
INTRODUCTION TO
APACHE STORM
Tiziano De Matteis

Ph.D. Course in Perspective in Parallel Computing

OUTLINE

▷ Introduction
▷ Apache Storm:

○ Basics

○ Guaranteed Processing

○ Internals

○ Usage examples

▷ Discussion
▷ Conclusions

INTRODUCTION
Apache Storm is a real-time fault-tolerant and distributed Stream
Processing Engine (SPE)

SPEs tackle an application space in which programs have in input
continuous streams of information that has to be processed as it
arrives :

▷ use cases: financial applications, network monitoring, social network
analysis, etc…

▷ different from traditional batch systems (store and process).

This is in line to what we have studied in the Ph.D. course (data arrives
from external source and computations are long running and often
stateful).

SPEs EVOLUTION

1. Early 2000s, centralized systems (DSMS, CEP);

2. Till 2008: evolution to distributed systems;

3. From 2009: “general-purpose” systems (SPS o SPE) from
academia or big companies for which Hadoop was not
sufficient

Some names: S4 (Yahoo), Samza (Linkedin), Millwheel(Google),
Storm (Twitter), Spark Streaming, InfoSphereStream (IBM), Kinesis
(Amazon) …

APACHE STORM

History: Backtype → Twitter (2011) → Apache Incubator
(sept. 2013) → Apache (sept. 2014)

Written in Clojure, it is language agnostic (Java is the natural
choice and we will use it in the examples).

Core concepts:

▷ tuple: a named list of values;
▷ stream: a (possibly) unbounded sequence of tuples

processed by the application.

Basics

BASICS
A Streaming Application is defined in Storm by means of a topology that
describes its logic as a graph of operators and streams. We can have two
types of operators:

SPOUT

BOLT

BOLT

BOLTSPOUT

BOLT

▷ spouts: are the sources of streams in a
topology. Generally will read tuples
from external sources (e.g. Twitter
API) or from disk and emit them in the
topology;

▷ bolts: processes input streams and
produce output streams. They
encapsulate the application logic.

TOPOLOGY EXAMPLE
Word Count: count the different words in a stream of sentences

SentenceSpout: emits a stream of tuples
that represent sentences:

{sentence: “my dog has fleas”}

SplitSentenceBolt: emits a tuple for each
word in the sentences it receives:

{word: “my”}; {word:”dog”}; …

WordCountBolt: updates the count and
at save it to file.

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentencs-spout", new SentenceSpout());

builder.setBolt("split-bolt", new SplitSentenceBolt())

 .shuffleGrouping("sentences-spout");

builder.setBolt("count-bolt", new WordCountBolt())

 .fieldsGrouping("split-bolt", new Fields("word"));

Implemented by 3 classes and composed to
obtain the desired topology:

TOPOLOGY EXAMPLE
Each node extends some abstract classes and must implements some basic
methods for defining the format of the tuple emitted, the logic and so on….

public class SentenceSpout extends BaseRichSpout {
private SpoutOutputCollector collector;

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("sentence"));

}

public void open(Map config, TopologyContext context,SpoutOutputCollector collector) {
this.collector = collector;

}

public void nextTuple() {
//prepare the next sentence S to emit
this.collector.emit(new Values(S));
//…

}
}

TOPOLOGY EXAMPLE
public class SplitSentenceBolt extends BaseRichBolt{

private OutputCollector collector;

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}

public void prepare(Map config, TopologyContext context,OutputCollector collector) {
this.collector = collector;

}

public void execute(Tuple tuple) {
String sentence = tuple.getStringByField("sentence");
String[] words = sentence.split(" ");
for(String word : words){

this.collector.emit(new Values(word));
}

}
}

TOPOLOGY EXAMPLE
public class WordCountBolt extends BaseRichBolt{

private OutputCollector collector;
private HashMap<String,Long> counts=null;

public void declareOutputFields(OutputFieldsDeclarer declarer) {
//this bolt does not emit anything

}

public void prepare(Map config, TopologyContext context,OutputCollector collector) {
this.collector = collector;
this.counts = new HashMap<String,Long>();

}

public void execute(Tuple tuple) {
String word = tuple.getStringByField("word");
//...increments count..

}
}

APPLICATION DEPLOYING
When executed, the topology is deployed as a set of processing entities over
a set of computational resources (typically a cluster). Parallelism is achieved
in Storm by running multiple replicas of the same spout/bolt:

SPOUT

BOLT
1

BOLT
2

BOLT
3

SPOUT

BOLT
1

BOLT
2

BOLT
3

Groupings specify how tuples are routed to the various replicas

GROUPINGS
There are 7 built-in possibilities, the most interesting are:

▷ shuffle grouping: tuples are randomly distributed;
▷ field grouping: the stream is partitioned according to a tuple

attribute. Tuples with the same attribute will be scheduled to
the same replica;

▷ all grouping: tuples are replicated to all replicas;
▷ direct grouping: the producer decides the destination replica
▷ global grouping: all the tuples go to the same replica (low. ID).

