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Abstract—Shared memory multiprocessors have returned
to popularity thanks to rapid spreading of commodity
multi-core architectures. However, little attention has been
paid to supporting effective streaming applications on these
architectures. In this paper we describe FastFlow, a low-level
programming framework based on lock-free queues explic-
itly designed to support high-level languages for stream-
ing applications. We compare FastFlow with state-of-the-
art programming frameworks such as Cilk, OpenMP, and
Intel TBB. We experimentally demonstrate that FastFlow
is always more efficient than them on a given real world
application: the speedup of FastFlow over other solutions
may be substantial for fine grain tasks, for example +35%
over OpenMP, +226% over Cilk, +96% over TBB for the
alignment of protein P01111 against UniProt DB using the
Smith-Waterman algorithm.

I. INTRODUCTION

The recent trend of increasing core count in commodity
processors has led to a renewed interest in the design of
both methodologies and mechanisms for effective parallel
programming of shared memory computer architectures.

Typically, low-level approaches provide programmers
only with primitives for the management of flows of
control (creation, destruction), their synchronisation and
data sharing, which are usually accomplished via criti-
cal regions accessed through mutual exclusion (mutex).
For example, the POSIX thread library can be used
for this purpose. Programming complex parallel appli-
cations is this way is certainly hard; tuning them for
performance is often even harder due to the non-trivial
effects induced by memory fences (used to implement
mutex) on data replicated in cores’ caches, which consti-
tute one of the key sources of performance degradation
in communication intensive streaming parallel applica-
tions. Avoiding memory fences means not only avoiding
locks but also avoiding any kind of atomic operation
in memory (e.g. Compare-And-Swap, Fetch-and-Add).
Although there exist several assessed fence-free solutions
for asynchronous symmetric communication implemented
via Single-Producer-Single-Consumer (SPSC) queues [1],
these results cannot be easily extended to asynchronous
asymmetric communications implemented via Multiple-
Producer-Multiple-Consumer queues (MPMC) (necessary
to support arbitrary streaming networks), without using
advanced atomic primitives.

This work was partially funded by the project BioBITs founded by
“Regione Piemonte - Italy”, and by the WG Ercim CoreGrid topic
“Advanced Programming Models”.

A way to ease the programmer’s task and improve pro-
gram efficiency is to raise the level of abstraction of con-
currency management primitives in order to enable code
optimisation. For example, threads might be abstracted out
in higher-level entities that can be pooled and scheduled
in user space, possibly according to specific strategies to
minimise cache flushing or maximise load balancing of
cores. Synchronisation primitives can be also abstracted
out and associated with semantically meaningful points of
the code, such as function calls and returns, loops, etc.
Intel Threading Building Block (TBB) [2], OpenMP [3],
and Cilk [4] all provide this kind of abstraction, each in
its own way. They significantly simplify the development
of applications for multi-core architectures. However, the
above-mentioned programming frameworks are not de-
signed to effectively support streaming applications. The
only pattern that fits this usage is TBB’s pipeline construct,
which can be used to describe only a linear chain of filters;
none of them natively supports any kind of task farming on
stream items, despite it being a quite common paradigm.

In [5], we introduced FastFlow a low-level methodol-
ogy supporting lock-free (fence-free) Multiple-Producer-
Multiple-Consumer (MPMC)1 queues able to support low-
overhead communication in multi-core architectures. In
this paper, we briefly sketch the implementation of the
farm streaming network using FastFlow and the most pop-
ular programming frameworks for multi-core architectures
(i.e. TBB, OpenMP, Cilk), and we show that the FastFlow
farm is generally faster than the other solutions for a real-
world application: the Smith-Waterman local sequence
alignment algorithm (SW). This latter comparison will be
performed using the same “sequential” code in all im-
plementations, i.e. the x86/SSE2 vectorised code derived
from Farrar’s high-performance implementation [6], [7].

