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Motivation
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 Characteristics of real-time stream processing:

 sub-second latency incoming events

 arriving at high velocity and high density

 real-time data analysis on incoming streams

 information perishes over time (e.g., GPS data)

 Example: Urban traffic management

 Batch Processing (MapReduce) is unable to meet the sub-second 

latency requirements of stream analytics applications
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Contributions
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1. Determining maximum throughput obtainable from current streaming 
engines

 Apache Storm, Apache Flink, Spark Streaming

2. Created and adapted streaming analysis benchmarks

 Adapted: Yahoo streaming benchmark

 simulation of an advertisement analytics pipeline

 Created: trend detection benchmark

 real-world streaming analysis identifying and predicting importance of real-world events

3. Dynamic Cloud profiling through Kieker framework

4. Made production-level framework configurations available on 
GitHub (for reproducibility of results)

5. Compared Cloud trend detector to a hand-tuned single-node lock-
less shared memory trend detection re-implementation.

 To check for possible glass ceiling with streaming framework performance.
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Benchmark 1: Yahoo streaming benchmark
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 Tests the performance of existing Big Data streaming engines:

 Apache Storm, Apache Flink, and Apache Spark Streaming

 An advertising analytics pipeline of streaming operations:

 events arrive through Kafka

 JSON format is deserialized

 events are filtered, projected, and joined

 windowed counts of events per campaign are stored in the Redis in-memory 

database
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Experimental Setup
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 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM



Experimental Setup
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The total provided Cloud resources include:

 480 vCPUs

 720 GB RAM

 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM



Cloud Infrastructure vs. Application Nodes
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Redis
Zookeeper 

Cluster
Kafka Producers

(datagenerators)
streaming engineKafka 

Cluster

 Cloud infrastructure setup

 3 Zookeeper nodes

 1 Redis in-memory database node

 1 Kafka cluster (5 Kafka broker nodes)

 10 Kafka producer nodes

19 infrastructure nodes 11 application-specific nodes



Benchmarking Cloud applications
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 Measuring CPU utilization in the Cloud

 Kieker dynamic profiling framework

 specialized at measuring performance of Cloud systems

 Kieker agent and our sample-based profiler deployed with all application-

specific nodes

 per-core, per-second CPU utilization of nodes is sampled every 500 ms (to fulfill per-

second sampling rate)

 Our sample-based profiler accumulates sampling data on all nodes

11 application-specific streaming engines

Kieker agent Sample-based profiler
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 Average (AVG) graph shows vCPU 
utilization of Cloud nodes which run 
application actors.

 Utilization is averaged across all 
vCPUs of a node.

Storm: Average Node vCPU Utilization
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Storm: Average Node vCPU Utilization



Storm: Actor Instance Allocation
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 Same color is used for the same Cloud node in the graph and 

orchestration diagram

KafkaSpout

Deserialize

EventFilter

EventProjection

RedisJoin

Campaign

Processor

 Evaluation of orchestration efficiency

 Profiled and drew actor allocation graph 

of each streaming engine.

 Did not include Spark streaming due to 

differences in programming interfaces.

 Each Cloud node represented with a 

unique color.

 All actor instances are included to 

provide the complete picture.



Storm: Actor Instance Allocation
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 Same color is used for the same Cloud node in the graph and 

orchestration diagram
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Comparing Streaming Engines

 Average node vCPU utilization 

across three streaming engines

 Under-utilization with Flink 

and Spark Streaming

Spark Streaming

Storm Flink



Flink Actor Instance Allocation
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 Flink’s orchestration graph

 Flink actors are confined to 5 nodes; 6 nodes left idle.

 One node (green) overly allocated with actor instances.

 Flink favors vertical over horizontal scaling, although not load-balanced.
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Differences in Orchestration Strategies
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Flink’s Orchestration Storm’s Orchestration

Orchestration Details

Streaming engine Flink Storm

Number of participating nodes 5 10

Throughput (tuples/sec) 282,141 24,703



Orchestration Strategies Differences
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 Remarks

 Streaming engines employ different orchestration strategies

 Users are only given with high-level configuration options

 Users cannot select number of actor instances nor assign actor instances to nodes

Flink’s Orchestration Storm’s Orchestration
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Storm: CV of vCPU Utilization per Node

 High CV: the vCPUs of a node are utilized to 
largely varying degrees.

