Skeleton based programming (models)
CCP’09
M. Danelutto

The principle

* The new system presents the user with a selection of
iIndependent “algorithmic skeleton”, each of which
describes the structure of a particular style of
algorithm, in the way in which “higher order functions”
represent general computational frameworks in the
context of functional programming languages. The
user must describe a solution to a problem as an
instance of the appropriate skeleton.

(Cole 1988)

CCP’09 - Skeleton based programming models

The principle (rephrased)
¢ Abstract parallelism exploitation pattern by parametric
code (higher order function)

® Provide user mechanism to specify the parameters
(sequential code, extra parameters)

¢ Provide (user protected) state-of-the-art implementation
of each parallelism exploitation pattern

¢ |n case, allow composition

e Fundamental, property not present in first skeletons
systems

CCP’09 - Skeleton based programming models

Sample pattern: the task farm

e Parameters:
e \Norker code
¢ Parallelism degree (computed?)

e Known implementation

¢ Master slave pattern
¢ Possibly distributed master

¢ Master to master optimizations

e Composite worker ®\ i

CCP’09 - Skeleton based programming models

Skeleton evolution

Cole PhD (1988)

Fixed degree DC, Iterative combination, Cluster Task queue

Darlington (1992) P3L (1991)
Pipeline, Farm, RaMP, DMPA Pipeline, Farm, Map, Reduce
a0 RAN a4, Z e \-:A. ------------- >
SCL Fortran S SKIE ASSIST Lithium OcamlIP3L
BMF ('80) MALLBA (‘00) Serot (1999)

map fold reduce prefix + algebra combinatorial optimisation ~ Skipper (—MDF)

s,

s,
=
-
s,
-
e,
o
=,
-,
s
-

“ Skillicorn (mid ‘90) D> Gorlatchl(late ‘90)
Y
HOC (early ‘00)

~,
~,
~
'~
Y
~,

A
Muesli (2002) eSkel (2002)
Pipeline, Farm, Parallel array + collectives Parametric skeletons + Give/Take

CCP’09 - Skeleton based programming models

Cole PnD Thesis

¢ Fixed degree D&C, Iterative Combination (2 “best” items in the set combined,
iterated), Cluster Skeleton (abstrac machine rather than algorithm), Task
Queue

¢ ot of usage examples and analytical evaluation of skeletons
e Seminal work in the area

¢ Due to the motivations

¢ More that to the skeletons discussed

e Hierarchical composition later on (‘95 PARCO)

CCP’09 - Skeleton based programming models

Darlington IC

e Coordination comes in

This is in contrasi to the low level parallel extensions to languages where both tasks musi be
programimed simultaneously in an unstructured way. The coordination approach provides a
promising way Lo achieve the following important goals:

¢ Reusability of Sequential Code: Parallel programs can be developed by using the
coordination language to compose existing modules written in conventional langnages.

¢ Generality and Heterogeneity: Coordination langnages are independent of any base
computational language. Thus, they can be used to compose sequential programs writ-
ten in any language and can, in principle, co-ordinate programs writien in several dil-
ferent languages.

¢ Portability: Parallel programs can be elliciently implemented on a wide range ol par-
allel machines by specialised implementations ol the compositional operators [or target
architectures.

e Darlington et al. Functional Skeletons for Parallel Coordination (Europar ‘95)

CCP’09 - Skeleton based programming models

Darlington (2)

iy] map :: f{a —) — ParArray index o — ParArray index jJ
Inltla”y (91) map f << Xg..... Xp »> = << £ xp,....fxy 3>
Farm’ Plpellne! RaMP’ DMP imap :: (index — a — [#) — ParArray index a — ParArray index
imap f << Xg,...,%Xp »> = << £0xp,....,fnx, >>
fold :: (a— a — «a) — ParArray index o — a
fold () << xgp.....%Xp >> = X9 E - P xy
A :r (oo — o — o) — ParArray index o — ParArray index a
4 . scan ik €} ¥)T Jir
Then (95)' /' scan () <<€ xg9.%1...,%n >> = €< X, X0 L X1,....X0F - D xn >>
’
’
’
. . ’ farm :: (a — 3 —) — a — ParArray index 3 — ParArray index 4
Coordination (see before) .- farn £ env = map (£ env)
,' lﬂSPMD [l = id
’ SPMD £, 1f) : f = (SPMD £ f i 1f
Clearer data parallel asset . (gr. 1) : s = (SPD £s) o (gt o Uimap 17))
4
L’ map f o map g = map (f o g)
4
4
Control parallel skeletons- foldri (f o g) = fold f o map g
(Farm, SPMD) _.»send f o send g = send (f o g)
-7 fetch f o fetch g = fetch (g o)
Transformations ! .---"~ matrixAdd p A B = (gather o map SEQADD) (distribution f1 dl)
where
_____ C = SeqArray ((1..SIZE(A,1)), (1:SIZE(A,2)))
ANl =T fl = [((rowblock p),id}, ((row-block p),id), ((rowblock p),id)]
Fortran embedding ! _.-- e

