INTERNATIONAL MASTER IN COMPUTER SCIENCE AND NETWORKING

Worldwide QS ranking

35 Politecnico di Milano More
50 Politecnico di Torino More
51-100 Sapienza University of Rome More
51-100 Alma Mater Studiorum - University of Bologna More
101-150 Università di Padova More
101-150 University of Pisa More
151-200 University of Rome "Tor Vergata" More
201-250 University of Napoli - Federico II More
201-250 University of Trento More
251-300 Scuola Superiore Sant'Anna Pisa di Studi Universitari e di Perfezionamento More
251-300 University of Milan More
251-300 Università degli Studi di Pavia More

University of Pisa
Department of Computer Science
Distributed Enabling Platforms

Goal: learn how to use and efficiently exploit computing platforms enabling the execution of complex and distributed applications

- **Exam:** project + oral discussion
- **Period:** second semester, 4h/week
Distributed enabling platform (syllabus)

1. Principles of distributed systems and motivating applications for distributed enabling platforms (e.g., centralized vs distributed systems, distribution-transparency, taxonomy of distributed systems, etc.);

2. Software and deployment architectures for distributed enabling platforms (e.g., Resource Virtualization, Microservices, Cloud-based vs. on-premise, Cloud-Edge continuum, etc.);

3. Distributed Data management supported by widely used distributed enabling platforms (e.g., HDFS, RDDs, etc.);

4. Programming abstractions for distributed systems provided by the most popular enabling platforms (e.g., MapReduce, Think-Like-A-Vertex, Pregel, Agent-based, etc.);

5. Distributed enabling platforms for efficient stream processing (e.g., Apache Storm, Apache Kafka, etc.).
Theses available

• Intelligent resource management and optimizations for distributed enabling platforms;
• AI-based and/or autonomous management of distributed applications with distributed enabling platforms;
• Distributed enabling platforms for next-generation applications (e.g., cloud gaming, autonomous driving, etc.)
• Edge-centric (i.e., decentralized and based on constrained resources) distributed enabling platforms;
• AI-based self-optimizing distributed enabling platforms targeting stream-processing applications;
• Novel application models for distributed enabling platforms;