Users have also the possibility of implementing their own
grouping through the CustomStreamGrouping interface

EXAMPLE

Back to the Words Count example: grouping are specified while
we build the topology

TopologyBuilder builder = new TopologyBuilder();

builder.setSpout("sentences-spout", new SentenceSpout());

builder.setBolt("split-bolt", new SplitSentenceBolt())

 .shuffleGrouping("sentences-spout");

builder.setBolt("count-bolt", new WordCountBolt())

 .fieldsGrouping("split-bolt", new Fields("word"));

TOPOLOGY EXAMPLE

public class WordCountTopology {
public static void main(String[] args) throws Exception {

//…Topology construction…
Config config = new Config();

LocalCluster cluster = new LocalCluster();

cluster.submitTopology(TOPOLOGY_NAME, config, builder.createTopology());

waitForSeconds(10);
cluster.killTopology(TOPOLOGY_NAME);
cluster.shutdown();

}
}

Finally, let’s see how the main will look like:

Guaranteed
Processing

GUARANTEED PROCESSING

Storm provides an API to guarantee that a tuple emitted by a
spout is fully processed by the topology (at-least-once semantic).

A tuple coming off a spout can trigger thousands of tuples to
be created based on it. Consider the WordCount example:

▷ the spout generates sentences (tuples);
▷ the bolt generates a set of words for each sentence (child

tuples).

A tuple is fully processed iff it and all its child tuples have been
correctly processed by the topology.

GUARANTEED PROCESSING
Another way to look at it is to consider the tuple tree:

SPOUT

BOLT
1

BOLT
2

BOLT
3

BOLT
4

BOLT
5

▷ the solid lines represent the
tuple emitted by the spout;

▷ the dashed ones the child tuples
generated by the bolts.

With guaranteed processing, each bolt in the tree can either acknowledge or
fail a tuple:

▷ If all bolts in the tree acknowledge the tuple and child tuples the
message processing is complete;

▷ if any bolts explicitly fail a tuple, or we exceed a time-out period, the
processing is failed.

GUARANTEED PROCESSING
From the Spout side, we have to keep track of the tuple emitted
and be prepared to handle fails:

public void nextTuple() {
//prepare the next sentence S to emit
this.collector.emit(new Values(S), msgID);
//…

}

Assign a unique ID to any
emitted tuple

public void ack(Object msgID) {
//handle success
//...

}

public void fail(Object msgID) {
//handle failure
//...

}

Implement the ack and fail
methods for handling
successes and failures

GUARANTEED PROCESSING
On the Bolts side, we have to anchor any emitted tuple to the
originating one and acknowledging or failing tuples

public void execute(Tuple tuple) {
//… processing...
this.collector.emit(tuple, new Values(word));

Anchoring (through
overloaded emit method)

//acknowledgment
this.collector.ack(tuple);

//or, if something goes wrong, fail
this.collector.fail(tuple);

}

Ack or fail the tuple

Internal
Architecture

STORM ARCHITECTURE

▷ Master node: runs the Nimbus, a central job
master to which topologies are submitted . It is
in charge of scheduling, job orchestration,
communication and fault tolerance;

▷ Worker nodes: nodes of the cluster in which
applications are executed. Each of them run a
Supervisor, that communicates with the
Nimbus about topologies and available
resources.

Nimbus

ZooKeeper ZooKeeper

Superv Superv Superv

The coordination between this two entities is done through Zookeper that is
used also for their fault tolerance

Two kinds of nodes in a Storm cluster:

STORM ARCHITECTURE

▷ Worker: 1+ per cluster node, each one is related to one topology;

▷ Executor: thread spawned by the Worker. It
runs one or more tasks for the same
component (bolt or spout);

▷ Task: a component replica.

By default there is a 1:1 association between Executor and Tasks
builder.setBolt("split-bolt", new SplitSentenceBolt(),2).setNumTasks(4)
 .shuffleGrouping("sentences-spout");

Worker Process

Three entities are involved in running a topology:

Therefore Workers provide inter-topology
parallelism, Executors intra-topology and Tasks
intra-component.

Task Task

TaskTask

Task Task

TaskTask

Parallelism Hint

Usage
Examples

ON TOP OF STORM

Storm is having a discrete success and various
libraries/frameworks have been developed on top of it. Just to
name a few:

▷ Storm Trident: a library that provides micro-batching and high
level contructs (e.g. groupBy, aggregates, join);

▷ Yahoo/Apache Samoa [3]: a distributed streaming machine
learning (ML) framework that can run on top of Storm;

▷ Twitter Summingbird [4]: streaming Map Reduce.

USAGE EXAMPLES: STORM @YAHOO
Various applications: identifying a breaking news story and promoting
it, showing trending search terms as they happen, helping to identify
and block SPAM, or letting advertisers see the impact of their
campaigns as quickly as possible.