CCP’09 - Skeleton based programming models

Kuchen ;: Muesli

{4 WirtschaftsInformatik

" Institot-Fir-Wirtschaftsinformatik

e Clearly separetes # Praktische Informatik
data and control MRAINEEs

parallelism exploitation 2= The Munster Skeleton Library Muesli

= E-Mall

& Impressum

The skeleton library Muesli is available here as a tar-file:

= The Minster Skeleton Library Muesli

For its installation, MPI as well as the GNIU C++ compiler are needed. (Other C+ 4+ compilers may require a few

¢ Builds on top of MPI e

For the moment, Muesli consists of the header file skeleton.h. The tar-file contains a couple of simple example
programs, among them data parallel, task parallel, and mixed data and task parallel cnes. A sequence of indepependent
skeleton computations is also possible (see example sequencetest.cpp). Moreover, there are a few kernels of parallel
applications, namely:

¢ Inheriths two tier model from P3L.:
¢ Arbitrary control parallel nestings

¢ \With data parallel or sequential leaves

CCP’09 - Skeleton based programming models

Muesli : nesting

int main(int argc, char **argv) {

try{
InitSkeletons (argc,argv) ;

Initial<int> pl (init) ;

Atomic<int,int> p2(square,l);

Process* p3 = NestedFarm<int,int>(p2,4);
Final<int> p4 (fin) ;

Pipe p3(pl,*p3,p4);

pS5.start () ;

TerminateSkeletons () ;}
catch (Exceptioné&) {cout << "Exception" << endl << flush;}

}

CCP’09 - Skeleton based programming models

Muesli : data parallel

template <class C> // using algorithm of Gentleman based on torus topology
DistributedMatrix<C> matmult (DistributedMatrix<C> A,DistributedMatrix<C> B) {
A.rotateRows (& negate) ;
B.rotateCols (& negate) ;
DistributedMatrix<C> R(A.getRows () ,A.getCols(),0,
A.getBlocksInCol (), A.getBlocksInRow()) ;
for (int i=0; i< A.getBlocksInRow(); ++i) {
typedef C (*skprod t) (const DistributedMatrix<C>&,
const DistributedMatrix<C>&, int, int, C);
R.mapIndexInPlace (curry ((skprod t)skprod<C>) (A) (B)) ;
A.rotateRows (-1) ;
B.rotateCols(-1) ;}
return R;}

int main(int argc, char **argv) {

try{
InitSkeletons (argc,argv) ;
DistributedMatrix<int> A (Problemsize,Problemsize, & add,sqrtp,sqrtp);
DistributedMatrix<int> B(Problemsize,Problemsize, & add,sqrtp,sqrtp);
DistributedMatrix<int> C = matmult(A,B) ;
TerminateSkeletons () ;}

catch (Exceptioné&) {cout << "Exception" << endl << flush;};
}

CCP’09 - Skeleton based programming models

Gorlatch: HOC

¢ Inherits from Lithium

(HOC-Repository

it I [Divide [Component
¢ X amewor
Exploiting Web Services][::;]
Services
e Higher order components o v oo
p; " Service API | deplm '
. . . " Clientap1] | |[Chssloader | | FC P
® Farms, pipelines | mi =][L _
. /’;'gg?_?‘?&' gvetI.-iesrlj.}l{;lumt .. USE e '-q‘ig?;_i':ﬁ?e
e Developed in Muenster e
Programmer C‘-}l;l;‘];:ll'l)?:

e Joint works with

public interface Worker {
public double[] compute (double[] input);
}

public interface Master {

e Caromel, Cole, Danelutto

public deuble[] jeinidouble[] [] input);
farmHOC =farmFactory.createHOC(); }

farmHOC . getMaster ("masterID®); // web service inwvocaticon in Java

farmHOC, setWorker | "workerID®) ;

String[] targetHoste = {"masterH", "workerH1", -}

farmHOC. configqurecrid(targetHosts); // deployment of the farmHOC on the Grid

farmHOC. compute (input) ;

CCP’09 - Skeleton based programming models

public double[] []1 split (double[] 1nput, int numWorkers);

Cole eSkel

¢ | ocal data or Spread data processing
¢ Implicit or explicit interaction mode
¢ Transient and persistent skeleton calls in a skeleton

¢ Pipeline, Deal (cyclic distrib farm), Farm, Butterfly

e MPI (rather glossy interface)

Noig ' eton @ sl(e
?

