
Valerio Vianello, Marta Patiño-Martínez, Ainhoa Azqueta-Alzúaz
{vvianello,mpatino,aazqueta}@fi.upm.es

Universidad Politécnica de Madrid, Madrid, Spain.

Ricardo Jimenez-Péris
rjimenez@leanxcale.com

LeanXcale

 Introduction.

 Flink Architecture.

 Fault Tolerance in Flink.

 Performance Evaluation.

 Conclusions and Future work.

28/08/2018Torino, Auto-DASP Workshop 2

 Apache Flink is an open source platform for scalable stream processing.

 A Flink program transforms incoming data streams and returns results through sinks
that can write to different destinations.

• It partitions input

streams by some key.

• It distributes

computation across

multiple instances.

• Each instance is

responsible for some

key range

28/08/2018Torino, Auto-DASP Workshop 3

 JobManager: master of a Flink cluster, it is
in charge of coordinating the distributed
execution.

 TaskManager: runs topologies (or part of
them) and manages the data exchange
using streams.

 Task slots are used to split and isolate
TaskManager dedicated memory for
different topologies.

28/08/2018Torino, Auto-DASP Workshop 4

 Stateless: each event is processed independently.

 Ex: Filtering, Projection..

 Stateful: operators store data across the processing of individual events.

 Ex: Aggregation, Joins..

 Operator state:

 Each operator instance holds a part of the whole state.

 Managed State: data structure controlled by Flink.

 Raw State: user data structures.

 State is made fault tolerant by using checkpointing mechanism.

28/08/2018Torino, Auto-DASP Workshop 5

 Burrier tuple: separates records in a
data stream into sets.

 A snapshot (serialized state) of an operator is taken when a barrier tuple is received
from all its input streams.

 Then, the operator sends the barrier in all its outgoing streams.

 When a sink receives barrier ‘n’ from all its incoming streams, it informs the snapshot
coordinator.

 When the coordinator receives this message from all the sinks in the topology, the n-th
snapshot is completed.

28/08/2018Torino, Auto-DASP Workshop 6

 Mechanism to consistently recover the state of data streaming applications.

 Flink continuously draws snapshots of the distributed streaming data flow.

 In case of a program failure:

 Flink stops the distributed streaming dataflow.

 Then, it restarts the operators and resets them to the latest successful checkpoint.

 The input streams are reset to the point of the state snapshot.

 Any records that are processed as part of the restarted parallel dataflow are guaranteed not
to have been part of the previously checkpointed state.

28/08/2018Torino, Auto-DASP Workshop 7

 state.backend:

 MemoryStateBackend

 Data are stored in the JAVA heap space available in the JobManager process.

 FsStateBackend

 Data are stored as files. Filesystem must be accessible by each and any component => HDFS

 RocksDBStateBackend

 Holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data
directories. Upon checkpointing, the whole RocksDB database will be checkpointed into the
configured file system and directory.

 state.backend.incremental: only a diff from the previous checkpoint is stored.

 state.checkpoints.num-retained: maximum number of completed checkpoints to retain.

 Minimum time between checkpoints: define checkpoint interval.

28/08/2018Torino, Auto-DASP Workshop 8

 Goal:

 Evaluate the overhead that fault-tolerance introduces in Flink regular processing and the cost
of recovery.

 Benchmark

 Intel HiBench suite.

 Tested:

 Distributed tested with 6 powerful machines.

 Fault Injection:

 Execute command to kill one TaskManager.

 Parameters:

 State size, input load, state backend.

28/08/2018Torino, Auto-DASP Workshop 9

 Intel HiBench Suite.

 Fix-window micro-benchmark

 The workload performs a window based aggregation. It tests the performance of window
operation in the streaming frameworks.

 Load is generated by multiple instances of the benchmark executed in parallel.

28/08/2018Torino, Auto-DASP Workshop 10

 6 homogeneous nodes. Each node:

 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores each 24 virtual cores

 128 GB RAM divided into 8 slots.

 Disk: SSD Intel SD3510 480GB.

 Network: 1Gbit Ethernet.

 Software versions:

 Flink 1.4.2

 Intel HiBench 7.0

 Kafka 2.10-0.8.2.2

 Hadoop 2.6.5

 Zookeeper 3.4.8.

28/08/2018Torino, Auto-DASP Workshop 11

Clients

Kafka

Flink

Hadoop

Zookeeper

 Benchmark: from 2 to 5 instances.

 Kafka Cluster: 12 brokers

 Flink Cluster: 24 TaskManagers with 2
slots each 48 task slots.

28/08/2018Torino, Auto-DASP Workshop 12

28/08/2018Torino, Auto-DASP Workshop 13

Very low latency (<200ms)

with any load

28/08/2018Torino, Auto-DASP Workshop 14

The system is always able

to process the workload

showing peak in latency (>10s)

with highest workloads

28/08/2018Torino, Auto-DASP Workshop 15

The system takes from

90 to 170 secs to recover in

the first 3 workloads.

With the highest workload

it is not able to recover during the

experiment evaluation.

28/08/2018Torino, Auto-DASP Workshop 16

• With checkpointing

enabled, the system

consumes much more

recourses.

• With the highest workload

(500k t/s) it would need

more resources to process

the pending load in order

to recover.

28/08/2018Torino, Auto-DASP Workshop 17

No

CP

State size has a strong impact

on the latency as expected.

28/08/2018Torino, Auto-DASP Workshop 18

 In presence of failures the system is able to recover quickly if it has enough available
resources.

 Latency:

 Network bottleneck: -The network was not able to process higher workloads.

 Incremental checkpointing with RocksDB:
 In the tested scenario, incremental checkpointing was a drawback for performance.

 Future work:
 Evaluate the performance with multiple queries deployed at the same time.

 Evaluate overhead of the new exactly once end-to-end protocols.

 Compare with other frameworks.

28/08/2018Torino, Auto-DASP Workshop 19

