of Fault-tolerance on
stream Processing

Cost
D at

Valerio Vianello, Marta Patiiio-Martinez, Ainhoa Azqueta-Alztuaz
{vvianello,mpatino,aazqueta}@fi.upm.es
Universidad Politécnica de Madrid, Madrid, Spain.

Ricardo Jimenez-Péris
rjimenez@leanxcale.com
LeanXcale

Outline

= Introduction.

= Flink Architecture.

= Fault Tolerance in Flink.
= Performance Evaluation.

= Conclusions and Future work.

Torino, Auto-DASP Workshop

/4
28/08/2018 @
\//

Introduction

= Apache Flink is an open source platform for scalable stream processing.

= A Flink program transforms incoming data streams and returns results through sinks
that can write to different destinations.

Source

= = = It partitions input
= = — streams by some key.

/‘// e |t dIStrIbuteS Transformation

Computation —_—
Computation =

o computation across
WA WA multiple instances. ﬁs
o= == = . Eachinstance is
F F A responsible for some
a a 2 key range
Torino, Auto-DASP Workshop 28/08/2018

Flink Architecture

(Worker) {Warker)
= JobManager: master of a Flink cluster, it is Taskianager TaskManager
In charge of coordinating the distributed = B B Tk | Tok || Tosk
execution.

‘ Memery & 1'0 Manager ‘ | Memory & I/O Manager |

= TaskManager: runs topologies (or part of [e Harmger ooy Newwt e |
them) and manages the data exchange e [tcoronpem W 1| =

- Task Sts
using streams. - NN semtbents |
", f /Deplay/Stop/
F'rog ram A '\“ \\ Stabistics ;,-' :,ﬂ' Cancel Tasks

- Task slots are used to split and isolate o e R N\ s =%

TaskManager dedicated memory for i T e [sobanagat\

different topologies. (end o) canci7

Datafiow Graph

(Master / VARN Applicstion Master)

/4
Torino, Auto-DASP Workshop 28/08/2018 ;@,;
\.//

Computation Blocks

Stateless: each event is processed independently.
Ex: Filtering, Projection..

Stateful: operators store data across the processing of individual events.
Ex: Aggregation, Joins..

Operator state:
Each operator instance holds a part of the whole state.

Managed State: data structure controlled by Flink.
Raw State: user data structures.

State is made fault tolerant by using checkpointing mechanism.

Torino, Auto-DASP Workshop

28/08/2018

State Checkpointing

data stream

= newer records older reconds =—
Burrier tuple: separates records in a » I \ 0
data stream into sets. checkpoint checkpoint stream record
barrier n barrier n-1 fevent)
part of part of part of
checkpoint n+1 checkpoint o checkpoint n-1

A snapshot (serialized state) of an operator is taken when a barrier tuple is received
from all its input streams.

Then, the operator sends the barrier in all its outgoing streams.

When a sink receives barrier ‘n’ from all its incoming streams, it informs the snapshot
coordinator.

When the coordinator receives this message from all the sinks in the topology, the n-th
snapshot is completed.

Torino, Auto-DASP Workshop 28/08/2018 {

folerance

Fault

Mechanism to consistently recover the state of data streaming applications.
Flink continuously draws snapshots of the distributed streaming data flow.

In case of a program failure:
Flink stops the distributed streaming dataflow.
Then, it restarts the operators and resets them to the latest successful checkpoint.

The input streams are reset to the point of the state snapshot.

Any records that are processed as part of the restarted parallel dataflow are guaranteed not
to have been part of the previously checkpointed state.

Torino, Auto-DASP Workshop 28/08/2018

FT Settings

state.backend:
MemoryStateBackend
Data are stored in the JAVA heap space available in the JobManager process.
FsStateBackend
Data are stored as files. Filesystem must be accessible by each and any component => HDFS
RocksDBStateBackend

Holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data
directories. Upon checkpointing, the whole RocksDB database will be checkpointed into the
configured file system and directory.

state.backend.incremental: only a diff from the previous checkpoint is stored.
state.checkpoints.num-retained: maximum number of completed checkpoints to retain.

