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● Stream Processing Applications [1] [2]

Introduction
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● Challenges
○ Parallel Programming complexities
○ Productivity
○ Programming and system architecture expertises

● High-level parallel programming frameworks
○ Intel Threading Building Blocks (TBB)
○ FastFlow
○ StreamIt

● DSL (Domain-Specific Language)
○ SPar

Introduction
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Autonomic and Latency-Aware Degree of Parallelism Management in SPar

Overview of SPar

● SPar - a DSL for Stream Parallelism [7]
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[[spar::ToStream]] while(true){
 
  item = read();
 
  [[spar::Stage,spar::Input(item),spar::Output(item),spar::Replicate(N)]]{

    item = filter(item); 

  }
  [[spar::Stage,spar::Input(item)]]{

    write(item); 

  }
}

ID
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Overview of SPar

● SPar - a DSL for Stream Parallelism [10]
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[[spar::ToStream]] while(true){
 
  item = read();
 
  [[spar::Stage,spar::Input(item),spar::Output(item),spar::Replicate(N)]]{

    item = filter(item); 

  }
  [[spar::Stage,spar::Input(item)]]{
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Overview of SPar
● Self-adaptive parallelism in SPar [2,3]
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Problem

Video App - Lane Detection
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Problem
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Phase Change
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Problem
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Decision - Add Replicas
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Problem
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Throughput Fluctuation
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Suboptimal Decision

Problem
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Performance violation

Problem
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Instability

Problem
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Instability

Problem
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Problem
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Performance losses
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Targets

● Goals:
○ Improve existing abstractions
○ Reduce self-adaptation overhead
○ Improve applications performance

● Contributions:
○ A new optimized strategy for self-adapting the parallelism when the programmer/user sets a 

target performance. 
○ A comprehensive validation of our solution for parallel programming abstractions
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Related Work
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Work Library/System Environment Objective

De Sensi et al. [4] NORNIR Multi-core Manage throughput and power 
consumption

De Matteis et al. [5] FastFlow Multi-core Latency and energy efficiency

Gedik et al. [6] SPL Multi-core High throughput without wasting 
computational resources

Selva et al. [8] StreamIt Multi-core Throughput 

This work SPar Multi-core Improve self-adaptation for 
parallelism abstractions
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Solution

● Increase
○ Stability
○ Performance

● Reduce:
○ Setting times

● Avoid:
○ overshooting
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Solution
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Solution
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Decision 1 (D1)  increases the number  of 
replicas.
● Adaptive number of replicas, several 

replicas may be added in one step;
● The difference between actual and the 

target performance;
● The relation between the performance 

gap and the amount of resources 
available
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Solution
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Solution
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Characterization - Lane Detection
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Better responsiveness

Characterization - Lane Detection
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Stabler

Characterization - Lane Detection
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Better performance

Characterization - Lane Detection
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Performance Evaluation

● Multi-core machine
○ 32 GB - 2133 MHz
○ Dual-socket Intel(R) Xeon(R) CPU 2.40GHz (12 cores-24 threads). 
○ Ubuntu Server 16.04 OS
○ G++ v. 5.4.0 -O3 flag
○ Ondemand scheduling

● Tested with two applications w.r.t. performance and memory consumption
● Self-adaptivity compared to static executions (fixed number of replicas)
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Performance
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Performance
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Performance

31



Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Memory consumption

32



Minimizing Self-Adaptation Overhead in Parallel Stream Processing for Multi-Cores

Conclusion

● Implications
○ Self-adaptivity with a competitive performance
○ Low or no overhead of adaptivity

● Limitations
○ Performance may vary
○ Performance vs resources

● Future Work:
○ Extend this work to consider applications with a more complex structure
○ Use proactive approaches
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