
A Multi-level Elasticity Framework for
Distributed Data Stream Processing

Matteo Nardelli, Gabriele Russo Russo,
Valeria Cardellini, Francesco Lo Presti

University of Rome Tor Vergata, Italy

Distributed Data Stream Processing (DSP)

I Data streams continuously generated by
distributed sources (e.g., IoT sensors)

I Near real-time processing

More and more strict processing
latency requirements

:

Need to push computation from
the Cloud towards data sources and

consumers
(Fog Computing)

2

DSP & Fog: old and new challenges

I Non negligible network latency
I Heterogeneous computing resources (and usually less powerful. . .)
I Variable infrastructure conditions

:

I Application deployment critical for Quality of Service
I Long-running nature of DSP apps calls for run-time adaptation
I Large distributed infrastructures cannot be managed by hand

3

Multi-level Elasticity

Application-level elasticity
Adjusting the operators

parallelism in response to
workload variations

Infrastructure-level elasticity
Provisioning computing

resources as needed to reduce
operating costs and energy

consumption

4

State of the art

Infrastructure-level elasticity
I widely investigated for VM auto-scaling in the Cloud
I a few solutions for Fog Computing scenarios

Application-level elasticity for DSP
I many different policies (thresholds, queuing theory, ML, . . .)
I EDF, Elastic Distributed DSP Framework:

hierarchical decentralized elasticity

V. Cardellini, F. Lo Presti, M. Nardelli, G. Russo Russo,
"Decentralized self-adaptation for elastic data stream processing",
Future Generation Computing Systems, 2018.

Multi-level elasticity for DSP: only centralized solutions so far

5

Goals

I Designing a framework for the autonomous control of
geo-distributed DSP

I Supporting both application-level and
infrastructure-level elasticity

I Defining a set of simple elasticity control policies

I Integrating the framework in Apache Storm

6

Hierarchical Self-Adaptation

MAPE: Monitor Analyze Plan Execute
reference pattern for self-adapting
systems

Hierarchical MAPE pattern
decentralized self-adaptation
with separation of concerns and time scales

M EA P

M EA P M EA P

7

E2DF: 2-level Elasticity Framework

Application Control System + Infrastructure Control System,
each designed according to the hierarchical MAPE pattern

The ACS is responsible for
the application deployment
The ICS manages the
computing infrastructure,
composed of regions

Must cooperate!

8

Application Control System

I Each Operator Manager (OM) monitors a single DSP operator
I OMs plan reconfigurations for an operator based on a local policy,

and propose them to the Application Manager

I The Application Manager (AM) supervises a whole DSP
application, aiming at meeting some QoS requirements

I Each AM collects requests from the OMs, and grants/rejects them
based on its global policy

9

Infrastructure Control System

I Region Managers (RM) responsible for resource allocation
(VM, containers, . . .) in each region

I RMs issue reconfiguration requests to the IM based on a
local policy

I The Infrastructure Manager (IM) supervises the whole
infrastructure

I Collects requests from all the regions, and grants/rejects them
based on its global policy

I Interacts with one or more Application Managers when necessary

10

Integration in Apache Storm

We build on top of Distributed Storm:
stateful migration, extended QoS monitoring, . . .

11

Simple Control Policies: ACS

Operator Manager:
I proposes to scale-out,

when average replica CPU utilization is larger than Ū
I proposes to scale-in,

when utilization with less replicas would be less than Ū

Application Manager:
I rejects reconfigurations trying to acquire

the same computing resource
I accepts all the others

12

Simple Control Policies: ICS

Region Manager:
I Cr , minimum amount of available “slots” in each region r
I proposes to launch new instances

when available capacity is less than Cr

I proposes to kill unused instances in case of over-provisioning
I proposes to kill used nodes with very low utilization

(after migrations!)

Infrastructure Manager:
I grants all reconfiguration requests
I interacts with Application Managers when a node could be turned

off after migrating the operator replicas

13

Evaluation

I WordCount topology

I Simple increasing and decreasing workload (5-550 tuple/s)
I Storm worker nodes instantiated as Docker containers

Three scenarios:
I No run-time adaptation
I Application-level elasticity only
I Application- and Infrastructure-level elasticity (E2DF)

14

Results
Baseline (no adaptation)

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500 1000 1500 2000 2500 3000 3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

ACS only

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500 1000 1500 2000 2500 3000 3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

0

10

20

30

40

50

A
p
p
lic

a
ti
o
n
 l
a
te

n
c
y

(m
s
)

3

6

9

12

15

18

 500 1000 1500 2000 2500 3000 3500

A
c
ti
v
e
 r

e
p
lic

a
s

a
n
d
 n

o
d
e
s

Time (s)

Replicas
Nodes

← E2DF

Latency Nodes Replicas
Base 11 ms 16 15
ACS 19 ms 16 6.2
E2DF 19 ms 12.5 6.1

15

What’s next?

We are investigating more complex policies
: e.g. Reinforcement Learning

System state: s = (k , u, f)
k : number of active nodes
u : avg. hosted replicas utilization
f : (boolean) presence of any unused node
Actions: {−1, 0, +1}
Cost associated to state-action pair (s, a):

c(s, a) = cdemand(s, a) + cresources(s, a)

Goal: minimizing the long-term cost!

16

E2DF with RL: preliminary results

17

Conclusions

I E2DF, a framework for hierarchical autonomous control of DSP
application and resource elasticity

I Integrated in Apache Storm

I Simple yet effective control policies

Future work:
I More complex control policies (e.g., Reinforcement Learning)
I Vertical elasticity
I Implementation on top of other DSP frameworks

18

Thanks for your attention!

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

russo.russo@ing.uniroma2.it
www.ce.uniroma2.it/~russorusso

