@ FernUniversitét in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
Overview

= motivation

= background

= schedule adaptation

= adaptive schedule selection
= experimental results

= summary

Folie 2 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Motivation

= data stream processing: important computation paradigm for loT

= example: continuous preprocessing of camera or vehicle sensor data
= various device constraints, data must be compressed

= low-power designs: manycores, moderate frequencies

= stream processing application: graph of stream tasks
= read packet of data from input channel
= process data packet
= write packet of data to output channel
= with sufficient buffering capacity: pipeline enables concurrent execution
within round

Folie 3 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE
Motivation

= stream task itself may run in parallel

= static scheduling problem: steady state of pipeline

= throughput requirement imposes deadline constraint on steady state round
= target: minimize energy consumption

= core allocation, mapping, core operating frequency selection

= crown scheduling: all at the same time

= frequency selection: large impact on energy consumption due to small set of
discrete voltage/frequency levels

= approach: provide two schedules: conservative and relaxed

= dynamic control mechanism switches between schedules

Folie 4 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Background: processor and task model

= generic multi/manycore architecture

= each core can be set to any frequency level independently at runtime
= runtime of task scales with frequency (for computational loads)

= each task 7; performs certain amount of work

= tasks can be moldable, partially moldable, sequential, depending on maximum
width W;

= each task is of one of two possible task types tt;: memory-bound,
computation-bound

= each task has individual parallel efficiency function e

Folie 5 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Background: scheduling

= optimization problem:
= core allocation: assign to each task 7; a number of cores w;
= mapping: assign to 7; a core subset R;, where |R;| = w;
= assign to 77 a frequency f;
= all tasks shall complete before the deadline M
= energy consumption is minimized

= average power consumption: micro-benchmarks in Holmbacka & Keller (2015)
= per-core runtime can be computed as

N

ti(w;, 1) = ew) W

= energy consumption for execution of 7;:

E = tJ(VVM f/) “W- P(fja tt/)

Folie 6 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

@) FernUniversitat in Hagen

Background: crown scheduling

uedsaye|\

time :‘—

= structural constraint on core allocation to make joint optimization via ILP
feasible

= core set partition

= map each task to core group, select frequency

= execute tasks in order of non-increasing width

= problem: small number of tasks and/or small number of frequency levels:
negative impact on energy efficiency

Parallelism and VLSI Research Group

Folie 7 27.08.2019
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Schedule adaptation

= conservative schedule: makespan probably lower than deadline, especially for
applications with few tasks

= first minimize energy consumption (result: £%), then minimize makespan for
energy budget £*, result: M*

= relaxed schedule: keep core allocations and mapping for low switching
overhead

= compute smallest makespan M’ when decreasing frequency for a single task
by one level

» compute energy-optimal crown schedule for deadline M’
= alternative: greedy heuristic

Folie 8 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Schedule adaptation: greedy heuristic

= what makes a task attractive for frequency reduction?
= energy reduction:

AE; = t(w;, 1) - P(fy,) — G(wj, fi—1) - P(fi-1, 1))

= several properties:
= number of cores w; used by 7
= type ttj of 7
= current frequency level f;
= workload \; of 7

= cumulative preference score can be computed

= sort tasks in decreasing order of energy reduction or preference score

= greedy algorithm: in that order, lower frequency level by one task-wise, when
execution time exceeds extended deadline, stop

= for negative AE;, do not scale down

= most likely, makespan constraint is violated but energy consumption reduced

Folie 9 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Adaptive schedule selection

= goal: switch between conservative and relaxed schedule s. t. average
throughput is sufficient (1/M)

= if below 1/M — §: switch to conservative schedule
* if above 1/M + §: switch to relaxed schedule
= fraction of rounds oz where conservative schedule is used:

= from E*, M*, E, M, and «, average power consumption can be computed

= control mechanism can be extended to temperature: when too high, switch to
relaxed, regardless of throughput

= can accommodate for further adversities: sunlight exposure, cooling issues

Folie 10 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Experiments

[ILP: min Energy, Makespan < M, result: E*]

Initial Crown Schedule

(P min Makespan, Energy < E*, result: M*

compute o

Conservative Crown Schedule

compute average power

[compute M’ (smallest makespan increase

by single frequency-level reduction) 0 TG

Makespan < M’

(greedy downscaling algorithm)|

Relaxed Crown Schedule (heuristic) Relaxed Crown Schedule (optimal)

= synthetic task sets, n € {2,3,4}

= p=28,forn=3alsop=16,p =32

= for each combination: 10 sets memory-intensive, 10 sets other
* W, = p for feasible schedules under tight deadlines

= tight deadlines for high operating frequencies

= toolchain implemented in Python, for ILPs Gurobi 8.1.0 solver and gurobipy,
execution on AMD Ryzen 7 2700X (8 cores, SMT)

Folie 11 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Experimental results

here: second ILP does not decrease the schedules’ makespan: conservative
schedule determined by first ILP

increasing machine size has no impact on energy consumption (due to
Vj : W; = p) for optimal schedules

heuristic scheduler: only one task set treated differently for varying p

non-memory-intensive task sets: same results for energy reduction and
cumulative preference score

conduct whole set of experiments with 8-core machine and AF; ranking
criterion

interesting: average power consumption for alternating conservative and
relaxed schedule vs. conservative schedule alone

compare heuristic and optimal solution

Folie 12 27.08.2019 Parallelism and VLSI Research Group

Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Experimental results

= average power consumption when switching between optimal schedules vs.
conservative schedule only:

tasks Task types Avg. power ratio Exec. ratio cons.

) other 0.883 0.471
memory 0.932 0.700
3 other 0.927 0.464
memory 0.961 0.655
4 other 0.956 0.603
memory 0.976 0.762

Folie 13 27.08.2019 Parallelism and VLSI Research Group

Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE J

Experimental results

= Number of relaxed schedules which equal the respective conservative

schedule:
tasks task types optimal heuristic
) other 2 6
memory 5 5
3 other 0 9
memory 3 6
4 other 1 10
memory 3 9
other 3 25
total memory 11 20
total 14 45
Folie 14 27.08.2019 Parallelism and VLSI Research Group

Sebastian Litzinger

@) FernUniversitat in Hagen FACULTY OF MATHEMATICS AND COMPUTER SCIENCE

Summary

= scheduling of stream processing application
= observation: makespan oftentimes less than deadline

= idea: max out available time span by switching between conservative and
relaxed schedule, maintaining required throughput in the long run

= dynamic control mechanism monitors throughput, triggers switch between
schedules

= can as well be employed to mitigate temperature-related issues

= tools to derive relaxed schedule from conservative schedule (determined via
crown scheduling) and compute reduction in average power consumption

= neither malleability of tasks nor preemption are required

= experiments with energy profiles of real multicore platform show 2-12%
reduced power consumption for small task sets of up to 4 tasks

Folie 15 27.08.2019 Parallelism and VLSI Research Group
Sebastian Litzinger

	Overview
	Motivation
	Background
	Schedule adaptation
	Adaptive schedule selection
	Experimental results
	Summary

