Cost of Fault-tolerance on Data Stream Processing

Valerio Vianello, Marta Patiño-Martínez, Ainhoa Azqueta-Alzúaz
{vvianello,mpatino,aazqueta}@fi.upm.es
Universidad Politécnica de Madrid, Madrid, Spain.

Ricardo Jimenez-Péris
rjimenez@leanxcale.com
LeanXcale
Outline

- Introduction.
- Flink Architecture.
- Fault Tolerance in Flink.
- Performance Evaluation.
- Conclusions and Future work.
Introduction

- Apache Flink is an open source platform for scalable stream processing.
- A Flink program transforms incoming data streams and returns results through sinks that can write to different destinations.

- It partitions input streams by some key.
- It distributes computation across multiple instances.
- Each instance is responsible for some key range.
Flink Architecture

- **JobManager**: master of a Flink cluster, it is in charge of coordinating the distributed execution.
- **TaskManager**: runs topologies (or part of them) and manages the data exchange using streams.
- **Task slots**: are used to split and isolate TaskManager dedicated memory for different topologies.
Computation Blocks

- Stateless: each event is processed independently.
 - Ex: Filtering, Projection..

- Stateful: operators store data across the processing of individual events.
 - Ex: Aggregation, Joins..

- Operator state:
 - Each operator instance holds a part of the whole state.
 - Managed State: data structure controlled by Flink.
 - Raw State: user data structures.

- State is made fault tolerant by using checkpointing mechanism.
State Checkpointing

- Burrier tuple: separates records in a data stream into sets.

- A snapshot (serialized state) of an operator is taken when a barrier tuple is received from all its input streams.

- Then, the operator sends the barrier in all its outgoing streams.

- When a sink receives barrier ‘n’ from all its incoming streams, it informs the snapshot coordinator.

- When the coordinator receives this message from all the sinks in the topology, the n-th snapshot is completed.
Fault Tolerance

- Mechanism to consistently recover the state of data streaming applications.
- Flink continuously draws snapshots of the distributed streaming data flow.
- In case of a program failure:
 - Flink stops the distributed streaming dataflow.
 - Then, it restarts the operators and resets them to the latest successful checkpoint.
 - The input streams are reset to the point of the state snapshot.
 - Any records that are processed as part of the restarted parallel dataflow are guaranteed not to have been part of the previously checkpointed state.
FT Settings

- state.backend:
 - MemoryStateBackend
 - Data are stored in the JAVA heap space available in the JobManager process.
 - FsStateBackend
 - Data are stored as files. Filesystem must be accessible by each and any component => HDFS
 - RocksDBStateBackend
 - Holds in-flight data in a RocksDB database that is (per default) stored in the TaskManager data directories. Upon checkpointing, the whole RocksDB database will be checkpointed into the configured file system and directory.

- state.backend.incremental: only a diff from the previous checkpoint is stored.
- state.checkpoints.num-retained: maximum number of completed checkpoints to retain.
- Minimum time between checkpoints: define checkpoint interval.
Performance Evaluation

- **Goal:**
 - Evaluate the overhead that fault-tolerance introduces in Flink regular processing and the cost of recovery.

- **Benchmark**
 - Intel HiBench suite.

- **Tested:**
 - Distributed tested with 6 powerful machines.

- **Fault Injection:**
 - Execute command to kill one TaskManager.

- **Parameters:**
 - State size, input load, state backend.
Benchmark

- Intel HiBench Suite.
- Fix-window micro-benchmark
 - The workload performs a window based aggregation. It tests the performance of window operation in the streaming frameworks.

- Load is generated by multiple instances of the benchmark executed in parallel.
Testbed

- 6 homogeneous nodes. Each node:
 - 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores each \rightarrow 24 virtual cores
 - 128 GB RAM divided into 8 slots.
 - Disk: SSD Intel SD3510 480GB.
 - Network: 1Gbit Ethernet.

- Software versions:
 - Flink 1.4.2
 - Intel HiBench 7.0
 - Kafka 2.10-0.8.2.2
 - Hadoop 2.6.5
 - Zookeeper 3.4.8.
Deployment

- Benchmark: from 2 to 5 instances.
- Kafka Cluster: 12 brokers
- Flink Cluster: 24 TaskManagers with 2 slots each ➔ 48 task slots.
Evaluation Configuration

<table>
<thead>
<tr>
<th>Input Load (r/sec)</th>
<th>Window Size</th>
<th>Checkpointing</th>
<th>Fault Injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>200k - 500k</td>
<td>50 Records</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>200k - 500k</td>
<td>30 to 50 Records</td>
<td>HDFS</td>
<td>No</td>
</tr>
<tr>
<td>200k - 500k</td>
<td>30 to 50 Records</td>
<td>HDFS</td>
<td>Yes</td>
</tr>
<tr>
<td>200k - 500k</td>
<td>50 Records</td>
<td>HDFS + RocksDB</td>
<td>No</td>
</tr>
<tr>
<td>200k - 500k</td>
<td>50 Records</td>
<td>HDFS + RocksDB</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 1: Experiments configurations.
Results: checkpointing disabled – w50

Very low latency (<200ms) with any load

(a) Input load: 200,000 records/second
(b) Input load: 300,000 records/second
(c) Input load: 400,000 records/second
(d) Input load: 500,000 records/second

Torino, Auto-DASP Workshop
Results: checkpointing on HDFS – w50

(a) Input load: 200,000 records/second

(b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second

(d) Input load: 500,000 records/second

The system is always able to process the workload showing peak in latency (>10s) with highest workloads
The system takes from 90 to 170 secs to recover in the first 3 workloads. With the highest workload it is not able to recover during the experiment evaluation.
CPU Utilization

- With checkpointing enabled, the system consumes much more resources.

- With the highest workload (500k t/s) it would need more resources to process the pending load in order to recover.
State size has a strong impact on the latency as expected.

(a) Input load: 200,000 records/second
(b) Input load: 300,000 records/second
(c) Input load: 400,000 records/second
(d) Input load: 500,000 records/second
Conclusion & Future Work

- In presence of failures the system is able to recover quickly if it has enough available resources.
- Latency:
 - Network bottleneck: The network was not able to process higher workloads.
 - Incremental checkpointing with RocksDB:
 - In the tested scenario, incremental checkpointing was a drawback for performance.
- Future work:
 - Evaluate the performance with multiple queries deployed at the same time.
 - Evaluate overhead of the new exactly once end-to-end protocols.
 - Compare with other frameworks.