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Stream Processing

Stream processing is the process of being able to quickly produce some
results in real time.

The stock market

Security (marine, aerial, ...)

Bank transactions

Weather forecasts
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Context: Autoscaling In Stream Processing

Bottleneck Slow!

Slow!

Slow!
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Introduction

Context: Autoscaling In Stream Processing

Physical resources

Maintain dynamically the right num-
ber of replicas for each operator
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Physical resources

Deletion method
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Introduction

Context: Autoscaling In Stream Processing

Physical resources

The elasticity should be autonomous and without interruption.
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Introduction

State Of The Art

State of the art of AutoScaling in SP

Static approach [Scott Schneider et al. 2012]

Dynamic approach

Centralised [Bugra Gedik et al. 2014]
Hierarchical [Cardellini et al. 2018]
Decentralised [Nicolò M. et al. 2012]

Our contribution

Fully decentralised

Local scaling decision

Maintain the view of the neighbours in concurrent settings
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System Model

System Model

Infrastructure

Unbounded set of reliable homogeneous computation nodes: either
physical or VMs

Reliable FIFO channels

Application

Stream processing applications (directed pipeline)

Operators are stateless

Each node hosts one operator

Each operator knows only its successors and predecessors in the graph
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Algorithm

SASO Properties

1 Stability
→ does not oscillate number of instances

2 Accuracy
→ finds the number of instances that maximizes the throughput

3 Settling time
→ reaches a stable number of instances quickly

4 Overshoot
→ does not use more instances than necessary
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Algorithm

Local Decision

Each node has its own elastic manager
→ taking decision with local information
→ local graph’s knowledge should be the same in all sibling nodes

These local decisions are set up through probabilistic duplications and
deletions
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Algorithm Scaling Decision

Scaling Decision (1)

Local decision and with local information

Constant parameters

C : node’s capacity

Lsh: desired load’s ratio

variable

nt : number of current instances

lt : current load
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Algorithm Scaling Decision

Scaling Decision (2)
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Algorithm Scaling Decision

Scaling Decision (2)

Algorithm 1 getProbability(C , r , lt , nt) : float

Require: C : Processing capacity
Require: r : Target load ratio
Require: lt : current OI’s load
Require: nt : current number of siblings

Lt ← lt × nt

ndiff ← | Lt
r×C − nt |

Return ndiff
nt
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Algorithm Scaling Decision

Scaling Decision (2)

Algorithm 2 getProbability(C , r , lt , nt) : float

Require: C : Processing capacity
Require: r : Target load ratio
Require: lt : current OI’s load
Require: nt : current number of siblings

Lt ← lt × nt

ndiff ← | Lt
r×C − nt |

Return ndiff
nt
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Algorithm Protocol & Synchronization

Protocol

Objectif

Maintain consistent views of neighbours as concurrent scaling actions are
triggered so no data message is lost

Three phases in the duplication case and two phases in deletion case

send a scaling message

send back an acknowledge messages

send an activation message (in duplication case)
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Algorithm Protocol & Synchronization

Concurrency Issues

What if we had concurrent duplication and/or deletion?

A destroyed or new node could not be recognized by their predecessors
→ data loss
→ inactive nodes in the cluster

N1

succ: N2

S

N4

N2
loss data

data

data
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Algorithm Protocol & Synchronization

Protocol Steps

Step 1

send a duplication message

N1 N2 N3

N4

N5

send(“duplication”,<addrs>

inactive nodes

On Receipt

upon receipt of (“duplication”, < addrs >) from N2
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Algorithm Protocol & Synchronization

Protocol Steps

Step 2

send back an acknowledge messages

N1 N2 N3

N4

N5

send(“duplication_ack”)

receive data but still inactive

On Receipt

upon receipt of (“duplication ack”) from N1 and N3
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Algorithm Protocol & Synchronization

Protocol Steps

Step 3

send an activation message

N1 N2 N3

N4

N5
receive data but still inactive

send(“start”,<preds,succs>)

On Receipt

upon receipt of (“start”, < succs, preds >) from N2
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Algorithm Protocol & Synchronization

Protocol Steps

N1 N2 N3

N4

N5

nodes are activated

upon receipt of (”start”, < succs, preds >) 

New nodes are active and can process data
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Simulation

Simulation Objectives & Setup

Simulation objectives

Check message synchronization

Estimate overhead messages sent in the network

Estimate efficiency of the nodes’ auto-scaling

Compare the obtained throughput with the ideal throughput

Simulation setup

Capacity C = 500

Ideal load ratio r = 0.7

top threshold thres↓ = 0.8

down threshold thres↑ = 0.6

Nodes try to start the scaling protocol every 5 steps

Simulation runs for 200 steps.
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Simulation

Simulation Results
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Figure 1: Load and number of nodes, local scale.
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Current & Future Work

Current & Future Work

Experiments

Development of a software prototype of a decentralized SPE

Based on Kafka and Kafka Stream

Currently being deployed over Grid’5000 (a nation-wide experimental
testbed)

Algorithms extension

Fault tolerance

Heterogeneity

Stateful operators
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