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o Process infinite streams of data
• High throughput
• Low latency

o High resource requirements (multiple cores/nodes)

Stream Processing Applications

Input Operator Queue Operator
 event SinkQueue
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o Process infinite streams of data
• High throughput
• Low latency

o High resource requirements (multiple cores/nodes)
o Abstraction: Data-flow graphs of operators and streams

• Expose pipeline and task parallelism

Stream Processing Applications

Input Operator Queue Operator
 event SinkQueue
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o Parallel processing:
• Pipeline parallelism
• Task parallelism
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o Parallel processing:
• Pipeline parallelism
• Task parallelism

Introduction
✓ Compilers
✓ Run-time Schedulers  

❖ Limited by data graph
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o Data or operator parallelism:
• Bottlenecks at operator level
• Split the data and replicate the operator
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o Data or operator parallelism:
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✓ Not limited by data-flow graph  

❖ Trade latency for high throughput
❖ Preserve sequential semantics
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o Determinism: preserve sequential semantics (safety)

Motivation
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Merger

o Determinism: preserve sequential semantics (safety)
• Merge operators 

▪ Enforce ordering amongst the output tuples.
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Merger

o Determinism: preserve sequential semantics (safety)
• Merge operators 

▪ Enforce ordering amongst the output tuples.
▪ Compiler generated [Schneider 2013].
▪ Left to Application or Library developer [ Apache Storm, Flink].
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Problem Statement
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Problem Statement

o Overheads of Merge operators: 
• Introduce computation overhead
• Higher latency due to increase in operators
• Become processing bottleneck
• Considerable burden on the developers

o Challenge: How to apply data-parallelism transparently and safely
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Our Solution

o Communication-layer determinism: 
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization
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Our Solution

o Communication-layer determinism: 
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization
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Our Solution

o Communication-layer determinism: 
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

• Extends the ScaleGate [Gulisano et. al. 2016].
• Modularly take the logic of deterministic away from developer  

(Viper ).
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Our Solution

o Communication-layer determinism: 
• Leverage links to achieve both communication and determinism.

▪ Shared state and synchronization

• Extends the ScaleGate [Gulisano et. al. 2016].
• Modularly take the logic of deterministic away from developer  

(Viper ).
• Evaluate our implementation on Apache Storm.
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Viper Module

o Overall Approach 
• Replace merge operators and channels with a Viper module
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Viper Module

o Overall Approach 
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

• Channel is either a thread-safe concurrent queue or a ScaleGate object

• Sorting overhead shared by threads assigned to the same instance
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Viper Module

o Overall Approach 
• Replace merge operators and channels with a Viper module

• Channel maintained for any set of source operator instances S1,..Sn

• Channel is either a thread-safe concurrent queue or a ScaleGate object

• Sorting overhead shared by threads assigned to the same instance

• Watermarking mechanism to handle back-pressure

  

Operator layer M1A21F1

M2A22F2

 Communication layer
(Viper)

Shared channel between 
each operator instance and 
its upstream peers 
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ScaleGate Data Structure

o API:

addTuple(tuple,sourceID)  
allows a tuple from sourceID to be merged by ScaleGate in the resulting sorted stream of 
ready tuples.

getNextReadyTuple(readerID)  
provides to readerID the next ready tuple that has not been yet consumed by the former.

https://github.com/dcs-chalmers/ScaleGate_Java

[Gulisano et. al. 2016].
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Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get 
timestamp-sorted tuples from the channel.
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Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get 
timestamp-sorted tuples from the channel.

addTuple(channel, sourceID, tuple)  
Add tuple from a given source sourceID to the specified channel
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Viper API

register(channel, sources, readers)  
Register a new channel, specifying which sources will add tuples and which readers will get 
timestamp-sorted tuples from the channel.

addTuple(channel, sourceID, tuple)  
Add tuple from a given source sourceID to the specified channel

getReadyTuple(channel, readerID)  
Retrieve the next ready tuple (if any) for the specified readerID from the channel

Operator
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o Integrated Viper module in Apache Storm

Evaluation

Task

Inbound Outbound

Execution Thread

Send thread

✓ Queues based on LMAX disruptor
❖ A Dedicated send thread per Executor 

process
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o Integrated Viper module in Apache Storm

Evaluation

Task

Inbound Outbound

Execution Thread

Send thread

Task

Execution Thread

Inbound

✓ Queues based on LMAX disruptor
❖ A Dedicated send thread per Executor 

process

✓ Remove send threads
✓ Concurrent queues or ScaleGate 
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o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports  and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

Evaluation Setup
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o Linear-Road Dataset
• Simulate vehicular traffic on a network of dynamic-toll roads
• Variable toll dependent on congestion and accident proximity
• Position reports  and historical query requests
• Tuple<Type = 0, Time, VID, Spd, XWay, Lane, Dir, Seg, Pos>

o Both stateful and stateless operators
o Metrics: Throughput, Latency and Energy
o Evaluation Platform

• Intel Xeon E5-2687W v2 3.4 GHz server (32 threads over 2 sockets), 64 GB of RAM
• Likwid library to read RAPL energy counters

Evaluation Setup
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Evaluation Results
o Stateless Operator

• Forward position reports

o Viper : Communication Layer
• Viper Module used

o No-Viper : Operator Layer
• Merge-Sort operator deployed

o Injection rate varied from 10,000 t/s to 1,200,000 t/s

Viper No-Viper
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PEN

…

Sink
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Evaluation Results
o Stateful Operator

• Vehicle entering new Segment

o Viper : Communication Layer
• Viper Module used

o No-Viper : Operator Layer
• Merge-Sort operator deployed
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o Discussed limitations of operator layer determinism and 
proposed a solution to overcome these at the communication 
layer. 

o Developed a Viper module that can be integrated in SPEs
o Evaluated the performance of the proposed module on 

Apache Storm 

o Scale the per tuple workload in the evaluation

Conclusions and Future work
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Thank You!

Viper: Communication-Layer Determinism 
and Scaling in Low-Latency Stream 

Processing
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