Minimum time between checkpoints: define checkpoint interval.
o

/4

Torino, Auto-DASP Workshop 28/08/2018

.
!! ;:,¢§:!

\\

A

Performance Evaluation

Goal:

Evaluate the overhead that fault-tolerance introduces in Flink regular processing and the cost
of recovery.

Benchmark
Intel HiBench suite.

Tested:
Distributed tested with 6 powerful machines.

Fault Injection:
Execute command to kill one TaskManager.

Parameters:
State size, input load, state backend.

Torino, Auto-DASP Workshop 28/08/2018

(@ >
\ﬁﬁ/)

Benchmark

= |ntel HiBench Suite.

= Fix-window micro-benchmark
= The workload performs a window based aggregation. It tests the performance of window

operation in the streaming frameworks.

= Load is generated by multiple instances of the benchmark executed in parallel.

Kafka Source

Torino, Auto-DASP Workshop 28/08/2018 @

Testbed

= 6 homogeneous nodes. Each node:
= 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores each = 24 virtual cores
= 128 GB RAM divided into 8 slots.
= Disk: SSD Intel SD3510 480GB.
= Network: 1Gbit Ethernet.

= Software versions:

= Flink 1.4.2 <= —
Intel HiBench 7.0 CK o >
Kafka 2.10-0.8.2.2 atka
Hadoop 2.6.5

Zookeeper 3.4.8. { }

/4

/4
Torino, Auto-DASP Workshop 28/08/2018 1@
\/

Deployment

= Benchmark: from 2 to 5 instances.
= Kafka Cluster: 12 brokers

= Flink Cluster: 24 TaskManagers with 2
slots each =» 48 task slots.

Torino, Auto-DASP Workshop

Nodel
HiBench

HiBench

Flink JobManager §4
Zookeeper
HDFS

Node3
Kafka Broker 1

Kafka Broker 6

Node4
Kafka Broker 7

Kafka Broker 12

Node5
Flink TaskManagerl

Flink TaskManager12

Nodeb

Flink TaskManager13

Flink TaskManager24

28/08/2018 @

Evalua

tion Configuration

Input Load (r/sec)| Window Size Checkpointing |Fault Injection
200k - 500k 50 Records No No
200k - 500k 30 to 50 Records HDEFE'S No
200k - 500k 30 to 50 Records HDEFE'S Yes
200k - 500k 50 Records |HDFS + RocksDB No
200k - 500k 50 Records |HDFS + RocksDB Yes

Table 1: Experiments configurations.

!
Torino, Auto-DASP Workshop 28/08/2018 ;@

Results: check

120000 100000
100000 S0
soece 50000
s00c0 ;’*’\ _deoneo
20000 . %,»’ .
2000 ey 4 300
1600 Thioughgul
1600 00
1400
: 1200 2 &0
Pl
j o w g
00 =
e - .-
200 o
ol i e L
o £ 100 150 250 30 ase 400

Time 5]

g

STREEEEETR LT

g g
Throughput fevertstsecan]

(c) Input load: 400,000 records/second

Torino, Auto-DASP Workshop

pointing dis

Latency fns]

- HEEE

Laiency fme]

100000
20000
8000
40000
20000

2000
1600
1E00

400
1200

1000

X
&

*

P4

x 3

H

Lawrcy -
Thioughput

B

i
I

Y

A ’

%

Laterey
Thraughput

'8
#

Time [3]

+ A ot
; E do ook e T
100 150 200 250 e 35 00 450

100000

(d) Input load: 500,000 records/second

Throughpus fevemssecond]

i
i

abled - w50

Very low latency (<200ms)
with any load

28/08/2018

Results: checkpointing on HPFS - w50

120000
100060 80000 0000
m o000 m % e fooca
e * Sl i S
1660 B A 1660 g
1660 o5 00 1660
40 400
g 1200 &00 g g 1200 t ;
T 1m0 T 1m0
i “ g R X %
- ¥ P . o g 5
200 + 20 B + dot R N :
uulmL 50 100 150 200 50 300 3= 4 ”?“‘ wwfm m*zm W e 50 aco e S Stem IS awa' S a' e
Tire [5] Tima (5]

to process the workload
(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second showing peak in latency (>10s)

