A Multi-level Elasticity Framework for
Distributed Data Stream Processing

Matteo Nardelli, Gabriele Russo Russo,
Valeria Cardellini, Francesco Lo Presti

University of Rome Tor Vergata, Italy

Universita di Roma
S e

Co—

Co—

Co—

Co—
=
| o

AN

Tor Vergatal

Distributed Data Stream Processing (DSP)

» Data streams continuously generated by
distributed sources (e.g., loT sensors)

» Near real-time pI’OCGSSing ® source @ operator @Consur‘;r

More and more strict processing
latency requirements

¥

Need to push computation from
the Cloud towards data sources and
consumers
(Fog Computing)

DSP & Fog: old and new challenges

» Non negligible network latency
» Heterogeneous computing resources (and usually less powerful. . .)
» Variable infrastructure conditions

7

» Application deployment critical for Quality of Service
» Long-running nature of DSP apps calls for run-time adaptation
» Large distributed infrastructures cannot be managed by hand

Multi-level Elasticity

Application-level elasticity
Adjusting the operators
parallelism in response to
workload variations

Infrastructure-level elasticity
Provisioning computing
resources as needed to reduce
operating costs and energy
consumption

DSP Operator C :

Parallel
operator
replicas

v

4--- [--(: [..(: [..l: --->

Computing infrastructure

«----p Elasticity

State of the art

Infrastructure-level elasticity
» widely investigated for VM auto-scaling in the Cloud
» a few solutions for Fog Computing scenarios

Application-level elasticity for DSP
» many different policies (thresholds, queuing theory, ML, ...)

» EDF, Elastic Distributed DSP Framework:
hierarchical decentralized elasticity

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",

Future Generation Computing Systems, 2018.

Multi-level elasticity for DSP: only centralized solutions so far

Goals

» Designing a framework for the autonomous control of
geo-distributed DSP

» Supporting both application-level and
infrastructure-level elasticity

» Defining a set of simple elasticity control policies

» Integrating the framework in Apache Storm

Hierarchical Self-Adaptation

Analyze —— Plan

MAPE: Monitor Analyze Plan Execute
ference pattern for self-adaptin [Knowledge |\
re P pting Monitor Execute
systems A ;
Sensor Effector

Hierarchical MAPE pattern
decentralized self-adaptation
with separation of concerns and time scales

‘ M— A —>P —> E

M— A —> P —>

E2DF: 2-level Elasticity Framework

Application Control System + Infrastructure Control System,
each designed according to the hierarchical MAPE pattern

Application Manager Infrastructure Manager
Monitor | Application Monitor | frastructure
Monitor Monitor
Analyze Global IZ:} Analyze Global
+ Reconfiguration + Reconfiguration

Plan Manager <j Plan Manager
Execute Global Execute Global

Actuator Actuator

¢ O i)

U

Operator Manager Region Manager
- Operator Monitor Region
Monicd Monitor Monitor
Analyze Local Analyze Local
+ Reconfiguration + Reconfiguration
Plan Manager Plan Manager
Reconfiguration Reconfiguration
Eecits Acn?ator s Actuator

The ACS is responsible for
the application deployment

The ICS manages the
computing infrastructure,
composed of regions

Must cooperate!

Application Control System

» Each Operator Manager (OM) monitors a single DSP operator

» OMs plan reconfigurations for an operator based on a local policy,
and propose them to the Application Manager

» The Application Manager (AM) supervises a whole DSP
application, aiming at meeting some QoS requirements

» Each AM collects requests from the OMs, and grants/rejects them
based on its global policy

Infrastructure Control System

» Region Managers (RM) responsible for resource allocation
(VM, containers, ...) in each region

» RMs issue reconfiguration requests to the IM based on a
local policy

» The Infrastructure Manager (IM) supervises the whole
infrastructure

» Collects requests from all the regions, and grants/rejects them
based on its global policy

» Interacts with one or more Application Managers when necessary

10

Integration in Apache Storm

We build on top of Distributed Storm:
stateful migration, extended QoS monitoring, . ..

Nimbus 00K
Application Manager OOoKeeper
Infrastructure Manager f

\

Region Manager i Region Manager

| oo ! i
Supervisor 1 Supervisor
OM OM : ‘[om om om :

11

Simple Control Policies: ACS

Operator Manager:

» proposes to scale-out, _
when average replica CPU utilization is larger than U

» proposes to scale-in, _
when utilization with less replicas would be less than U

Application Manager:

> rejects reconfigurations trying to acquire
the same computing resource

» accepts all the others

12

Simple Control Policies: ICS

Region Manager:
» (C,, minimum amount of available “slots” in each region r

» proposes to launch new instances
when available capacity is less than C,

» proposes to kill unused instances in case of over-provisioning

» proposes to kill used nodes with very low utilization
(after migrations!)

Infrastructure Manager:
» grants all reconfiguration requests

» interacts with Application Managers when a node could be turned
off after migrating the operator replicas

13

Evaluation

» WordCount topology

source splitter counter consumer

©—0—0 -0

» Simple increasing and decreasing workload (5-550 tuple/s)
» Storm worker nodes instantiated as Docker containers

Three scenarios:
» No run-time adaptation
» Application-level elasticity only
» Application- and Infrastructure-level elasticity (E2DF)

14

Results

Application latency
(ms)

Active replicas
and nodes

Application latency
(ms)

Active replicas
and nodes

Baseline (no adaptation)
50

40
30

12 Replicas
Nodes ------

500 1000 1500 2000 2500 3000 3500
Time (s)

Replicas — . |
15 Nodes ------ PR

ACS only

Application latency
(ms)

18
8, 15 [T
é% 12 Replicas
é; 9 Nodes ------
gs Gﬂ
8 500 1000 2000 2500 3000 3500
Time (s)
<+ E2DF
Latency | Nodes | Replicas
Base 11 ms 16 15

ACS 19 ms

16

6.2

500 1000 1500 2000 2500 3000 3500
Time (s)

E2DF 19 ms

12.5

6.1

15

What’s next?

We are investigating more complex policies
> e.g. Reinforcement Learning

System state: s = (k, u, f)

k - number of active nodes

u - avg. hosted replicas utilization

f > (boolean) presence of any unused node

Actions: {—1,0,+1}

Cost associated to state-action pair (s, a):

C(S, a) = Cdemand(sa 3) + Cresources(sa a)

Goal: minimizing the long-term cost!

16

E2DF with RL: preliminary results

70 70
Rpax —— Rmax

@ 60 @ 60
E E
o S0 Y
E 40 £ 4
Q [
g 30 g 30
2 20 Z’c: 20
x 10 x 10

0 0

" Basic provisioning policy 2 Reinforcement Learning

35 Replicas - Comp. resources 35 Replicas - - Comp. resources
38]
8S 32
c Qo {
0 0?
25 25
<8 35

60 61 62 63 64 65 60 61 62 63 64 65
Time (days) Time (days)

17

Conclusions

» E2DF, a framework for hierarchical autonomous control of DSP
application and resource elasticity

» Integrated in Apache Storm

» Simple yet effective control policies

Future work:
» More complex control policies (e.g., Reinforcement Learning)

» Vertical elasticity
» Implementation on top of other DSP frameworks

18

Thanks for your attention!

russo.russo@ing.uniroma2.it

WWW.cCe.uniroma?2.it/~russorusso

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

