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Motivation
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 Characteristics of real-time stream processing:

 sub-second latency incoming events

 arriving at high velocity and high density

 real-time data analysis on incoming streams

 information perishes over time (e.g., GPS data)

 Example: Urban traffic management

 Batch Processing (MapReduce) is unable to meet the sub-second 

latency requirements of stream analytics applications
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Contributions
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1. Determining maximum throughput obtainable from current streaming 
engines

 Apache Storm, Apache Flink, Spark Streaming

2. Created and adapted streaming analysis benchmarks

 Adapted: Yahoo streaming benchmark

 simulation of an advertisement analytics pipeline

 Created: trend detection benchmark

 real-world streaming analysis identifying and predicting importance of real-world events

3. Dynamic Cloud profiling through Kieker framework

4. Made production-level framework configurations available on 
GitHub (for reproducibility of results)

5. Compared Cloud trend detector to a hand-tuned single-node lock-
less shared memory trend detection re-implementation.

 To check for possible glass ceiling with streaming framework performance.
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Benchmark 1: Yahoo streaming benchmark
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 Tests the performance of existing Big Data streaming engines:

 Apache Storm, Apache Flink, and Apache Spark Streaming

 An advertising analytics pipeline of streaming operations:

 events arrive through Kafka

 JSON format is deserialized

 events are filtered, projected, and joined

 windowed counts of events per campaign are stored in the Redis in-memory 

database
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Experimental Setup

6

 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM



Experimental Setup

7

The total provided Cloud resources include:

 480 vCPUs

 720 GB RAM

 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM



Cloud Infrastructure vs. Application Nodes
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Redis
Zookeeper 

Cluster
Kafka Producers

(datagenerators)
streaming engineKafka 

Cluster

 Cloud infrastructure setup

 3 Zookeeper nodes

 1 Redis in-memory database node

 1 Kafka cluster (5 Kafka broker nodes)

 10 Kafka producer nodes

19 infrastructure nodes 11 application-specific nodes



Benchmarking Cloud applications
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 Measuring CPU utilization in the Cloud

 Kieker dynamic profiling framework

 specialized at measuring performance of Cloud systems

 Kieker agent and our sample-based profiler deployed with all application-

specific nodes

 per-core, per-second CPU utilization of nodes is sampled every 500 ms (to fulfill per-

second sampling rate)

 Our sample-based profiler accumulates sampling data on all nodes

11 application-specific streaming engines

Kieker agent Sample-based profiler
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 Average (AVG) graph shows vCPU 
utilization of Cloud nodes which run 
application actors.

 Utilization is averaged across all 
vCPUs of a node.

Storm: Average Node vCPU Utilization
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Storm: Average Node vCPU Utilization



Storm: Actor Instance Allocation
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 Same color is used for the same Cloud node in the graph and 

orchestration diagram
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 Evaluation of orchestration efficiency

 Profiled and drew actor allocation graph 

of each streaming engine.

 Did not include Spark streaming due to 

differences in programming interfaces.

 Each Cloud node represented with a 

unique color.

 All actor instances are included to 

provide the complete picture.



Storm: Actor Instance Allocation
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 Same color is used for the same Cloud node in the graph and 

orchestration diagram

KafkaSpout

Deserialize

EventFilter

EventProjection

RedisJoin

Campaign

Processor



14

Comparing Streaming Engines

 Average node vCPU utilization 

across three streaming engines

 Under-utilization with Flink 

and Spark Streaming

Spark Streaming

Storm Flink



Flink Actor Instance Allocation
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 Flink’s orchestration graph

 Flink actors are confined to 5 nodes; 6 nodes left idle.

 One node (green) overly allocated with actor instances.

 Flink favors vertical over horizontal scaling, although not load-balanced.
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Differences in Orchestration Strategies
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Flink’s Orchestration Storm’s Orchestration

Orchestration Details

Streaming engine Flink Storm

Number of participating nodes 5 10

Throughput (tuples/sec) 282,141 24,703



Orchestration Strategies Differences
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 Remarks

 Streaming engines employ different orchestration strategies

 Users are only given with high-level configuration options

 Users cannot select number of actor instances nor assign actor instances to nodes

Flink’s Orchestration Storm’s Orchestration
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Storm: CV of vCPU Utilization per Node

 High CV: the vCPUs of a node are utilized to 
largely varying degrees.

