
Minimizing Self-Adaptation Overhead in
Parallel Stream Processing for Multi-Cores

Adriano Vogel1, Dalvan Griebler1, Marco Danelutto2 and Luiz Gustavo
Fernandes1

1 Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
2 Department of Computer Science, University of Pisa (UNIPI), Italy

2019

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Outline

● Introduction
● Overview of SPar
● Problem
● Related Work
● Solution
● Evaluation
● Conclusion
● References

2

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

● Stream Processing Applications [1] [2]

Introduction

3

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

● Challenges
○ Parallel Programming complexities
○ Productivity
○ Programming and system architecture expertises

● High-level parallel programming frameworks
○ Intel Threading Building Blocks (TBB)
○ FastFlow
○ StreamIt

● DSL (Domain-Specific Language)
○ SPar

Introduction

4

Autonomic and Latency-Aware Degree of Parallelism Management in SPar

Overview of SPar

● SPar - a DSL for Stream Parallelism [7]

5

[[spar::ToStream]] while(true){

 item = read();

 [[spar::Stage,spar::Input(item),spar::Output(item),spar::Replicate(N)]]{

 item = filter(item);

 }
 [[spar::Stage,spar::Input(item)]]{

 write(item);

 }
}

ID

AUX

Autonomic and Latency-Aware Degree of Parallelism Management in SPar

Overview of SPar

● SPar - a DSL for Stream Parallelism [10]

6

[[spar::ToStream]] while(true){

 item = read();

 [[spar::Stage,spar::Input(item),spar::Output(item),spar::Replicate(N)]]{

 item = filter(item);

 }
 [[spar::Stage,spar::Input(item)]]{

 write(item);

 }
}

Autonomic and Latency-Aware Degree of Parallelism Management in SPar
7

Overview of SPar
● Self-adaptive parallelism in SPar [2,3]

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Problem

Video App - Lane Detection

8

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Problem

9

Phase Change

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Problem

10

Decision - Add Replicas

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Problem

11

Throughput Fluctuation

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
12

Suboptimal Decision

Problem

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
13

Performance violation

Problem

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
14

Instability

Problem

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
15

Instability

Problem

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Problem

16

Performance losses

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Targets

● Goals:
○ Improve existing abstractions
○ Reduce self-adaptation overhead
○ Improve applications performance

● Contributions:
○ A new optimized strategy for self-adapting the parallelism when the programmer/user sets a

target performance.
○ A comprehensive validation of our solution for parallel programming abstractions

17

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Related Work

18

Work Library/System Environment Objective

De Sensi et al. [4] NORNIR Multi-core Manage throughput and power
consumption

De Matteis et al. [5] FastFlow Multi-core Latency and energy efficiency

Gedik et al. [6] SPL Multi-core High throughput without wasting
computational resources

Selva et al. [8] StreamIt Multi-core Throughput

This work SPar Multi-core Improve self-adaptation for
parallelism abstractions

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Solution

● Increase
○ Stability
○ Performance

● Reduce:
○ Setting times

● Avoid:
○ overshooting

19

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Solution

20

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Solution

21

Decision 1 (D1) increases the number of
replicas.
● Adaptive number of replicas, several

replicas may be added in one step;
● The difference between actual and the

target performance;
● The relation between the performance

gap and the amount of resources
available

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Solution

22

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Solution

23

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Characterization - Lane Detection

24

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
25

Better responsiveness

Characterization - Lane Detection

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
26

Stabler

Characterization - Lane Detection

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores
27

Better performance

Characterization - Lane Detection

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Performance Evaluation

● Multi-core machine
○ 32 GB - 2133 MHz
○ Dual-socket Intel(R) Xeon(R) CPU 2.40GHz (12 cores-24 threads).
○ Ubuntu Server 16.04 OS
○ G++ v. 5.4.0 -O3 flag
○ Ondemand scheduling

● Tested with two applications w.r.t. performance and memory consumption
● Self-adaptivity compared to static executions (fixed number of replicas)

28

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Performance

29

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Performance

30

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Performance

31

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Memory consumption

32

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Conclusion

● Implications
○ Self-adaptivity with a competitive performance
○ Low or no overhead of adaptivity

● Limitations
○ Performance may vary
○ Performance vs resources

● Future Work:
○ Extend this work to consider applications with a more complex structure
○ Use proactive approaches

33

Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

References

[1] Andrade, H.; Gedik, B.; Turaga, D. “Fundamentals of Stream Processing: Application Design, Systems, and Analytics”.
Cambridge University Press, 2014.
[2] A. Vogel, D. Griebler, D. D. Sensi, M. Danelutto, and L. G. Fernandes, “Autonomic and Latency-Aware Degree of Parallelism
Management in SPar,” in Euro-Par 2018:Parallel Processing Workshops. Turin, Italy: Springer, August 2018, p. 12.
[3] D. Griebler, A. Vogel, D. De Sensi, M. Danelutto, and L. G. Fernandes, “Simplifying and implementing service level
objectives for stream parallelism,” The Journal of Supercomputing, Jun 2019.
[4] Sensi, D. D.; Torquati, M.; Danelutto, M. “A reconfiguration algorithm for power-aware parallel applications”, ACM
Transactions on Architecture and Code Optimization (TACO), vol. 13–4, 2016, pp. 43.
[5] De Matteis, T.; Mencagli, G. “Keep calm and react with foresight: strategies for low-latency and energy-efficient elastic
data stream processing”. In: Proceedings of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2016, pp. 13.
[6] Gedik, B.; Schneider, S.; Hirzel, M.; Wu, K.-L. “Elastic scaling for data stream processing”, IEEE Transactions on Parallel
and Distributed Systems, vol. 25–6, 2014, pp. 1447–1463.
[7] Griebler, D. “Domain-Specific Language & Support Tool for High-Level Stream Parallelism”, Ph.D. Thesis, Faculdade de
Informática - PPGCC - PUCRS, Porto Alegre, Brazil, 2016, 243p.
[8] Selva, M.; Morel, L.; Marquet, K.; Frenot, S. “A monitoring system for runtime adaptations of streaming applications”. In:
Parallel, Distributed and Network Based Processing (PDP), 2015 23rd Euromicro International Conference on, 2015, pp.
27–34.

34

Thank you!
E-mail: adriano.vogel@edu.pucrs.br

Marco DaneluttoDalvan GrieblerAdriano Vogel Luiz Gustavo
Fernandes

