
A Fully Decentralized Autoscaling Algorithm
for Stream Processing Applications

Mehdi Belkhiria
Supervised by: Cédric Tedeschi

Univ Rennes, Inria, CNRS, IRISA, Rennes, France

Auto-DaSP 2019 - Göttingen - August 27, 2019

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 1 / 22

Stream Processing

Stream processing is the process of being able to quickly produce some
results in real time.

The stock market

Security (marine, aerial, ...)

Bank transactions

Weather forecasts

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 2 / 22

Introduction

Context: Autoscaling In Stream Processing

filter

filter filter

filtermap

map

sinkproducer

data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Bottleneck

data

producer

map

filter

filter

filter

filtermap

sink

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Bottleneck Slow!

Slow!

Slow!

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

Maintain dynamically the right num-
ber of replicas for each operator

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

Fission method
Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

Deletion method
Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

Context: Autoscaling In Stream Processing

Physical resources

The elasticity should be autonomous and without interruption.

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 3 / 22

Introduction

State Of The Art

State of the art of AutoScaling in SP

Static approach [Scott Schneider et al. 2012]

Dynamic approach

Centralised [Bugra Gedik et al. 2014]
Hierarchical [Cardellini et al. 2018]
Decentralised [Nicolò M. et al. 2012]

Our contribution

Fully decentralised

Local scaling decision

Maintain the view of the neighbours in concurrent settings

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 4 / 22

Introduction

Table of Contents

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 5 / 22

System Model

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 6 / 22

System Model

System Model

Infrastructure

Unbounded set of reliable homogeneous computation nodes: either
physical or VMs

Reliable FIFO channels

Application

Stream processing applications (directed pipeline)

Operators are stateless

Each node hosts one operator

Each operator knows only its successors and predecessors in the graph

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 7 / 22

Algorithm

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 8 / 22

Algorithm

SASO Properties

1 Stability
→ does not oscillate number of instances

2 Accuracy
→ finds the number of instances that maximizes the throughput

3 Settling time
→ reaches a stable number of instances quickly

4 Overshoot
→ does not use more instances than necessary

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 9 / 22

Algorithm

Local Decision

Each node has its own elastic manager
→ taking decision with local information
→ local graph’s knowledge should be the same in all sibling nodes

These local decisions are set up through probabilistic duplications and
deletions

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 10 / 22

Algorithm Scaling Decision

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 11 / 22

Algorithm Scaling Decision

Scaling Decision (1)

Local decision and with local information

Constant parameters

C : node’s capacity

Lsh: desired load’s ratio

variable

nt : number of current instances

lt : current load

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 12 / 22

Algorithm Scaling Decision

Scaling Decision (2)

s

s
’

s
”

Capacity = 100
current_load = 150
on_buffer = 50

data

data

data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 13 / 22

Algorithm Scaling Decision

Scaling Decision (2)

Algorithm 1 getProbability(C , r , lt , nt) : float

Require: C : Processing capacity
Require: r : Target load ratio
Require: lt : current OI’s load
Require: nt : current number of siblings

Lt ← lt × nt

ndiff ← | Lt
r×C − nt |

Return ndiff
nt

s

s
’

s
”

Capacity = 100
current_load = 150
on_buffer = 50

data

data

data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 13 / 22

Algorithm Scaling Decision

Scaling Decision (2)

Algorithm 2 getProbability(C , r , lt , nt) : float

Require: C : Processing capacity
Require: r : Target load ratio
Require: lt : current OI’s load
Require: nt : current number of siblings

Lt ← lt × nt

ndiff ← | Lt
r×C − nt |

Return ndiff
nt

s

s
’

s
”

450 / 7 = 64.285
load_percent = 64.285 %

data

data

data

s

s
’

s
”

empty

s

data

data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 13 / 22

Algorithm Protocol & Synchronization

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 14 / 22

Algorithm Protocol & Synchronization

Protocol

Objectif

Maintain consistent views of neighbours as concurrent scaling actions are
triggered so no data message is lost

Three phases in the duplication case and two phases in deletion case

send a scaling message

send back an acknowledge messages

send an activation message (in duplication case)

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 15 / 22

Algorithm Protocol & Synchronization

Concurrency Issues

What if we had concurrent duplication and/or deletion?

