The course presents a selection of parallel and distributed programming languages and frameworks, covering parallelism exploitation at different scales. We address exploitation of parallelism via software at different architectural levels, targeting distributed systems, shared-memory/multicore CPUs and GPUs.

The course relies on knowledge about parallel skeletons, their performance models and techniques to exploit them in the design and evaluation of parallel software.
A changing landscape where parallelism is pervasive

Intel's Xeon Phi Knight's Landing
72-cores with 4 HW threads/core

Nvidia Pascal GPU architecture
2560 shader cores on-chip

Home made cluster
of 120 Raspberry PI (ARM 32 bit core)

Fujitsu K supercomputer
705000 SPARC VIIIfx cores
post-K supercomputer in 2021 will use custom ARMV8 CPUs

RISC-V FPGA CPUs
up to 1680 cores/board
Syllabus

Parallel tools & platforms for HPC and large scalable systems. Lessons + lab time

• **MPI** – Message Passing Interface standard
 • Message passing standard, linked library with support for multiple languages

• **TBB** – Intel Thread Building Blocks library
 • C++ template library for shared memory multi-thread programming
 • Multi core CPUs and multiprocessor systems

• **OpenCL** – High-level, portable standard to exploit many-core on-chip parallelism
 • Multithread, high-memory bandwidth algorithms with streaming/regular access patterns
 • Targets graphic units (GPUs), CPU vectorization, APUs, FPGA devices …

• **Other frameworks**
 • Change yearly and may be related to projects, examples are CUDA, BSP/Map&Reduce based frameworks (Spark / Graphx, Hama)

• **Application examples** for laboratory time (change from year to year):
 Data Mining, Deep Learning, Graph / Optimization Algorithms, Stream Data Processing
Some potential topics for Master Thesis or Research fellowships

- Clouds, Cloud-Federations and *Edge / Fog* computing:
 - Dynamical System Modeling, Resource Brokering, Scheduling Optimization strategies
 - Hierarchical and skeleton-based programming frameworks and performance models
 - Genetic programming, (mixed integer) linear programming, other optimization approaches to brokering and autonomic/adaptive resource management
 - Container-based and VM-based application composition, deployment and elastic scalability
 - High-performance implementation of authorization mechanisms for data security and privacy: *Scalable policy evaluation and enforcing mechanisms* at the hypervisor, cloud and/or federation manager levels as well as on edge devices

- Multicore CPU/GPU design and deployment on FPGA

- High-performance computing applications
 - HPC / distributed *Data Mining, Stream Mining, Machine Learning, Deep Learning*
 - Applications to HealthCare
 - Application of stream and Big-data Analysis for Clouds