PEER TO PEER SYSTEMS AND BLOCKCHAINS

- Teacher: Laura Ricci,
 - e-mail: laura.ricci@unipi.it,
 - WEB: http://www.di.unipi.it/~ricci/
 - Skype: lauraemiliaricci
- **Course** details:
 - 6 CFU: 48 hours
 - **Pre-requisites**: a basic course in networking
 - Semester: second
 - Exam mode: mideterm + finalterm + project
- Course references:
 - link to the 18/19 Course on the Moodle through

https://elearning.di.unipi.it/course/view.php?id=155#section-0

Some reasons to take this exam

- Applications distributed on thousands of machines on the Internet, are becoming commonplace:
 - an unprecedented shift in scale and complexity
- new challanges are now arising: classic metodologies for the development of distributed systems are no more valid.
- new "tools" are required:
 - probabilistic algorithms
 - computation based on a local view
 - distributed consensus algorithms
 - secure distributed structures
 - statistical analysis of complex topologies
 - game theory for defining peer cooperation

Syllabus

- P2P Overlays: Structured and Unstructured
- Distributed Hash Tables.
 - Theory: routing on structured networks. Applications: the KAD network of Bittorrent
- Content Distribution Networks (CDN)
 - Theory: Game theory. Applications: Bittorrent, Video streaming: Netflix
- Probabilistic epidemic protocols.
 - Theory: Gossip protcols . Applications: Cassandra
- BlockChains
 - Theory: Distributed secure structures, Consensus algorithms
 - Applications: Bitcoin cryptocurrency, Ethereum smart contracts
- Analysis of P2P topologies:
 - Theory: small worlds, scale free networks. Applications: Freenet, Analysis of the Bitcoin transaction graph

Available Thesis

ALINA DICAL

- analysis of the Bitcoin Transaction Graphs
 - discovering economic phenomena through graph analysis
- implementing distributed access control policies through blockchains methodologies
 - exploiting the Ethereum blockchain
- Development od distributed online social networks (H2020 European Project HELIOS)