
Skeleton based programming (models)

CCP’09

M. Danelutto

CCP’09 - Skeleton based programming models

The principle

•The new system presents the user with a selection of

independent “algorithmic skeleton”, each of which

describes the structure of a particular style of

algorithm, in the way in which “higher order functions”

represent general computational frameworks in the

context of functional programming languages. The

user must describe a solution to a problem as an

instance of the appropriate skeleton.

(Cole 1988)

CCP’09 - Skeleton based programming models

The principle (rephrased)

•Abstract parallelism exploitation pattern by parametric
code (higher order function)

•Provide user mechanism to specify the parameters
(sequential code, extra parameters)

•Provide (user protected) state-of-the-art implementation
of each parallelism exploitation pattern

•In case, allow composition

•Fundamental, property not present in first skeletons
systems

CCP’09 - Skeleton based programming models

Sample pattern: the task farm

•Parameters:
•Worker code
•Parallelism degree (computed?)

•Known implementation
•Master slave pattern
•Possibly distributed master

•Composite worker
•Master to master optimizations

M

S

S

S

M

M

M

S

S

S

S

S

S

Cole PhD (1988)
Fixed degree DC, Iterative combination, Cluster Task queue

Darlington (1992)
Pipeline, Farm, RaMP, DMPA

P3L (1991)
Pipeline, Farm, Map, Reduce

Muesli (2002)
Pipeline, Farm, Parallel array + collectives

eSkel (2002)
Parametric skeletons + Give/Take

Fortran SSCL ASSISTSkIE

Kuchen Skil (1998)

Lithium OcamlP3L

BMF (‘80)
map fold reduce prefix + algebra

Gorlatch (late ‘90)Skillicorn (mid ‘90)

Serot (1999)
Skipper (!MDF)

MALLBA (‘00)
Combinatorial optimisation

HOC (early ‘00)

CCP’09 - Skeleton based programming models

Skeleton evolution

CCP’09 - Skeleton based programming models

Cole PhD Thesis

• Fixed degree D&C, Iterative Combination (2 “best” items in the set combined,

iterated), Cluster Skeleton (abstrac machine rather than algorithm), Task

Queue

• Lot of usage examples and analytical evaluation of skeletons

• Seminal work in the area

• Due to the motivations

• More that to the skeletons discussed

• Hierarchical composition later on (‘95 PARCO)

CCP’09 - Skeleton based programming models

Darlington IC

• Coordination comes in

• Darlington et al. Functional Skeletons for Parallel Coordination (Europar ‘95)

CCP’09 - Skeleton based programming models

Darlington (2)

• Initially (‘91)

Farm, Pipeline, RaMP, DMP

• Then (‘95):

• Coordination (see before)

• Clearer data parallel asset

• Control parallel skeletons

 (Farm, SPMD)

• Transformations !

• Fortran embedding !

CCP’09 - Skeleton based programming models

Kuchen : Muesli

• Clearly separetes

data and control

parallelism exploitation

• Builds on top of MPI

• Inheriths two tier model from P3L:

• Arbitrary control parallel nestings

• With data parallel or sequential leaves

•

CCP’09 - Skeleton based programming models

Muesli : nesting

int main(int argc, char **argv){
try{
 InitSkeletons(argc,argv);

 Initial<int> p1(init);
 Atomic<int,int> p2(square,1);
 Process* p3 = NestedFarm<int,int>(p2,4);
 Final<int> p4(fin);
 Pipe p5(p1,*p3,p4);

 p5.start();

 TerminateSkeletons();}
 catch(Exception&){cout << "Exception" << endl << flush;}
}

template <class C> // using algorithm of Gentleman based on torus topology
DistributedMatrix<C> matmult(DistributedMatrix<C> A,DistributedMatrix<C> B){
 A.rotateRows(& negate);
 B.rotateCols(& negate);
 DistributedMatrix<C> R(A.getRows(),A.getCols(),0,
 A.getBlocksInCol(), A.getBlocksInRow());
 for (int i=0; i< A.getBlocksInRow(); ++i){
 typedef C (*skprod_t)(const DistributedMatrix<C>&,
 const DistributedMatrix<C>&, int, int, C);
 R.mapIndexInPlace(curry((skprod_t)skprod<C>)(A)(B));
 A.rotateRows(-1);
 B.rotateCols(-1);}
 return R;}

int main(int argc, char **argv){
try{
 InitSkeletons(argc,argv);
 DistributedMatrix<int> A(Problemsize,Problemsize,& add,sqrtp,sqrtp);
 DistributedMatrix<int> B(Problemsize,Problemsize,& add,sqrtp,sqrtp);
 DistributedMatrix<int> C = matmult(A,B);
 TerminateSkeletons();}
 catch(Exception&){cout << "Exception" << endl << flush;};
}

