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Distributed Data Stream Processing (DSP)

» Data streams continuously generated by
distributed sources (e.g., loT sensors)

» Near real-time pI’OCGSSing ® source @ operator @Consur‘;r

More and more strict processing
latency requirements

¥

Need to push computation from
the Cloud towards data sources and
consumers
(Fog Computing)




DSP & Fog: old and new challenges

» Non negligible network latency
» Heterogeneous computing resources (and usually less powerful. . .)
» Variable infrastructure conditions
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» Application deployment critical for Quality of Service
» Long-running nature of DSP apps calls for run-time adaptation
» Large distributed infrastructures cannot be managed by hand



Multi-level Elasticity

Application-level elasticity
Adjusting the operators
parallelism in response to
workload variations

Infrastructure-level elasticity
Provisioning computing
resources as needed to reduce
operating costs and energy
consumption
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State of the art

Infrastructure-level elasticity
» widely investigated for VM auto-scaling in the Cloud
» a few solutions for Fog Computing scenarios

Application-level elasticity for DSP
» many different policies (thresholds, queuing theory, ML, ...)

» EDF, Elastic Distributed DSP Framework:
hierarchical decentralized elasticity

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",

Future Generation Computing Systems, 2018.

Multi-level elasticity for DSP: only centralized solutions so far



Goals

» Designing a framework for the autonomous control of
geo-distributed DSP

» Supporting both application-level and
infrastructure-level elasticity

» Defining a set of simple elasticity control policies

» Integrating the framework in Apache Storm



Hierarchical Self-Adaptation

Analyze ——  Plan

MAPE: Monitor Analyze Plan Execute
ference pattern for self-adaptin [ Knowledge |\
re P pting Monitor Execute
systems A ;
Sensor Effector

Hierarchical MAPE pattern
decentralized self-adaptation
with separation of concerns and time scales
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E2DF: 2-level Elasticity Framework

Application Control System + Infrastructure Control System,
each designed according to the hierarchical MAPE pattern

Application Manager Infrastructure Manager
Monitor | Application Monitor | frastructure
Monitor Monitor
Analyze Global IZ:} Analyze Global
+ Reconfiguration + Reconfiguration

Plan Manager <j Plan Manager
Execute Global Execute Global

Actuator Actuator
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Operator Manager Region Manager
- Operator Monitor Region
Monicd Monitor Monitor
Analyze Local Analyze Local
+ Reconfiguration + Reconfiguration
Plan Manager Plan Manager
Reconfiguration Reconfiguration
Eecits Acn?ator s Actuator

The ACS is responsible for
the application deployment

The ICS manages the
computing infrastructure,
composed of regions

Must cooperate!



Application Control System

» Each Operator Manager (OM) monitors a single DSP operator

» OMs plan reconfigurations for an operator based on a local policy,
and propose them to the Application Manager

» The Application Manager (AM) supervises a whole DSP
application, aiming at meeting some QoS requirements

» Each AM collects requests from the OMs, and grants/rejects them
based on its global policy



Infrastructure Control System

» Region Managers (RM) responsible for resource allocation
(VM, containers, ...) in each region

» RMs issue reconfiguration requests to the IM based on a
local policy

» The Infrastructure Manager (IM) supervises the whole
infrastructure

» Collects requests from all the regions, and grants/rejects them
based on its global policy

» Interacts with one or more Application Managers when necessary
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Integration in Apache Storm

We build on top of Distributed Storm:
stateful migration, extended QoS monitoring, . ..

Nimbus 00K
Application Manager OOoKeeper
Infrastructure Manager f
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Region Manager i Region Manager
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OM OM : ‘[om om om :
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Simple Control Policies: ACS

Operator Manager:

» proposes to scale-out, _
when average replica CPU utilization is larger than U

» proposes to scale-in, _
when utilization with less replicas would be less than U

Application Manager:

> rejects reconfigurations trying to acquire
the same computing resource

» accepts all the others
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Simple Control Policies: ICS

Region Manager:
» (C,, minimum amount of available “slots” in each region r

» proposes to launch new instances
when available capacity is less than C,

» proposes to kill unused instances in case of over-provisioning

» proposes to kill used nodes with very low utilization
(after migrations!)

Infrastructure Manager:
» grants all reconfiguration requests

» interacts with Application Managers when a node could be turned
off after migrating the operator replicas
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Evaluation

» WordCount topology

source splitter counter consumer

©—0—0 -0

» Simple increasing and decreasing workload (5-550 tuple/s)
» Storm worker nodes instantiated as Docker containers

Three scenarios:
» No run-time adaptation
» Application-level elasticity only
» Application- and Infrastructure-level elasticity (E2DF)
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Results
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What’s next?

We are investigating more complex policies
> e.g. Reinforcement Learning

System state: s = (k, u, f)

k - number of active nodes

u - avg. hosted replicas utilization

f > (boolean) presence of any unused node

Actions: {—1,0,+1}

Cost associated to state-action pair (s, a):

C(S, a) = Cdemand(sa 3) + Cresources(sa a)

Goal: minimizing the long-term cost!
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E2DF with RL: preliminary results
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Conclusions

» E2DF, a framework for hierarchical autonomous control of DSP
application and resource elasticity

» Integrated in Apache Storm

» Simple yet effective control policies

Future work:
» More complex control policies (e.g., Reinforcement Learning)

» Vertical elasticity
» Implementation on top of other DSP frameworks
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Thanks for your attention!

russo.russo@ing.uniroma2.it

WWW.cCe.uniroma?2.it/~russorusso


russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

