o Integrated Viper module in Apache Storm

Evaluation

Task

Inbound Outbound

Execution Thread

Send thread

✓ Queues based on LMAX disruptor
❖ A Dedicated send thread per Executor

process

 11

o Integrated Viper module in Apache Storm

Evaluation

Task

Inbound Outbound

Execution Thread

Send thread

Task

Execution Thread

Inbound

✓ Queues based on LMAX disruptor
❖ A Dedicated send thread per Executor

process

✓ Remove send threads
✓ Concurrent queues or ScaleGate

 12

o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

Evaluation Setup

 12

o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

o Both stateful and stateless operators

Evaluation Setup

 12

o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

o Both stateful and stateless operators
o Metrics: Throughput, Latency and Energy

Evaluation Setup

 12

o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

o Both stateful and stateless operators
o Metrics: Throughput, Latency and Energy
o Evaluation Platform

• Intel Xeon E5-2687W v2 3.4 GHz server (32 threads over 2 sockets), 64 GB of RAM
• Likwid library to read RAPL energy counters

Evaluation Setup

 13

Evaluation Results
o Stateless Operator

• Forward position reports

o Viper : Communication Layer
• Viper Module used

o No-Viper : Operator Layer
• Merge-Sort operator deployed

o Injection rate varied from 10,000 t/s to 1,200,000 t/s

Viper No-Viper

Spout

Spout

PE1

PE2

PEN

…

Sink

 13

Evaluation Results
o Stateless Operator

• Forward position reports

o Viper : Communication Layer
• Viper Module used

o No-Viper : Operator Layer
• Merge-Sort operator deployed

o Injection rate varied from 10,000 t/s to 1,200,000 t/s

Viper No-Viper

Spout

Spout

PE1

PE2

PEN

…

Sink

 14

Evaluation Results
o Stateful Operator

• Vehicle entering new Segment

o Viper : Communication Layer
• Viper Module used

o No-Viper : Operator Layer
• Merge-Sort operator deployed

Spout

Spout

PE1

PE2

PEN

…

Sink

Viper No-Viper

 15

o Discussed limitations of operator layer determinism and
proposed a solution to overcome these at the communication
layer.

o Developed a Viper module that can be integrated in SPEs
o Evaluated the performance of the proposed module on

Apache Storm 

o Scale the per tuple workload in the evaluation

Conclusions and Future work

 16

Thank You!

Viper: Communication-Layer Determinism
and Scaling in Low-Latency Stream

Processing

 17

References

o S. Schneider, M. Hirzel, B. Gedik and K. L. Wu – Schneider 2015,  
“Safe Data Parallelism for General Streaming”  

in IEEE Transactions on Computers, 2015.

o V. Gulisano, Y. Nikolakopoulos, M. Papatriantafilou and P. Tsigas – Gulisano 2016,  

“ScaleJoin: a Deterministic, Disjoint-Parallel and Skew-Resilient Stream Join”  
in IEEE Transactions on Big Data, 2016.