II. RELATED WORKS

The stream programming paradigm offers a promising
approach for programming multi-core systems. Stream
languages are motivated by the application style used in
image processing, networking, and other media processing
domains. Several languages and libraries are available for
programming stream applications, but many of them are
oriented to coarse grain computations. Examples include
StreamIt, Brook, NVidia CUDA and OpenCL. Some lan-
guages, such as TBB, provide explicit mechanisms for

1Also generalising Single-Producer-Multiple-Consumer (SPMC) and
Multiple-Producer-Single-Consumer (MPSC) queues.
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both streaming and other parallel paradigms, whereas
some others, such as OpenMP and Cilk offer mainly
mechanisms for Data Parallelism and Divide&Conquer
computations.

StreamIt [8] is an explicitly parallel programming lan-
guage based on the Synchronous Data Flow model. A pro-
gram is represented as a set of filters, i.e. autonomous ac-
tors (containing Java-like code) that communicate through
first-in first-out (FIFO) data channels. Filters can be as-
sembled in pipeline, possibly with a FeedbackLoop, or
according to a SplitJoin data-parallel schema.

Brook [9] provides extensions to the C language
with single program multiple data (SPMD) operations
on streams. User defined functions operating on stream
elements are called kernels and can be executed in parallel.
Brook kernels feature blocking behaviour: the execution
of a kernel must complete before the next kernel can ex-
ecute. A similar execution model is available on graphics
processing units (GPUs) via the OpenCL framework [10].

Streaming applications are also targeted by TBB [2]
through the pipeline construct. FastFlow – by intent –
is methodologically similar to TBB, since it aims to
provide a library of explicitly parallel constructs (a.k.a.
skeletons [11]) that extend the base language (e.g. C,
C++). However, TBB does not support any kind of non-
linear streaming networks, which therefore has to be
embedded in a pipeline. This has non-trivial programming
and performance drawbacks since pipeline stages must
bypass data that they are not interested in.

OpenMP [3] and Cilk [4] are two other very popu-
lar thread-based frameworks for multi-core architectures.
OpenMP and Cilk mostly target Data Parallel and Di-
vide&Conquer programming paradigms, respectively.

Cilk extends C/C++ to provide programmers with mech-
anisms to spawn independent flows of controls (cilk-
threads) according to the fork/join model. The scheduling
of the computation of flows is managed by an efficient
work-stealing scheduler. Control flows can synchronize in
shared memory under a quite relaxed memory consistency
(DAG consistency) [12].

Intel Threading Building Blocks (TBB) is a C++ tem-
plate library consisting of containers and algorithms that
abstract the usage of native threading packages (e.g.
POSIX threads). In particular, the library abstracts access
to the multiple processors by allowing the operations to be
treated as tasks, which are allocated to individual cores dy-
namically by the library’s run-time engine. The tasks and
synchronisations among them are extracted from language
constructs such as parallel_for, parallel_reduce,
parallel_scan, and pipeline. Tasks might also co-
operate via shared memory through concurrent contain-
ers (e.g. concurrent_queue), several flavours of mutex
(lock, and atomic operations (e.g. Compare And Swap)
[2]. This approach groups TBB in a family of solutions
for parallel programming aimed at enabling programmers
to explicitly define parallel behaviour via parametric ex-
ploitation patterns (skeletons, actually) that have been
widely explored over the last two decades for parallel

computing [11], [13], [14], [15].
At the level of communication and synchronisation

mechanisms, Giacomini et al. [16] highlight the fact
that traditional locking queues feature a high overhead
on today’s multi-cores. Revisiting Lamport’s work [1],
which proves the correctness of wait-free mechanisms
for concurrent SPSC queues on systems with memory
sequential consistency commitment, they proposed a set
of wait-free and cache-optimised protocols. They prove
the performance benefit of those mechanisms on pipeline
applications on today’s multi-core architectures. A direct
design of lock-free MPMC queues is more complex and
requires at least an atomic operation [17]. As we shall see
in Sec. IV, FastFlow follows an alternative approach: a
MPMC queue is designed by coupling several lock-free
SPSC under the control of a sequencer thread. Therefore
FastFlow extends Giacomini’s work [16] from simple
pipelines to any streaming network.