* L] ~ L]
esl‘ﬂ'x The Edinburgh Skeleton Library
d | -]

I!I T » Introduction to eSkel
b ;‘r e ¢S5kel's downloads Hew
w v # c5kel's publications
r s Links

a

[}

CCP’09 - Skeleton based programming models

MALLBA

e Combinatorial optimization through skeletons
¢ Fairly “unconventional” set of skeletons

e D&C, B&B, Dynamic Programming, Hill Climbing, Metropolis, Simulated
Annealing (SA), Tabu Search (TS) and Genetic Algorithms (GA)

e C++ implementation

e provided classes (fixed implementation) + required classes (user supplied,
problem dependent code)

¢ Related work on performance models

¢ Excellent speedups on (heterogeneous CPU) clusters as well as on WAN

CCP’09 - Skeleton based programming models

The Pisa Picture

P3L (the Pisa Parallel Programming Language 1991)

—

SKkIE OcamlP3L
(Skeleton Integrated (1998) Macro Data Flow
Environment 1997) N RunTime (1999)
5{/ AN

SKElib (2000)

\D \\& \Y
Lithium (2000)

\Y%
ASSIST l
(A Software development muskel
System based on Integrated D

Skeleton Technology 2001) (nskeleton lib 2003)

CCP’09 - Skeleton based programming models

The Pisa picture

P3L (the Pisa Parallel Programming Language 1991)

— O\

SkIE OcamlP3L
(Skeleton Integrated (1998)
Environment 1997) N Macro Data Flow

™. RunTime (1999)

SKElib (SKEleton ™
LIBrary 2000)

Lithium (2000)

\Y
ASSIST J7
(A Software development muskel
System based on Integrated —>

Skeleton Technology 2001) (uskeleton lib 2003)

CCP’09 - Skeleton based programming models

The Pisa picture: alive projects

P3L (the Pisa Parallel Programming Language 1991)

4/\ Pelagatti

SKIE OcamlP3L <
(Skeleton Integrated (1998)
Environment 1997) Macro Data Flow

“ RunTime (1999)

SKELlib (SKEleton ™
LIBrary 2000)

, \» Lithium (2000
v

ASSIST J]
(A Software development — =

muskel
System based on Integrated :
Skeleton Technology 2001) (uskeleton lib 2003)

CCP’09 - Skeleton based programming models

The Pisa picture : side effects ...

ORC based Macro Data Flow
support methodology RunTime (1999)

Lithium (2000)

ASSIST
(A Software development

System based on Integrated

Skeleton Technology 2001) (uskeleton Iib 20Q3)

/ JXTAskel

ProActive Skel
Components JJPF

dynamic ASSIST

CCP’09 - Skeleton based programming models

Languages vs. libraries

P3L (the Pisa Parallel Programming Language 1991)

— O\

SKIE OcamlP3L
(Skeleton Integrated (1998)
Environment 1997) N\ Macro Data Flow

.. RunTime (1999)

SKEIib (SKEleton ™.
LIBrary 2000)

\ AN
)
Lithium (2000)

\Y
ASSIST l
(A Software development muskel
System based on Integrated —>

Skeleton Technology 2001) (uskeleton lib 2003)

CCP’09 - Skeleton based programming models

Languages vs. libraries

P3L (the Pisa Parallel Programming Language 1991)

SKIE
(Skeleton Integrated
Environment 1997)

OcamlP3L
(1998)

™ Macro Data Flow

. RunTime (1999)
N

SKElib (SKEleton ™\
LIBrary 2000) ™\

\D \\
A
Lithium (2000)

muskel
(uskeleton lib 2003)

Languages

v

ASSIST
(A Software development

System based on Integrated —>
Skeleton Technology 2001)

CCP’09 - Skeleton based programming models

Languages vs. libraries
AN

P3L (the Pisa Parallel Programming Language 1991)

SKIE OcamlP3L

(Skeleton Integrated (1998)
Environment 1997) b Macro Data Flow

. RunTime (1999)

0 \\
SKElib (SKEleton ™\
LIBrary 2000) \\
Languages %rariés
Lithium (2000)
\Y
ASSIST l

(A Software development
System based on Integrated
Skeleton Technology 2001)

muskel
(uskeleton lib 2003)

CCP’09 - Skeleton based programming models

Languages

e Completely new language
e Coordination language

e Pragmas to “drive” implementation (data distribution, parallelism degree,
reordering, load balancing)

e Compiler (static properties)
e Generates (high level) source code
¢ Targets specific parallel model (threads, commlibs)

e Performs known optimizations (e.g. parallelism degree, n2m
communication optimization, ...)

