
1

Parallelization of
Massive Multiway Stream Joins

on Manycore CPUs

Constantin Pohl, Kai-Uwe Sattler

TU Ilmenau
Databases and Information Systems Group

Ilmenau, Germany

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

2

Introduction

Parallelism Opportunities
 by Manycore CPUs

Throughput and Latency demands
 of Data Stream Processing

Joining many stream sources
 running concurrently

...

⋈

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

3

Introduction

Binary Join (tree) vs. Multiway Join

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

4

Research Questions

● Performance
 High number of joinable streams
 Binary join tree vs. single Multiway join

● Scaling
 Manycore CPU
 Opportunities of Multiway join

● Synchronization
 Shared join execution
● Data access

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

5

Binary: Symmetric Hash Join (SHJ)

● Non-Blocking Join
 Producing results continuously

● Low individual tuple latency
 Insert, probe, return result(s)

● Binary
 Cascading SHJ operators for

3+ joinable streams (join tree)

conceptual view of SHJ

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

6

Multiway: MJoin1

● One hash table T per input stream

● Tuple t arrives from
stream s:

 Hash key,
 insert into T

S
,

 probe all other (T-T
S
)

1Luping Ding, Elke A. Rundensteiner, George T. Heineman: MJoin: a metadata-aware stream join operator, DEBS 2003

conceptual view of MJoin

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

7

Multiway: AMJoin2

● Advanced MJoin

● Central idea:
Avoid unnecessary probes

 Additional bit-vector hashtable B
for tracking key presence:
- one vector per key hash value,
- vector length of #streams/tables

 Whole bit-vector positions set to 1:
initiate join execution

2Tae-Hyung Kwon, Hyeon Gyu Kim, Myoung-Ho Kim, Jin Hyun Son: AMJoin: An Advanced Join Algorithm for Multiple Data
 Streams Using a Bit-Vector Hash Table, IEICE Transactions 92-D(7): 1429-1434 (2009)

conceptual view of AMJoin

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

8

Optimizations: OptAMJoin

● AMJoin experiments of the paper2:
 5 joinable streams (5-way),
 Intel Core2 Duo 2.66 GHz (2 cores, Win XP, 4GB RAM)

● Optimizations proposed for 100+ streams & manycore CPU:
 Atomic counters vs. bit-vectors
 Array vs. Hash table for dense key space
 Lock-free vs. Locks/Latches
 (Parallelization schema)

=> OptAMJoin

2Tae-Hyung Kwon, Hyeon Gyu Kim, Myoung-Ho Kim, Jin Hyun Son: AMJoin: An Advanced Join Algorithm for Multiple Data
 Streams Using a Bit-Vector Hash Table, IEICE Transactions 92-D(7): 1429-1434 (2009)

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

9

Parallelization Strategies

● Data Parallelism:
 Routing tuples to partitions by Partitioner P

(key range determines partition)
 Join execution in each partition independent

from other partitions (own thread)
 Tuple exchange with queues Q

● (Dis-)Advantages:
+ Scale out
+ Partition synchronization
- Load balancing (key ranges)
- Partitioner overhead
- Queue delay

Data Parallelism

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

10

Parallelization Strategies

● SPSC-Paradigm:
 “Single Producer, Single Consumer”
 Streams write to own SPSC queue
 Single join instance collects tuples

& manages whole join

● (Dis-)Advantages:
+ No internal join synchronization
- Queue delay
- Possible overwhelming of join thread
 (high tuple arrival rates) SPSC-Paradigm

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

11

Parallelization Strategies

● Shared Data Structures:
 Join tables & Bit-vector table shared

to all stream threads
 Stream threads perform join

individually

● (Dis-)Advantages:
+ No additional efforts (queues, partitioner)
- Scaling increases contention drastically
- Handling of duplicates/out of order tuples

Shared Data Structures

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

12

Evaluation Setup (I)

● Xeon Phi KNL 7210, 64 cores (à 4 threads), <1.5GHz,
96GB DDR4 (SNC-4, MCDRAM unused (flat))

● Implemented in Stream Processing Engine PipeFabric3

● Main query to execute:

3open source, https://github.com/dbis-ilm/pipefabric

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

13

Evaluation Setup (II)

● Tuples
 <key,value> pairs (8+8byte)
 1m distinct keys
 shuffled randomly per stream

● SHJ
 Left-deep tree

● Weak & Strong scaling
 weak: increasing number of joinable streams (=threads)
 strong: 8 streams to join, increasing join instances merging results

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

14

Evaluation (I)

SHJ, AMJoin, OptAMJoin with Shared Data Structures
Parallelization

Weak Scaling Strong Scaling

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

15

Evaluation (II)

OptAMJoin with all three parallelization strategies

Weak Scaling Strong Scaling

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

16

Evaluation (III)

Memory footprints of all three join algorithms in GB

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

17

Conclusion

● Multiway join performance is superior to binary join trees

● Shared data structures with lock-free synchronization and no
additional buffers (queues) perform best

● May change under heavily-skewed streams (contention)

Parallelization of Massive Multiway Stream Joins on Manycore CPUs
Constantin Pohl, Kai-Uwe Sattler

18

Summary
● Join algorithms:

● SHJ: Binary
● MJoin: Multiway
● AMJoin: MJoin + bit-vector hash table
● OptAMJoin: AMJoin + optimizations (counter, array, lock-free)

● Parallelization strategies:
● Data parallelism
● SPSC-paradigm
● Shared data structures

● Evaluation:
● Algorithms
● Parallelization
● Memory consumption

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

