
Programming Tools for Distributed and 
Parallel Systems (SPD)

• The course presents a selection of parallel and distributed 
programming languages and frameworks, covering parallelism 
exploitation at different scales.

• We address exploitation of parallelism via software at 
different architectural levels, targeting distributed systems, 
shared-memory/multicore CPUs and GPUs

• The course relies on knowledge about parallel skeletons, their
performance models, as well as techniques to exploit them in 
the design and evaluation of parallel software.

Teacher Massimo Coppola

Contact massimo.coppola@isti.cnr.it , 050 621 2992

Value, period 6 credits – 4 hrs per week, 48 total – 2nd semester

Exam rules lab project + written report + oral discussion (syllabus and project)

Pre-requisites HPC; SPM is strongly suggested

Area Computer Science

Course home page hosted on https://didawiki.cli.di.unipi.it

Why follow the SPD course?
Develop your skills related to parallel, multithreaded, 

high-performance programming
• Problem analysis and solution design for parallel and 

distributed applications
• Abstract modelling, experimental evaluation and critical 

analysis of performance, parallel scalability, efficiency

http://isti.cnr.it
https://didawiki.cli.di.unipi.it


A changing landscape 
where parallelism is pervasive

Nvidia Pascal – Turing GPUs 
AMD Vega Pro 64

1K –5K GPU cores on-chip

Fujitsu Supercomputer Fugaku
New TOP500 1st place 22/06/20 

158K+ nodes based on
48-core A64FX ARM SoC

Home made cluster 
of 120 Raspberry PI 
(ARM 32 bit core)

RISC-V FPGA CPUs up 
to 1680 cores/board

FPGA as a tool to 
experiment in 

CPU/GPU design

Industry standard CPUs
Contain O(10) cores

Possibly hyperthreading
Complex, layered caches



Syllabus

Parallel tools & platforms for HPC and large scalable systems. Lessons + lab time
• MPI – Message Passing Interface standard

• Message passing standard, linked library with support for multiple languages

• TBB – Intel Thread Building Blocks library
• C++ template library for shared memory multi-thread programming
• Multi core CPUs and multiprocessor systems

• OpenCL – High-level, portable standard to exploit many-core on-chip parallelism
• Multithread, high-memory bandwidth algorithms with streaming/regular access patterns
• Targets graphic units (GPUs), CPU vectorization, APUs, FPGA devices …

• Other frameworks to be considered
• Change yearly and may be related to projects, examples are Vulkan, CUDA (NVIDIA), ROC (AMD), 

OneAPI (INTEL); BSP-based and Map&Reduce frameworks: Spark, Graphx, Hama

• Application examples for laboratory time (change from year to year): 
Data Mining, Deep Learning, Graph / Optimization Algorithms, Stream Data Processing 



Topics for Master Thesis or 
Research fellowships
• Clouds, Cloud-Federations and Edge / Fog computing:

• Dynamical System Modeling, Resource Brokering, Scheduling Optimization strategies
• Hierarchical and skeleton-based programming frameworks and performance models
• Genetic programming, (mixed integer) linear programming, other optimization approaches to brokering and 

autonomic/adaptive resource management
• Container-based and VM-based application composition, deployment and elastic scalability
• High-performance implementation of authorization mechanisms 

for data security and privacy: Scalable policy evaluation and enforcing mechanisms at the hypervisor, cloud 
and/or federation manager levels as well as on edge devices

• Multicore CPU/GPU design and deployment on FPGA
• HW design, digital signal synthesis/analysis, AI-accelerator design

• High-performance computing applications
• HPC / distributed Data Mining, Stream Mining, Machine Learning, Deep Learning
• Applications to HealthCare
• Application of stream and Big-data Analysis for Clouds


