
Valerio Vianello, Marta Patiño-Martínez, Ainhoa Azqueta-Alzúaz
{vvianello,mpatino,aazqueta}@fi.upm.es

Universidad Politécnica de Madrid, Madrid, Spain.

Ricardo Jimenez-Péris
rjimenez@leanxcale.com

LeanXcale

 Introduction.

 Flink Architecture.

 Fault Tolerance in Flink.

 Performance Evaluation.

 Conclusions and Future work.

28/08/2018Torino, Auto-DASP Workshop 2

 Apache Flink is an open source platform for scalable stream processing.

 A Flink program transforms incoming data streams and returns results through sinks
that can write to different destinations.

• It partitions input

streams by some key.

• It distributes

computation across

multiple instances.

• Each instance is

responsible for some

key range

28/08/2018Torino, Auto-DASP Workshop 3

 JobManager: master of a Flink cluster, it is
in charge of coordinating the distributed
execution.

 TaskManager: runs topologies (or part of
them) and manages the data exchange
using streams.

 Task slots are used to split and isolate
TaskManager dedicated memory for
different topologies.

28/08/2018Torino, Auto-DASP Workshop 4

 Stateless: each event is processed independently.

 Ex: Filtering, Projection..

 Stateful: operators store data across the processing of individual events.

 Ex: Aggregation, Joins..

 Operator state:

 Each operator instance holds a part of the whole state.

 Managed State: data structure controlled by Flink.

 Raw State: user data structures.

 State is made fault tolerant by using checkpointing mechanism.

28/08/2018Torino, Auto-DASP Workshop 5

 Burrier tuple: separates records in a
data stream into sets.

 A snapshot (serialized state) of an operator is taken when a barrier tuple is received
from all its input streams.

 Then, the operator sends the barrier in all its outgoing streams.

 When a sink receives barrier ‘n’ from all its incoming streams, it informs the snapshot
coordinator.

 When the coordinator receives this message from all the sinks in the topology, the n-th
snapshot is completed.

28/08/2018Torino, Auto-DASP Workshop 6

 Mechanism to consistently recover the state of data streaming applications.

 Flink continuously draws snapshots of the distributed streaming data flow.

 In case of a program failure:

 Flink stops the distributed streaming dataflow.

 Then, it restarts the operators and resets them to the latest successful checkpoint.

 The input streams are reset to the point of the state snapshot.

 Any records that are processed as part of the restarted parallel dataflow are guaranteed not
to have been part of the previously checkpointed state.

28/08/2018Torino, Auto-DASP Workshop 7

 state.backend:

 MemoryStateBackend

 Data are stored in the JAVA heap space available in the JobManager process.

 FsStateBackend

 Data are stored as files. Filesystem must be accessible by each and any component => HDFS

 RocksDBStateBackend

 Holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data
directories. Upon checkpointing, the whole RocksDB database will be checkpointed into the
configured file system and directory.

 state.backend.incremental: only a diff from the previous checkpoint is stored.

 state.checkpoints.num-retained: maximum number of completed checkpoints to retain.

 Minimum time between checkpoints: define checkpoint interval.

28/08/2018Torino, Auto-DASP Workshop 8

 Goal:

 Evaluate the overhead that fault-tolerance introduces in Flink regular processing and the cost
of recovery.

 Benchmark

 Intel HiBench suite.

 Tested:

 Distributed tested with 6 powerful machines.

 Fault Injection:

 Execute command to kill one TaskManager.

 Parameters:

 State size, input load, state backend.

28/08/2018Torino, Auto-DASP Workshop 9

 Intel HiBench Suite.

 Fix-window micro-benchmark

 The workload performs a window based aggregation. It tests the performance of window
operation in the streaming frameworks.

 Load is generated by multiple instances of the benchmark executed in parallel.

28/08/2018Torino, Auto-DASP Workshop 10

 6 homogeneous nodes. Each node:

 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores each  24 virtual cores

 128 GB RAM divided into 8 slots.

 Disk: SSD Intel SD3510 480GB.

 Network: 1Gbit Ethernet.

 Software versions:

 Flink 1.4.2

 Intel HiBench 7.0

 Kafka 2.10-0.8.2.2

 Hadoop 2.6.5

 Zookeeper 3.4.8.

28/08/2018Torino, Auto-DASP Workshop 11

Clients

Kafka

Flink

Hadoop

Zookeeper

 Benchmark: from 2 to 5 instances.

 Kafka Cluster: 12 brokers

 Flink Cluster: 24 TaskManagers with 2
slots each  48 task slots.

28/08/2018Torino, Auto-DASP Workshop 12

28/08/2018Torino, Auto-DASP Workshop 13

Very low latency (<200ms)

with any load

28/08/2018Torino, Auto-DASP Workshop 14

The system is always able

to process the workload

showing peak in latency (>10s)

with highest workloads

28/08/2018Torino, Auto-DASP Workshop 15

The system takes from

90 to 170 secs to recover in

the first 3 workloads.

With the highest workload

it is not able to recover during the

experiment evaluation.

28/08/2018Torino, Auto-DASP Workshop 16

• With checkpointing

enabled, the system

consumes much more

recourses.

• With the highest workload

(500k t/s) it would need

more resources to process

the pending load in order

to recover.

28/08/2018Torino, Auto-DASP Workshop 17

No

CP

State size has a strong impact

on the latency as expected.

28/08/2018Torino, Auto-DASP Workshop 18

 In presence of failures the system is able to recover quickly if it has enough available
resources.

 Latency:

 Network bottleneck: -The network was not able to process higher workloads.

 Incremental checkpointing with RocksDB:
 In the tested scenario, incremental checkpointing was a drawback for performance.

 Future work:
 Evaluate the performance with multiple queries deployed at the same time.

 Evaluate overhead of the new exactly once end-to-end protocols.

 Compare with other frameworks.

28/08/2018Torino, Auto-DASP Workshop 19