III. FASTFLOW

FastFlow is a template library that offers a set of
low-level mechanisms to support low-latency and high-
bandwidth data flows in a network of threads running on
a cache-coherent multi-core. On these architectures, the
key performance issues concern memory fences, which
are required to keep the various caches coherent. FastFlow
provides the programmer with two basic mechanisms:
efficient communication channels and a memory allocator.
Communication channels, as typical is in streaming ap-
plications, are unidirectional and asynchronous. They are
implemented via fence-free MPMC queues. The memory
allocator is built on top of these queues, thus taking
advantage of their efficiency.

Traditionally, MPMC queues are built as passive en-
tities: threads concurrently synchronise to access data;
these synchronisations are usually supported by one or
more atomic operations (e.g. Compare-And-Swap) that
behave as memory fences. FastFlow design follows a
different approach: in order to avoid any memory fence,
MPMC queues are build by assembling fence-free SPSC
queues by means of an arbiter thread, which gathers or
multicast/unicast data items from input queues to output
queues (see also Fig. 1). We call these entities Emitter
(E) or Collector (C) according to their role; they read an
item from one or more fence-free SPSC queues and write
onto one or more lock-free SPSC queues. This requires a
memory copy but no atomic operations (this is a trivial
corollary of lock-free SPSC correctness [16]).

The big performance advantage of this solution stems
from the higher speed of the copy with respect to the
memory fence. This advantage is further increased by
avoiding cache invalidation triggered by fences, which also
depends on the size and the memory layout of copied data.

The memory allocator, which is not discussed in this
paper, can be replaced either with an OS standard allocator
(paying a performance penalty) or a third-party allocator
(e.g. TBB scalable allocator [2]). More details on FastFlow
design and memory allocator basics can be found in [18].
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Figure 1. FastFlow farm.

IV. THE STREAM PARALLEL FARM PARADIGM

The parallelism exploitation patterns are usually cate-
gorised into three main classes: Task, Data, and Stream
Parallelism. These classes are often encoded in high-
level paradigms (a.k.a. skeletons) to be encoded by pro-
gramming language constructs [19]. While many of the
programming frameworks mentioned in Sec. II offer Data
and Task Parallel skeletons, only few offer Stream Parallel
skeletons (such as TBB’s pipeline). None of them offers
the farm skeleton, which exploits functional replication
and abstracts out the parallel filtering of successive in-
dependent items of the stream under the control of a
scheduler, as a first-class concept.

The farm skeleton can be implemented using a master-
worker schema. In the streaming settings, the master can
be conveniently split into two functionally distinct parts:
the Emitter (E) that schedules the stream items to a pool
of Workers (Wi) and the Collector (C) that gathers the
results[14]. We use this general schema to implement the
farm skeleton using FastFlow, OpenMP, TBB, and Cilk. In
all these programming models but FastFlow, the Collector
is not run as separate thread but its code is spread out
onto the Workers, and is run in mutual exclusion. The
performance of these implementations will be compared in
Sec. V. In the following we briefly discuss the peculiarity
of each implementation. We refer back to [18], [20] for a
detailed description and code listings.

As shown in Fig. 1), the FastFlow farm is particularly
simple since it can be implemented by surrounding a pool
of Workers with an Emitter and a Collector, all realised
using POSIX threads that communicate via FastFlow
fence-free SPMC and MPSC queues.

The OpenMP farm is driven by the Emitter, which
is started in a single copy using a single nowait

directive, and spawns a parallel task for each stream
item in untied fashion2. Each task, once started, runs
asynchronously with respect to the Emitter and eventually
writes the result into the output stream. Since many tasks
can write concurrently, the output gathering is defined
within a critical region (Collector).

