
SCALABILITY AND STATE:
A CRITICAL ASSESSMENT OF THROUGHPUT OBTAINABLE

ON BIG DATA STREAMING FRAMEWORKS

FOR APPLICATIONS WITH AND WITHOUT STATE INFORMATION

Department of Computer Science

Shinhyung Yang, Yonguk Jeong, ChangWan Hong, Hyunje Jun

and Bernd Burgstaller

Yonsei University

International Workshop on Autonomic Solutions for Parallel and

Distributed Data Stream Processing (Auto-DaSP 2017),

Santiago de Compostela, August 29, 2017.

Motivation

2

 Characteristics of real-time stream processing:

 sub-second latency incoming events

 arriving at high velocity and high density

 real-time data analysis on incoming streams

 information perishes over time (e.g., GPS data)

 Example: Urban traffic management

 Batch Processing (MapReduce) is unable to meet the sub-second

latency requirements of stream analytics applications

GPS position
information

User
move
history

Cell
tower
statistics

Statistics
predictor

Prediction
aggregator

10M tuples/sec

Cell tower
density

aggregator

Population of Seoul:

10M (daytime)

Contributions

3

1. Determining maximum throughput obtainable from current streaming
engines

 Apache Storm, Apache Flink, Spark Streaming

2. Created and adapted streaming analysis benchmarks

 Adapted: Yahoo streaming benchmark

 simulation of an advertisement analytics pipeline

 Created: trend detection benchmark

 real-world streaming analysis identifying and predicting importance of real-world events

3. Dynamic Cloud profiling through Kieker framework

4. Made production-level framework configurations available on
GitHub (for reproducibility of results)

5. Compared Cloud trend detector to a hand-tuned single-node lock-
less shared memory trend detection re-implementation.

 To check for possible glass ceiling with streaming framework performance.

Contributions

4

1. Determining maximum throughput obtainable from current streaming
engines

 Apache Storm, Apache Flink, Spark Streaming

2. Created and adapted streaming analysis benchmarks

 Adapted: Yahoo streaming benchmark

 simulation of an advertisement analytics pipeline

 Created: trend detection benchmark

 real-world streaming analysis identifying and predicting importance of real-world events

3. Dynamic Cloud profiling through Kieker framework

4. Made production-level framework configurations available on
GitHub (for reproducibility of results)

5. Compared Cloud trend detector to a hand-tuned single-node lock-
less shared memory trend detection re-implementation.

 To check for possible glass ceiling with streaming framework performance.

Benchmark 1: Yahoo streaming benchmark

5

 Tests the performance of existing Big Data streaming engines:

 Apache Storm, Apache Flink, and Apache Spark Streaming

 An advertising analytics pipeline of streaming operations:

 events arrive through Kafka

 JSON format is deserialized

 events are filtered, projected, and joined

 windowed counts of events per campaign are stored in the Redis in-memory

database

Apache
Kafka
(Stream
Source)

Redis
In-memory database

Deserialize JSON Filter Transform / Projection

Join
Time Window
Aggregation

Increment & Store

Storm, Flink or Spark Streaming

Experimental Setup

6

 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM

Experimental Setup

7

The total provided Cloud resources include:

 480 vCPUs

 720 GB RAM

 Cloud setup

 from Yahoo’s publication [YH2016]

 30 Cloud nodes are configured on Google Compute Engine

 One Cloud node is equipped with:

 16 virtual CPUs (vCPUs)

 aka 16 Intel hyperthreads

 Intel Xeon @ 2.50 GHz

 24 GB RAM

Cloud Infrastructure vs. Application Nodes

8

Redis
Zookeeper

Cluster
Kafka Producers

(datagenerators)
streaming engineKafka

Cluster

 Cloud infrastructure setup

 3 Zookeeper nodes

 1 Redis in-memory database node

 1 Kafka cluster (5 Kafka broker nodes)

 10 Kafka producer nodes

19 infrastructure nodes 11 application-specific nodes

Benchmarking Cloud applications

9

 Measuring CPU utilization in the Cloud

 Kieker dynamic profiling framework

 specialized at measuring performance of Cloud systems

 Kieker agent and our sample-based profiler deployed with all application-

specific nodes

 per-core, per-second CPU utilization of nodes is sampled every 500 ms (to fulfill per-

second sampling rate)

 Our sample-based profiler accumulates sampling data on all nodes

11 application-specific streaming engines

Kieker agent Sample-based profiler

10

 Average (AVG) graph shows vCPU
utilization of Cloud nodes which run
application actors.