 Low CV: the vCPUs of a node are utilized to the 
same degree.

 Ideal:

 high average vCPU utilization

 low CV

 "all vCPUs are humming"
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Storm: CV of Node vCPU Utilization
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Comparing Streaming Engines

 CV graphs of the three 

streaming engines

 Storm shows low CV whereas 

Spark Streaming’s CV values 

are highly scattered

Storm Flink

Spark Streaming



Benchmark 2: Trend Detection
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 A popular streaming analysis used in social network services and 

search engines

 discovering, measuring, and comparing changes in time series data from 

online user interactions

 Point-by-point Poisson model

 example: keyword trending for a soccer match

 the probability of observing a particular count of some quantity, when many 

sources have individually low probabilities of contributing to the count

 most effective for finding trending keywords from small sets of time series 

data

 Example data set

 Wikipedia’s actual page traffic data collected for three months (150GB, 

67M tuples)



Cloud Trend Detector
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 Implemented with Storm API and Java

 Stateful versus stateless actor

 stateful: a global data structure is required to maintain all states

 stateless: remove global data-structure from a Cloud application to avoid 

expensive communication overhead

 Re-designing the trend detector to become stateless:

 introducing speculative trend detection

 parallel reduction algorithm is a natural fit for this purpose

int sum = 0;

sum++;

a b c a’ b’ c’



Parallel Reduction Algorithm
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 N-layer Cloud trend detector with parallel reduction

 Cloud trend detector is created dynamically at the beginning of the run-

time with given number of layers

 Each trend detection node receives partial stream and evaluate each 

keyword’s trendiness.

 Each aggregator node performs evaluation of trendiness from the results 

of the two precedent nodes.
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Single-node Trend Detector
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 Stateful Trend Detection

 Implemented in C++ for a shared-memory multicore computer
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Thread-to-core Allocation
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 Each thread is allocated to a single, dedicated core on a CPU

lock-free hashmap
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Thread-to-core Allocation (cont.)

26

 Thread-to-core allocation

 one datagenerator d is employed per CPU

 remaining cores are filled with worker threads w

 each worker thread has a dedicated streaming queue to receive tuples from 

a datagenerator

 the worker threads receive tuples from the datagenerator thread pinned on 

the same CPU



Lock-free SPSC Queue
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 Lock-free single-producer-single-consumer queues are employed 

for each and every worker thread
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Lock-free Hashmap
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 Lock contention is removed by employing a lock-free hashmap

 Correctness is guaranteed by storing all timestamps 

lock-free hashmap
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Timebucket Evaluation
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 All timestamps of received keywords are stored.

 Trendiness of a keyword is evaluated periodically.

lock-free hashmap
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Experimental Results: Single-node Trend Detector
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 Single-node trend detector

 2 Intel Xeon E5-2699 v4 CPUs (22 physical cores per CPU)

 512 GB RAM

 Achieved throughput: 3,217,432 tuples/s
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Cloud Trend Detector Orchestration
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Utilization & Throughput
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 Cloud trend detector shows under-utilized Cloud nodes

 Comparison of Cloud & single-node trend detectors

Trend Detection

Type Cloud Single-node

Participating node counts: 30 1

Throughput (tuples/s): 72,499 3,217,432

Implementation time: 2 3
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Conclusion
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 Big Data streaming platforms exhibit:

 Low throughput

 Disadvantageous orchestration decisions:

 over-subscribed nodes (Flink), under-utilized nodes (all)

 inconsistent vertical scaling (Flink), inefficient horizontal scaling (Storm)

 Our stateful lock-less single-node trend detector features:

 vertical scaling on a shared-memory multicore computer 

 it outperformed its Cloud-based counterpart by two orders of magnitude higher 
throughput

 Envisioned future work:

 Determine and resolve main bottlenecks of streaming platforms

 Orchestration? scaling? communication latencies? JVM-induced overhead?

 Attempt efficient vertical scaling for Cloud applications (inspired by Flink’s 
orchestration).

 Orchestration of streaming applications for the Cloud



Acknowledgements

35

Research supported by the Next-Generation Information Computing 

Development Program through the National Research Foundation of 

Korea (NRF), funded by the Ministry of Science, ICT & Future Planning 

under grant NRF2015M3C4A7065522.



36

Thank you…