The Cilk farm is defined as a function that can behave
as Emitter, Worker, and Collector. The first invocation of
the farm function behaves as Emitter, which iteratively
picks a stream item from the input stream and spawns

2Run of independent tasks is available in OpenMP starting from
version 3.0.

a cilk_thread using the item as a parameter of the
invocation. All farm function invocations after the first
behave as a Worker followed by a Collector. As in
OpenMP, the collection can happen concurrently and it
has been realised by exploiting a Cilk inlet function,
which atomically handles the result of the function.

Intel TBB provides programmers with the
parallel_for construct that can be used to realise the
farm skeleton. The parallel_for is able to dispatch a
bunch of data items to a set of workers, but these tasks
must be dispatched together in a Data Parallel fashion.
This restriction may be avoided exploiting a pipeline

of two stages: Emitter and Worker. The Emitter receives
the stream items from the input stream and packs them
into an array. The array is passed to the second stage
that applies a parallel_for function to each element
(worker function). Each worker function eventually writes
the result of the computation into a concurrent_queue.

V. SMITH-WATERMAN: A COMPARATIVE ANALYSIS

In bioinformatics, sequence database searches are used
to find the similarity between a query sequence and subject
sequences in a database in order to determine similar
regions between two nucleotide or protein sequences,
which are encoded as a string of characters. The sequence
similarities can be determined by computing their optimal
local alignments using the Smith-Waterman (SW) algo-
rithm [21], which is a dynamic programming algorithm
that is guaranteed to find the optimal local alignment
with respect to the scoring system being used. Instead of
looking at the total sequence, it compares segments of all
possible lengths and optimises the similarity measure.

This approach is expensive in terms of computing time
and memory space due to the rapid growth of biologi-
cal sequence databases (UniProtKB/Swiss-Prot database
Release 57.5 of 07-Jul-09 contains 471472 sequence,
comprising 167326533 amino acids) [22]. Therefore, re-
cent works in this area focus on implementing the SW
algorithm on different architectures, like GPUs [10] and
Cell/BE [7] and on Intel multi-cores exploiting vector
instruction sets [6]. Among these implementations, we
selected the SWPS3 [7], an optimised extension of Farrar’s
work [6] on the Strip Waterman-Algorithm for the Cell/BE
and on x86/64 CPUs.The original SWPS3 is designed as a
master-worker computation: the master process reads the
query sequence, initialises the data structures for vector
computations, and then forks all the worker processes;
each worker has its own copy of the data. All the se-
quences in the reference database are read and sent to a
worker process over POSIX pipes. Each worker computes
the alignment score according to the SW algorithm, and
sends the resulting score back over a pipe.

The computational time of the algorithm is sensitive
with respect to the query length used for the matching, the
scoring matrix (in our case BLOWSUM50) and the gap
penalty. Due to the very different lengths of the subject
sequences in the database, there is a high variance in the
single query matching service time. For the computation of
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Figure 2. Smith-Waterman sequence alignment algorithm: comparison between FastFlow, OpenMP, TBB, and Cilk implementations.
The SWPS3, which is based on POSIX primitives, is the original version from which the other has been derived. All the
implementations share exactly the same sequential (x86/SSE2 vectorised) code.

protein P04775, we measured, for all the single matches,
an average service time of 375µS with 0.690µS and
21837.1µS the minimum and maximum values. To give
an idea of the different lengths, we report some statistics
of the UniProtKB/Swiss-Prot where the shortest sequence
is formed by 2 amino acids and the longest by 35213,
while the average sequence length is 352 amino acids.
Furthermore, the higher the gap open and gap extension
penalties, the fewer iterations are needed for the calcula-
tion of the single cell of the similarity score matrix. In
our tests we used the scoring matrix BLOSUM50 with
two gap penalty range: 10-2k and 5-2k.

We rewrote the original SWPS3 code in OpenMP,
Cilk, TBB and FastFlow following the schemata presented
before, while keeping untouched the sequential kernel
code to achieve a fair comparison.

The Emitter entity reads the sequence database and
produces a stream of pairs: 〈query sequence, subject
sequence〉. The query sequence remains the same for
all the subject database sequences. The Worker entity
computes the striped Smith-Waterman algorithm on the
input pairs using the SSE2 instruction set. The Collector
gets the resulting score and produces the output string
containing score and sequence name.