. - . with highest workloads
129000 5 10000 120000
130000 0000 100000 y
e : oo peoes < x % %
w00 e X 2K 3 sonco P % .
20000 ¥ ¥ {' {\-H_ \i_‘_ 20000 20000 e -H_ % I M _H-
2000 1000 2000 + 4
1620 Ill Tk teco f I """u‘éﬁ :
1600 & '_l v 800 1600 |
T F s P T - N e T
g wo | ; T | g wo . + ¥ W+ ‘
B oo — : " I:—'I. w 3 Eow N | +1 +|I x t
O L+ } gt } |' : P s0 o . % e + + +
a0 ; } gt t F oy ﬁ++ w £ 400 i t T oy Tty H
ot :) e il G, A 200 L i * Ty %
3V = e = e L s S, s g BAR e o idw |
o 50 100 150 200 250 30 asn aog 450 o 50 100 150 200 250 30 350 00 450 S0
Tirne [5] Tirne [5]

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Torino, Auto-DASP Workshop 28/08/2018

Results: fault injection — w50

= " = B o ™ =
= = Ao = "
E S g Pl The system takes from
- | | STREE - s : . 90 to 170 secs to recover in
“ - i i Lasies 2) b - lL:'- N SANE . ot Stk 5 1
il o A T the first 3 workloads.

With the highest workload
(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second A <o =00 on S during the

o - = g experiment evaluation.
199000 . 20000 iagnco ’ Bt | y
= s Y = E | |
o IS g ol o
o e b e b4
2000 } Ly] 1090 2000 y
1BC0 Thraughput 1B00 Il
1aco + 1400 ¥
£ "y w0 E oo o
& 10co 5 & 1000 i
L i Pla g § ow o 3
o e f g =0 T g
a0 - - 200 = a0 200 £
= = + b
Tl gl ¥ R - TE f B g o
[50 100 150 00 250 300] 80 100 150 200 250 300 350 00 450 500

Time [5] Time 5]

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Torino, Auto-DASP Workshop 28/08/2018

CPU Utilization

blade153 CPU usage %usr

bladel53 CPU usage %usr

| \)) W a
I

« With checkpointing |
enabled, the system
consumes much more
recourses.

de CPU usage %usr

rL P

* With the highest workload
(500k t/s) it would need
more resources to process
the pending load in order
to recover.

W"e@\

a |

Torino, Auto-DASP Workshop 28/08/2018 @

gP Latencyml State size

8000 8000
oo oo
4000 atco
2060 2000
2000 2000
1660 oot 1600
1600 Lo 1600
1400 L1400

g 1200 E 1200

7 100 7 1o

g s g o

e
a0
200

o

State size has a strong impact
on the latency as expected.

(a) Input load: 200,000 records/second (b) Input load:

10060 10060
8000 5000
H000 000
4000 aco
2060 # 2000
awea Q’ e ey aea
1620 o Latencyd0 1600
1600 . Lat=ncy=0 T 1600

4 Host
1400 3 T _1" " 1400

T 1o ¥ . E 1o

& 160 o U]

] K s £ e =z

5 50 o e S 5 &0

ey a0
i i 0
o

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Torino, Auto-DASP Workshop 28/08/2018

Conclusion

window size 30

Future Work

In presence of failures the system is able to recover quickly if it has enough available

window size 40

window size 50

window size 50 no chekpointing

resources. Input Load (r/sec)
Latency: oL

300k

400k

500k

25-113 ms

60-279 ms

127-622 ms
681-2499 ms

32-281 ms

125-855 ms
391-2062 ms
885-3194 1ns

34-286 ms
172-947 ms
768-4186 ms
1922-4982 s

73-158 ms

89-215 ms

108-282 ms
212-1060 ms

Table 2: Latency. Percentiles 75% and 95%

Network bottleneck: -The network was not able to process higher workloads.

Incremental checkpointing with RocksDB:

In the tested scenario, incremental checkpointing was a drawback for performance.

Future work:

Evaluate the performance with multiple queries deployed at the same time.
Evaluate overhead of the new exactly once end-to-end protocols.
Compare with other frameworks.

Torino, Auto-DASP Workshop

28/08/2018

