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Introduction

= Apache Flink is an open source platform for scalable stream processing.

= A Flink program transforms incoming data streams and returns results through sinks
that can write to different destinations.

Source
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Flink Architecture
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Computation Blocks

Stateless: each event is processed independently.
Ex: Filtering, Projection..

Stateful: operators store data across the processing of individual events.
Ex: Aggregation, Joins..

Operator state:
Each operator instance holds a part of the whole state.

Managed State: data structure controlled by Flink.
Raw State: user data structures.

State is made fault tolerant by using checkpointing mechanism.
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State Checkpointing

data stream

= newer records older reconds =—
Burrier tuple: separates records in a » I \ 0
data stream into sets. checkpoint checkpoint stream record
barrier n barrier n-1 fevent)
part of part of part of
checkpoint n+1 checkpoint o checkpoint n-1

A snapshot (serialized state) of an operator is taken when a barrier tuple is received
from all its input streams.

Then, the operator sends the barrier in all its outgoing streams.

When a sink receives barrier ‘n’ from all its incoming streams, it informs the snapshot
coordinator.

When the coordinator receives this message from all the sinks in the topology, the n-th
snapshot is completed.
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folerance

Fault

Mechanism to consistently recover the state of data streaming applications.
Flink continuously draws snapshots of the distributed streaming data flow.

In case of a program failure:
Flink stops the distributed streaming dataflow.
Then, it restarts the operators and resets them to the latest successful checkpoint.

The input streams are reset to the point of the state snapshot.

Any records that are processed as part of the restarted parallel dataflow are guaranteed not
to have been part of the previously checkpointed state.
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FT Settings

state.backend:
MemoryStateBackend
Data are stored in the JAVA heap space available in the JobManager process.
FsStateBackend
Data are stored as files. Filesystem must be accessible by each and any component => HDFS
RocksDBStateBackend

Holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data
directories. Upon checkpointing, the whole RocksDB database will be checkpointed into the
configured file system and directory.

state.backend.incremental: only a diff from the previous checkpoint is stored.
state.checkpoints.num-retained: maximum number of completed checkpoints to retain.

Minimum time between checkpoints: define checkpoint interval.
o
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Performance Evaluation

Goal:

Evaluate the overhead that fault-tolerance introduces in Flink regular processing and the cost
of recovery.

Benchmark
Intel HiBench suite.

Tested:
Distributed tested with 6 powerful machines.

Fault Injection:
Execute command to kill one TaskManager.

Parameters:
State size, input load, state backend.
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Benchmark

= |ntel HiBench Suite.

= Fix-window micro-benchmark
= The workload performs a window based aggregation. It tests the performance of window

operation in the streaming frameworks.

= Load is generated by multiple instances of the benchmark executed in parallel.

Kafka Source

Torino, Auto-DASP Workshop 28/08/2018 @



Testbed

= 6 homogeneous nodes. Each node:
= 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores each = 24 virtual cores
= 128 GB RAM divided into 8 slots.
= Disk: SSD Intel SD3510 480GB.
= Network: 1Gbit Ethernet.

= Software versions:

= Flink 1.4.2 <= —
Intel HiBench 7.0 CK o >
Kafka 2.10-0.8.2.2 atka
Hadoop 2.6.5

Zookeeper 3.4.8. { }
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Deployment

= Benchmark: from 2 to 5 instances.
= Kafka Cluster: 12 brokers

= Flink Cluster: 24 TaskManagers with 2
slots each =» 48 task slots.

Torino, Auto-DASP Workshop
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HiBench

HiBench

Flink JobManager §4
Zookeeper
HDFS

Node3
Kafka Broker 1

Kafka Broker 6
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Kafka Broker 7

Kafka Broker 12

Node5
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Evalua

tion Configuration

Input Load (r/sec)| Window Size Checkpointing |Fault Injection
200k - 500k 50 Records No No
200k - 500k 30 to 50 Records HDEFE'S No
200k - 500k 30 to 50 Records HDEFE'S Yes
200k - 500k 50 Records |HDFS + RocksDB No
200k - 500k 50 Records |HDFS + RocksDB Yes

Table 1: Experiments configurations.
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Results: check
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Results: checkpointing on HPFS - w50
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Results: fault injection — w50
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CPU Utilization

blade153 CPU usage %usr

bladel53 CPU usage %usr
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«  With checkpointing |
enabled, the  system
consumes much more
recourses.

de CPU usage %usr
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* With the highest workload
(500k t/s) it would need
more resources to process
the pending load in order
to recover.
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gP Latencyml State size
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Conclusion

window size 30

Future Work

In presence of failures the system is able to recover quickly if it has enough available

window size 40

window size 50

window size 50 no chekpointing

resources. Input Load (r/sec)
Latency: oL

300k

400k

500k

25-113 ms

60-279 ms

127-622 ms
681-2499 ms

32-281 ms

125-855 ms
391-2062 ms
885-3194 1ns

34-286 ms
172-947 ms
768-4186 ms
1922-4982 s

73-158 ms

89-215 ms

108-282 ms
212-1060 ms

Table 2: Latency. Percentiles 75% and 95%

Network bottleneck: -The network was not able to process higher workloads.

Incremental checkpointing with RocksDB:

In the tested scenario, incremental checkpointing was a drawback for performance.

Future work:

Evaluate the performance with multiple queries deployed at the same time.
Evaluate overhead of the new exactly once end-to-end protocols.
Compare with other frameworks.
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