 Utilization is averaged across all
vCPUs of a node.

Storm: Average Node vCPU Utilization

11

Storm: Average Node vCPU Utilization

Storm: Actor Instance Allocation

12

 Same color is used for the same Cloud node in the graph and

orchestration diagram

KafkaSpout

Deserialize

EventFilter

EventProjection

RedisJoin

Campaign

Processor

 Evaluation of orchestration efficiency

 Profiled and drew actor allocation graph

of each streaming engine.

 Did not include Spark streaming due to

differences in programming interfaces.

 Each Cloud node represented with a

unique color.

 All actor instances are included to

provide the complete picture.

Storm: Actor Instance Allocation

13

 Same color is used for the same Cloud node in the graph and

orchestration diagram

KafkaSpout

Deserialize

EventFilter

EventProjection

RedisJoin

Campaign

Processor

14

Comparing Streaming Engines

 Average node vCPU utilization

across three streaming engines

 Under-utilization with Flink

and Spark Streaming

Spark Streaming

Storm Flink

Flink Actor Instance Allocation

15

 Flink’s orchestration graph

 Flink actors are confined to 5 nodes; 6 nodes left idle.

 One node (green) overly allocated with actor instances.

 Flink favors vertical over horizontal scaling, although not load-balanced.

KafkaConsumer

Deserialize

EventFilter

RedisJoin

Campaign

Processor

Differences in Orchestration Strategies

16

Flink’s Orchestration Storm’s Orchestration

Orchestration Details

Streaming engine Flink Storm

Number of participating nodes 5 10

Throughput (tuples/sec) 282,141 24,703

Orchestration Strategies Differences

17

 Remarks

 Streaming engines employ different orchestration strategies

 Users are only given with high-level configuration options

 Users cannot select number of actor instances nor assign actor instances to nodes

Flink’s Orchestration Storm’s Orchestration

18

Storm: CV of vCPU Utilization per Node

 High CV: the vCPUs of a node are utilized to
largely varying degrees.

 Low CV: the vCPUs of a node are utilized to the
same degree.

 Ideal:

 high average vCPU utilization

 low CV

 "all vCPUs are humming"

19

Storm: CV of Node vCPU Utilization

20

Comparing Streaming Engines

 CV graphs of the three

streaming engines

 Storm shows low CV whereas

Spark Streaming’s CV values

are highly scattered

Storm Flink

Spark Streaming

Benchmark 2: Trend Detection

21

 A popular streaming analysis used in social network services and

search engines

 discovering, measuring, and comparing changes in time series data from

online user interactions

 Point-by-point Poisson model

 example: keyword trending for a soccer match

 the probability of observing a particular count of some quantity, when many

sources have individually low probabilities of contributing to the count

 most effective for finding trending keywords from small sets of time series

data

 Example data set

 Wikipedia’s actual page traffic data collected for three months (150GB,

67M tuples)

Cloud Trend Detector

22

 Implemented with Storm API and Java

 Stateful versus stateless actor

 stateful: a global data structure is required to maintain all states

 stateless: remove global data-structure from a Cloud application to avoid

expensive communication overhead

 Re-designing the trend detector to become stateless:

 introducing speculative trend detection

 parallel reduction algorithm is a natural fit for this purpose

int sum = 0;

sum++;

a b c a’ b’ c’

Parallel Reduction Algorithm

23

 N-layer Cloud trend detector with parallel reduction

 Cloud trend detector is created dynamically at the beginning of the run-

time with given number of layers

 Each trend detection node receives partial stream and evaluate each

keyword’s trendiness.

 Each aggregator node performs evaluation of trendiness from the results

of the two precedent nodes.