¢ Run time (dynamic properties)
¢ | oad balancing

e Fault tolerance

CCP’09 - Skeleton based programming models

Libraries

e Library calls:

¢ Declare patterns

¢ Instantiate parameters

¢ Drive implementation
¢ Implementation

e Completely at run time (or JIT)

¢ Relies on library communication facilities

e Usually more efficient on dynamic properties handling
e “User friendly” approach (perceived)

* No need to learn a new language

CCP’09 - Skeleton based programming models

A code comparison

e muskel

°
P3L public static void
main (String [] args) ({
Skeleton worker = new F ()

f in(T1l a) out(T2 b) Farm main = new Farm(f);

Manager m = new Manager() ;
* here .. *
$C{ / c code ere / m.setInputFile (“..”) ;

b= .; m.setOutputFile (“..”) ;
}C$ m.setProgram(main) ;
m.setContract (new ParDegree(2)) ;
m.compute () ;

}

farm main in (Tl a) out (T2 b)
class F implements Skeleton ({

nw 2 public T2 compute (Tl task) {
. T2 1t = 11;
f in(a) out(b) result = nu
result = .. ;
end farm return result;

}

CCP’09 - Skeleton based programming models

Template vs. macro data flow

acro Data Flow
RunTime (1999)

—
SKELlib (SKEleton ™\

LIBrary 2000)

muskel
(uskeleton lib 2003)

CCP’09 - Skeleton based programming models

Template based implementation

Source
code

4

-~

~

compile

\ instantiate
farm O& _l_
o Template lib J/

pipe

— T~

seqF farm segH

CCP’09 - Skeleton based programming models

Macro data flow implementation

Source
code

\
/I\ \
compile » seqF farm segH EEE@€> 6" \

pipe

| \

seqG

™ o o o)

CCP’09 - Skeleton based programming models

Optimizations: normal form

 Step 1: take the frontier

« Improve service time pipe

* Stream parallel N %;E/;nln\
computations \ |

* (Coarser grain remote gggg/
computations .

« Step 2: mak b

* Automatic transformation ep 2: make a (big) seq
tool (source2source) seqF:seqG;seqH

* Proven correct, efficient g _
(theoretically & ° Step 3: farm it
experimentally) farm

|
seqF;seaG;seaH

CCP’09 - Skeleton based programming models

Fixed skeleton set vs. parametric

CCP’09 - Skeleton based programming models

Set of virtually parallel

activites (named + code)

Shared state among virtual
activities (if needed)

Cycle control over virtual
parallel activities

Input data from data flow
streams to virtual activities
and state with non
deterministic control

Data from virtual activities
and state to output streams

Parametric skeletons: the ASSIST way

000}
[=]
ol O O O]z
O 0O
parmod matrix mul (input stream long ML[N][M], long MZ[N][H]

output stream long M3I[M][H])
{
topology array [L1:M][J:H] Bw;
attribute long A[N][H] scatter A[*ia][*Jja] cnto Pv[ia][ia];
attribute long B[N][M] scatter B[*ib][*jb] onto Pvw[ib][ib];
stream long ris;
do input section {
guardl: on , , M1 && M2 {
distribution M1[*i0][*J0] scatter to A[i0]([]j0]:
distribution M2[*il1][*jl] scatter to B[il][jl]:
}

} while (true)

virtual processes {
elabl (in guardl ocut ris) {
VP i, j { £.mul (in A[i][], BL1[3]
qutmit Stream ris);
}

}

CCP’09 - Skeleton based programming models

User defined skeleton: the muskel way

e Skeleton tree = normal
form = data flow

e User defined data flow
graphs

 User friendly ways to
connect them |

 User programs non 360G
skeleton parallel code

* Macro data flow interpreter
interprets it as plain
skeleton derived code

CCP’09 - Skeleton based programming models