For performance reasons, it is important to provide a
copy of the data structures needed for the SSE2 computa-
tion to each worker thread. Notwithstanding that this data
is read-only, the third-party SSE somehow seems to trigger
the cache invalidation while accessing the data, which seri-
ously affects the performance. To overcome this problem
we employ a trick: we use the POSIX Thread-Specific-
Storage (TSS) support, setting in the TSS the required data
for each thread of the application. This is not a critical
aspect for the Cilk and TBB algorithm implementation,
which do not natively support any kind of TSS, because
the TSS data is read-only and each thread has its own
copy. In OpenMP this is not a particular problem because
we have the possibility to identify a specific worker thread
with the library call omp_get_thread_num(). The same

possibility to identify a thread is offered by the FastFlow
framework as each parallel entity is mapped to one and
only one thread.

To remove the dependency on the query sequences and
the databases used for the tests, Cell-Updates-Per-Second
(CUPS) is a commonly used performance measure in
bioinformatics. A CUPS is the time for the computation
of one cell in the matrix of the similarity score, including
all memory operations. Given a query sequence of length
Q and a database of size D, the GCUPS (billion Cell
Updates Per Second) value is calculated by: GCUPS =
|Q| · |D|/109 · T , where T is the total execution time in
seconds. The performance of the different SW algorithm
implementations has been benchmarked and analysed by
searching for 19 sequences of length from 144 (P02232 se-
quence) to 22,142 (Q8WXI7 sequence) against the Swiss-
Prot release 57.5 database. All experiments are executed
on a shared memory Intel platform with 2 quad-core Xeon
E5420 Harpertown @2.5GHz with 6MB L2 cache and 8
GBytes of main memory. We have used, under the Linux
2.6.18 kernel, version 4.4.0 of the GCC compiler (which
features the OpenMP v3.0 support), version 5.4.6 of Cilk
and version 2.1 of TBB library.

Figure 2 reports the performance comparison between
FastFlow, OpenMP, Cilk, TBB and SWPS3 version of SW
algorithm for x86/SSE2.

As can be seen from the figures, the FastFlow imple-
mentation outperforms the other implementations for short
query sequences. The smaller the query sequences are,
the bigger the performance gain is. This is mainly due to
the lower overhead of FastFlow communication channels
with respect to the other implementations; short sequences
require a smaller service time.

Cilk gives a lower performance value with respect to
the original SWPS3 version with small sequences while
performing very well with longer ones. OpenMP offers
the best performance after FastFlow.
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VI. CONCLUSIONS

In this work we have introduced FastFlow, a low-
level template library based on lock-free communica-
tion channels explicitly designed to support low-overhead
high-throughput streaming applications on commodity
cache-coherent multi-core architectures. We have shown
that FastFlow can be directly used to implement com-
plex streaming applications exhibiting cutting-edge per-
formance on a commodity multi-core.

Also, we have demonstrated that FastFlow makes possi-
ble the efficient parallelisation of third-party legacy code,
such as the x86/SSE vectorised Smith-Waterman code. In
the short term, we envisage FastFlow as the middleware
tier of a “skeletal” high-level programming framework
that will discipline the usage of efficient network patterns,
possibly extending an existing programming framework
(e.g. TBB) with the stream-specific constructs. To this end,
we studied how a farm construct can be realised using sev-
eral state-of-the-art programming frameworks for multi-
core, and we have experimentally demonstrated that the
FastFlow farm is faster than other farm implementations,
at least for the Smith-Waterman application.

As expected, the performance advantage of FastFlow
over the other frameworks is significant for fine-grained
computations. This makes FastFlow suitable for imple-
mentation of a fast macro data-flow executor (actually
wrapping around the order preserving farm), thus achiev-
ing the automatic parallelisation of many classes of al-
gorithms. FastFlow is open source software under GPL
available at http://mc-fastflow.sourceforge.net/.
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