Data
Generator

Aggregator

Aggregator

Trend Detection

Trend Detection

Trend Detection

Aggregator

Aggregator

Aggregator

Aggregator

Aggregator

Single-node Trend Detector

24

 Stateful Trend Detection

 Implemented in C++ for a shared-memory multicore computer

lock-free hashmap

Data Generator0

Worker01

Worker01

Worker0i

Data Generator1

Worker11

Worker12

Worker1i

trending-listkeyword1

keyword2

keyword3

keywordn

t1 t2 t3 ti

t0

t1

t2

tn

Thread-to-core Allocation

25

 Each thread is allocated to a single, dedicated core on a CPU

lock-free hashmap

Worker01

Worker01

Worker0i

Data Generator0 Data Generator1

Worker11

Worker12

Worker1i

trending-listkeyword1

keyword2

keyword3

keywordn

t1 t2 t3 ti

t0

t1

t2

tn

Thread-to-core Allocation (cont.)

26

 Thread-to-core allocation

 one datagenerator d is employed per CPU

 remaining cores are filled with worker threads w

 each worker thread has a dedicated streaming queue to receive tuples from

a datagenerator

 the worker threads receive tuples from the datagenerator thread pinned on

the same CPU

Lock-free SPSC Queue

27

 Lock-free single-producer-single-consumer queues are employed

for each and every worker thread

lock-free hashmap

Data Generator0

Worker01

Worker01

Worker0i

Data Generator1

Worker11

Worker12

Worker1i

trending-listkeyword1

keyword2

keyword3

keywordn

t1 t2 t3 ti

t0

t1

t2

tn

a dedicated streaming

queue for each worker

Lock-free Hashmap

28

 Lock contention is removed by employing a lock-free hashmap

 Correctness is guaranteed by storing all timestamps

lock-free hashmap

Data Generator0

Worker01

Worker01

Worker0i

Data Generator1

Worker11

Worker12

Worker1i

trending-listkeyword1

keyword2

keyword3

keywordn

t1 t2 t3 ti

t0

t1

t2

tn

Timebucket Evaluation

29

 All timestamps of received keywords are stored.

 Trendiness of a keyword is evaluated periodically.

lock-free hashmap

Data Generator0

Worker01

Worker01

Worker0i

Data Generator1

Worker11

Worker12

Worker1i

t1 t2 t3 ti

trending-list

keyword1

keyword2

keyword3

keywordn

t1 t2 t3 ti

t0

t1

t2

tn

time-bucket1

Experimental Results: Single-node Trend Detector

30

 Single-node trend detector

 2 Intel Xeon E5-2699 v4 CPUs (22 physical cores per CPU)

 512 GB RAM

 Achieved throughput: 3,217,432 tuples/s

31

Cloud Trend Detector Orchestration

KafkaSpout

Deserialize

TrendDetection

Aggregator

Aggregator

Aggregator

SinkNode

Utilization & Throughput

32

 Cloud trend detector shows under-utilized Cloud nodes

 Comparison of Cloud & single-node trend detectors

Trend Detection

Type Cloud Single-node

Participating node counts: 30 1

Throughput (tuples/s): 72,499 3,217,432

Implementation time: 2 3

Utilization & Throughput

33

 Cloud trend detector shows under-utilized Cloud nodes

 Comparison of Cloud & single-node trend detectors

Trend Detection

Type Cloud Single-node

Participating node counts: 30 1

Throughput (tuples/s): 72,499 3,217,432

Implementation time: 2 3

Conclusion

34

 Big Data streaming platforms exhibit:

 Low throughput

 Disadvantageous orchestration decisions:

 over-subscribed nodes (Flink), under-utilized nodes (all)

 inconsistent vertical scaling (Flink), inefficient horizontal scaling (Storm)

 Our stateful lock-less single-node trend detector features:

 vertical scaling on a shared-memory multicore computer

 it outperformed its Cloud-based counterpart by two orders of magnitude higher
throughput

 Envisioned future work:

 Determine and resolve main bottlenecks of streaming platforms

 Orchestration? scaling? communication latencies? JVM-induced overhead?

 Attempt efficient vertical scaling for Cloud applications (inspired by Flink’s
orchestration).

 Orchestration of streaming applications for the Cloud

Acknowledgements

35

Research supported by the Next-Generation Information Computing

Development Program through the National Research Foundation of

Korea (NRF), funded by the Ministry of Science, ICT & Future Planning

under grant NRF2015M3C4A7065522.

36

Thank you…