A destroyed or new node could not be recognized by their predecessors
→ data loss
→ inactive nodes in the cluster

N1

succ: N2

S

N4

N2
loss data

data

data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 16 / 22

Algorithm Protocol & Synchronization

Protocol Steps

Step 1

send a duplication message

N1 N2 N3

N4

N5

send(“duplication”,<addrs>

inactive nodes

On Receipt

upon receipt of (“duplication”, < addrs >) from N2

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 17 / 22

Algorithm Protocol & Synchronization

Protocol Steps

Step 2

send back an acknowledge messages

N1 N2 N3

N4

N5

send(“duplication_ack”)

receive data but still inactive

On Receipt

upon receipt of (“duplication ack”) from N1 and N3

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 17 / 22

Algorithm Protocol & Synchronization

Protocol Steps

Step 3

send an activation message

N1 N2 N3

N4

N5
receive data but still inactive

send(“start”,<preds,succs>)

On Receipt

upon receipt of (“start”, < succs, preds >) from N2

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 17 / 22

Algorithm Protocol & Synchronization

Protocol Steps

N1 N2 N3

N4

N5

nodes are activated

upon receipt of (”start”, < succs, preds >)

New nodes are active and can process data

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 17 / 22

Simulation

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 18 / 22

Simulation

Simulation Objectives & Setup

Simulation objectives

Check message synchronization

Estimate overhead messages sent in the network

Estimate efficiency of the nodes’ auto-scaling

Compare the obtained throughput with the ideal throughput

Simulation setup

Capacity C = 500

Ideal load ratio r = 0.7

top threshold thres↓ = 0.8

down threshold thres↑ = 0.6

Nodes try to start the scaling protocol every 5 steps

Simulation runs for 200 steps.

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 19 / 22

Simulation

Simulation Results

0 25 50 75 100 125 150 175 200
Iteration

1000

2000

3000

4000

5000

Lo
a
d
 (

tu
p

le
s/

it
r)

Load Number of OIs

Figure 1: Load and number of nodes, local scale.

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 20 / 22

Simulation

Simulation Results

0 25 50 75 100 125 150 175 200
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

Ac
cu

ra
cy

Accuracy
20

40

60

80

100

Pe
rc

en
ta

ge
 o

f i
de

al
 th

ro
ug

hp
ut

Throughput

Figure 1: Load and number of nodes, local scale.

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 20 / 22

Simulation

Simulation Results

0 25 50 75 100 125 150 175 200
Iteration

0

2500

5000

7500

10000

12500

15000

17500

20000

Lo
ad

 (t
up

le
s/

itr
)

Load

0

10

20

30

40

50

Nu
m

be
r o

f n
od

es

of nodes

0

100

200

300

400

500

Nu
m

be
r o

f m
es

sa
ge

s

of messages

Figure 1: Load and number of nodes, local scale.

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 20 / 22

Current & Future Work

1 Introduction

2 System Model

3 Algorithm
Scaling Decision
Protocol & Synchronization

4 Simulation

5 Current & Future Work

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 21 / 22

Current & Future Work

Current & Future Work

Experiments

Development of a software prototype of a decentralized SPE

Based on Kafka and Kafka Stream

Currently being deployed over Grid’5000 (a nation-wide experimental
testbed)

Algorithms extension

Fault tolerance

Heterogeneity

Stateful operators

Mehdi Belkhiria (MYRIADS Team) August 27, 2019 22 / 22

	Introduction
	System Model
	Algorithm
	Scaling Decision
	Protocol & Synchronization

	Simulation
	Current & Future Work