CCP’09 - Skeleton based programming models

Muesli : data parallel

CCP’09 - Skeleton based programming models

Gorlatch: HOC

• Inherits from Lithium

• Exploiting Web Services

• Higher order components

• Farms, pipelines

• Developed in Muenster

• Joint works with

• Caromel, Cole, Danelutto

CCP’09 - Skeleton based programming models

Cole eSkel

• Local data or Spread data processing

• Implicit or explicit interaction mode

• Transient and persistent skeleton calls in a skeleton

• Pipeline, Deal (cyclic distrib farm), Farm, Butterfly

• MPI (rather glossy interface)

CCP’09 - Skeleton based programming models

MALLBA

• Combinatorial optimization through skeletons

• Fairly “unconventional” set of skeletons

• D&C, B&B, Dynamic Programming, Hill Climbing, Metropolis, Simulated

Annealing (SA), Tabu Search (TS) and Genetic Algorithms (GA)

• C++ implementation!

• provided classes (fixed implementation) + required classes (user supplied,

problem dependent code)

• Related work on performance models

• Excellent speedups on (heterogeneous CPU) clusters as well as on WAN

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

The Pisa Picture

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

eSkel
(library concept)

HOC
(interpreter)

Skipper
(MDF impl)

Muesli
(two tier model)

CCP’09 - Skeleton based programming models

The Pisa picture

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

Vanneschi

Pelagatti

Danelutto

CCP’09 - Skeleton based programming models

The Pisa picture: alive projects

ProActive Skel

Components

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

JJPF

JXTAskel

dynamic ASSIST

CCP’09 - Skeleton based programming models

The Pisa picture : side effects ...

ORC based

support methodology

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Languages vs. libraries

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Languages vs. libraries

Languages

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Languages vs. libraries

Languages Libraries

CCP’09 - Skeleton based programming models

Languages

• Completely new language

• Coordination language

• Pragmas to “drive” implementation (data distribution, parallelism degree,

reordering, load balancing)

• Compiler (static properties)

• Generates (high level) source code

• Targets specific parallel model (threads, commlibs)

• Performs known optimizations (e.g. parallelism degree, n2m

communication optimization, …)

• Run time (dynamic properties)

• Load balancing

• Fault tolerance

CCP’09 - Skeleton based programming models

Libraries

• Library calls:

• Declare patterns

• Instantiate parameters

• Drive implementation

• Implementation

• Completely at run time (or JIT)

• Relies on library communication facilities

• Usually more efficient on dynamic properties handling

• “User friendly” approach (perceived)

• No need to learn a new language

• P3L

f in(T1 a) out(T2 b)

$c{ /* c code here … */

 b = …;

}c$

farm main in(T1 a) out(T2 b)

 nw 2

 f in(a) out(b)

end farm

• muskel

public static void
main(String [] args) {

 Skeleton worker = new F();

 Farm main = new Farm(f);

 Manager m = new Manager();

 m.setInputFile(“…”);

 m.setOutputFile(“…”);

 m.setProgram(main);

 m.setContract(new ParDegree(2));

 m.compute();

}

class F implements Skeleton {

 public T2 compute(T1 task) {
 T2 result = null;

 result = … ;

 return result;

 }

}

CCP’09 - Skeleton based programming models

A code comparison

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Template vs. macro data flow

Template

Macro data flow

Source

code

F

G

G

H

F

G

G

H

farm

Template lib

F G GH

compile

instantiate

op
tim
ize

run

seqF

pipe

farm

seqG

seqH

CCP’09 - Skeleton based programming models

Template based implementation

Source

code

pipe

farm

seqG

seqF seqHcompile

F

G

H

compile

MDF

int

MDF

int

MDF

int

MDF

int
F

G

H

F

G

H

F

G

H

matching

unit

CCP’09 - Skeleton based programming models

Macro data flow implementation

CCP’09 - Skeleton based programming models

Optimizations: normal form

P3L (the Pisa Parallel Programming Language 1991)

SkIE

(Skeleton Integrated

Environment 1997)

OcamlP3L

(1998)

SKElib (SKEleton

LIBrary 2000)

Macro Data Flow

RunTime (1999)

Lithium (2000)

muskel
(µskeleton lib 2003)

ASSIST

(A Software development

System based on Integrated

Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Fixed skeleton set vs. parametric

Fixed set

Parametric

CCP’09 - Skeleton based programming models

Parametric skeletons: the ASSIST way

CCP’09 - Skeleton based programming models

User defined skeleton: the muskel way

