Programming Tools for Distributed and

Parallel Systems (SPD)

Teacher Massimo Coppola

Contact massimo.coppola@isti.cnr.it, 050 621 2992

Value, period 6 credits — 4 hrs per week, 48 total — 2"d semester

Exam rules lab project + written report + oral discussion (syllabus and project)

Pre-requisites HPC; SPM is strongly suggested

Area Computer Science

Course home page hosted on https://didawiki.cli.di.unipi.it

* The course presents a selection of parallel and distributed Why follow the SPD course?
programming languages and frameworks, covering parallelism ) )
exploitation at different scales. Develop your skills related to parallel, multlthreaded,

* We address exploitation of parallelism via software at high-performance programming
different architectural levels, targeting distributed systems, * Problem analysis and solution design for parallel and
shared-memory/multicore CPUs and GPUs distributed applications

* The course relies on knowledge about parallel skeletons, their e Abstract modelling, experimental evaluation and critical
performance models, as well as techniques to exploit them in analysis of performance, parallel scalability, efficiency

the design and evaluation of parallel software.


http://isti.cnr.it
https://didawiki.cli.di.unipi.it

A changing landscape
where parallelism is pervasive

— o 3 {
. % ' : it
TERTRRENN 10 O (] RN " igl 1 |

_iSRi2s |




Syllabus

Parallel tools & platforms for HPC and large scalable systems. Lessons + lab time

* MPI — Message Passing Interface standard
* Message passing standard, linked library with support for multiple languages

TBB — Intel Thread Building Blocks library
e C++template library for shared memory multi-thread programming
e Multi core CPUs and multiprocessor systems

OpenCL — High-level, portable standard to exploit many-core on-chip parallelism
* Multithread, high-memory bandwidth algorithms with streaming/regular access patterns
» Targets graphic units (GPUs), CPU vectorization, APUs, FPGA devices ...

Other frameworks to be considered

* Change yearly and may be related to projects, examples are Vulkan, CUDA (NVIDIA), ROC (AMD),
OneAPI (INTEL); BSP-based and Map&Reduce frameworks: Spark, Graphx, Hama

Application examples for laboratory time (change from year to year):
Data Mining, Deep Learning, Graph / Optimization Algorithms, Stream Data Processing



Topics for Master Thesis or
Research fellowships

HPS: TN

* Clouds, Cloud-Federations and Edge / Fog computing:

* Dynamical System Modeling, Resource Brokering, Scheduling Optimization strategies

* Hierarchical and skeleton-based programming frameworks and performance models

* Genetic programming, (mixed integer) linear programming, other optimization approaches to brokering and
autonomic/adaptive resource management

* Container-based and VM-based application composition, deployment and elastic scalability

* High-performance implementation of authorization mechanisms
for data security and privacy: Scalable policy evaluation and enforcing mechanisms at the hypervisor, cloud
and/or federation manager levels as well as on edge devices

* Multicore CPU/GPU design and deployment on FPGA
* HW design, digital signal synthesis/analysis, Al-accelerator design

* High-performance computing applications
* HPC / distributed Data Mining, Stream Mining, Machine Learning, Deep Learning
* Applications to HealthCare
* Application of stream and Big-data Analysis for Clouds