The number of nodes over
which they deployed Storm
applications constantly
increases (doubled in the last
six month) [5]

USAGE EXAMPLES: STORM @TWITTER

Twitter contributed a lot in the development of Storm

It runs on hundreds of servers, with several hundreds of
topologies deployed [6]:

▷ these are used by various groups at Twitter like revenue,
search, content discovery,...

▷ perform simple things (like filtering and aggregating the
content of various streams) or complex things (like running
machine learning algorithms on stream data);

BUT THIS WAS 2014...

USAGE EXAMPLES: STORM @TWITTER
In June 2015: Storm has been decommissioned and Heron (their own SPE,
[7]) is now the de-facto streaming system at Twitter, for a variety of
reasons:

▷ Each worker runs a mix of tasks, making it difficult to reason about the
behaviour and performance of a particular task;

▷ Each tuple has to pass through four threads in the worker process. This
design leads to significant overhead;

▷ Nimbus is functionally overloaded and becomes an operational bottleneck;
▷ Storm workers belonging to different topologies but running on the same

machine can interfere with each other;
▷ ...and others, mainly related to its implementation

Results: 7-10X improvements in throughput, and 5-10X reductions in tuple
latencies, 3x reduction in resource consumption

Same philosophy adopted by other companies, e.g. librato.com

Discussion

COMPARISONS

We want to make a comparison between Storm wrt what we
have seen in the Ph.D. course. We can do it from two points of
view:

▷ methodological one: in the course we have seen how algo.
skeletons/pattern could help programmer in developing
their parallel application in a structured way. How Storm
relate to this?

▷ technological one: as a framework

COMPARISON: METHODOLOGICAL
Storm provides a way of defining loosely structured parallel
programs:

▷ the programmer specifies the topologies (i.e. the
computational graphs);

▷ but can exploit limited possibilities for what concern the
internal parallelization of the operator.

An idea could be of implement algorithmic skeletons as an
abstraction on top of Storm: they will be “translated” in a set
of spout/bolts that mimic their behaviour.

EXAMPLE: FARM ABSTRACTION
Example: Farm skeleton (Emitter, Worker, Collector) on top of Storm

E

W

W

W

C

▷ the Emitter is implemented as a Spout that
receives/generates the stream of data and
send it to Workers

▷ Workers have the same logic, therefore we
can implement them as a Bolt whose
number of Executor/Task is the equivalent
of the desired parallelism degree. Shuffle
grouping is used to distribute data

▷ Collector is implemented as another bolt (parallelism hint=1 if sequential)

E

W

W

W

C

This can be done also for other skeletons such as Pipeline, Map,...

COMPARISON: AS A FRAMEWORK
During the course we have seen various parallel framework (e.g.
Fastflow). How they relate to Storm?

▷ we can express the same type of computations. In Storm it is required
a major effort to the programmers since it does not exploit any
structured way of composing parallel programs;

▷ on the other side, it should be noticed that Storm is a “production
framework” in contrast to the others that are mainly
research/academic products. It allows an easy the deploy of multiple
application on a set of distributed resources, it takes into account
fault tolerance mechanisms … but still there is a lot of work to do (e.g.
autonomic management)

CONCLUSIONS

We have take a rapid tour on the features of Storm.

It is a complete framework for the development, deployment
and maintenance of distributed stream applications.

But

- it is not a structured parallel frameworks;
- its internal architecture is a little bit confusing;
- actually it is not fault tolerant but provides mechanisms to

implement this feature

BIBLIOGRAPHY

[1] Apache Storm Documentation: https://storm.apache.
org/documentation/Home.html

[2] Goetz, P. Taylor, and Brian O'Neill. Storm blueprints: Patterns for distributed
real-time computation. Packt Publishing Ltd, 2014.

[3] Morales, Gianmarco De Francisci, and Albert Bifet. "SAMOA: Scalable
Advanced Massive Online Analysis." Journal of Machine Learning Research 16
(2015): 149-153.

[4] Oscar Boykin, Sam Ritchie, Ian O'Connell, and Jimmy Lin. 2014. Summingbird:
a framework for integrating batch and online MapReduce computations. Proc.
VLDB Endow. 7, 13 (August 2014), 1441-1451.

[5] Apache Storm Roadmap at Yahoo: http://yahoohadoop.tumblr.
com/post/122544585051/apache-storm-roadmap-at-yahoo

http://yahoohadoop.tumblr.com/post/122544585051/apache-storm-roadmap-at-yahoo
http://yahoohadoop.tumblr.com/post/122544585051/apache-storm-roadmap-at-yahoo
http://yahoohadoop.tumblr.com/post/122544585051/apache-storm-roadmap-at-yahoo

BIBLIOGRAPHY

[6] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@twitter. In
Proceedings of the 2014 ACM SIGMOD international conference on Management
of data (SIGMOD '14). ACM, New York, NY, USA, 147-156.

[7] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher
Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data (SIGMOD '15).

Thank you!
Questions?