 Low CV: the vCPUs of a node are utilized to the 
same degree.

 Ideal:

 high average vCPU utilization

 low CV

 "all vCPUs are humming"
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Storm: CV of Node vCPU Utilization
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Comparing Streaming Engines

 CV graphs of the three 

streaming engines

 Storm shows low CV whereas 

Spark Streaming’s CV values 

are highly scattered

Storm Flink

Spark Streaming



Benchmark 2: Trend Detection
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 A popular streaming analysis used in social network services and 

search engines

 discovering, measuring, and comparing changes in time series data from 

online user interactions

 Point-by-point Poisson model

 example: keyword trending for a soccer match

 the probability of observing a particular count of some quantity, when many 

sources have individually low probabilities of contributing to the count

 most effective for finding trending keywords from small sets of time series 

data

 Example data set

 Wikipedia’s actual page traffic data collected for three months (150GB, 

67M tuples)



Cloud Trend Detector
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 Implemented with Storm API and Java

 Stateful versus stateless actor

 stateful: a global data structure is required to maintain all states

 stateless: remove global data-structure from a Cloud application to avoid 

expensive communication overhead

 Re-designing the trend detector to become stateless:

 introducing speculative trend detection

 parallel reduction algorithm is a natural fit for this purpose

int sum = 0;

sum++;

a b c a’ b’ c’



Parallel Reduction Algorithm
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 N-layer Cloud trend detector with parallel reduction

 Cloud trend detector is created dynamically at the beginning of the run-

time with given number of layers

 Each trend detection node receives partial stream and evaluate each 

keyword’s trendiness.

 Each aggregator node performs evaluation of trendiness from the results 

of the two precedent nodes.
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Single-node Trend Detector
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 Stateful Trend Detection

 Implemented in C++ for a shared-memory multicore computer
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Thread-to-core Allocation
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 Each thread is allocated to a single, dedicated core on a CPU

lock-free hashmap
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Thread-to-core Allocation (cont.)
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 Thread-to-core allocation

 one datagenerator d is employed per CPU

 remaining cores are filled with worker threads w

 each worker thread has a dedicated streaming queue to receive tuples from 

a datagenerator

 the worker threads receive tuples from the datagenerator thread pinned on 

the same CPU



Lock-free SPSC Queue
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 Lock-free single-producer-single-consumer queues are employed 

for each and every worker thread
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Lock-free Hashmap
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 Lock contention is removed by employing a lock-free hashmap

 Correctness is guaranteed by storing all timestamps 

lock-free hashmap
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Timebucket Evaluation
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 All timestamps of received keywords are stored.

 Trendiness of a keyword is evaluated periodically.

lock-free hashmap
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Experimental Results: Single-node Trend Detector
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 Single-node trend detector

 2 Intel Xeon E5-2699 v4 CPUs (22 physical cores per CPU)

 512 GB RAM

 Achieved throughput: 3,217,432 tuples/s
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Cloud Trend Detector Orchestration
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TrendDetection

Aggregator

Aggregator

Aggregator

SinkNode



Utilization & Throughput
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 Cloud trend detector shows under-utilized Cloud nodes

 Comparison of Cloud & single-node trend detectors

Trend Detection

Type Cloud Single-node

Participating node counts: 30 1

Throughput (tuples/s): 72,499 3,217,432

Implementation time: 2 3
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Conclusion
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 Big Data streaming platforms exhibit:

 Low throughput

 Disadvantageous orchestration decisions:

 over-subscribed nodes (Flink), under-utilized nodes (all)

 inconsistent vertical scaling (Flink), inefficient horizontal scaling (Storm)

 Our stateful lock-less single-node trend detector features:

 vertical scaling on a shared-memory multicore computer 

 it outperformed its Cloud-based counterpart by two orders of magnitude higher 
throughput

 Envisioned future work:

 Determine and resolve main bottlenecks of streaming platforms

 Orchestration? scaling? communication latencies? JVM-induced overhead?

 Attempt efficient vertical scaling for Cloud applications (inspired by Flink’s 
orchestration).

 Orchestration of streaming applications for the Cloud
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Thank you…


