
Semi-formal models to support program development:
autonomic management within component based
parallel and distributed programming

Marco Danelutto
Dept. Computer Science - Univ. Pisa & CoreGRID Programming model Institute

FMCO 2008
Sophia Antipolis - October 2008

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Contents

Introduction

Functional vs. non-functional concerns

Autonomic management of non-functional concerns

“Semi-formal” handling of non-functional concerns

ORC

Use case

Performance tuning in stream parallel component
compositions

 Conclusions

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Contents

Introduction

Functional vs. non-functional concerns

Autonomic management of non-functional concerns

“Semi-formal” handling of non-functional concerns

ORC

Use case

Performance tuning in stream parallel component
compositions

 Conclusions

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Functional & non functional concerns

Functional

all aspects related to what is computed

Non-functional

all aspects related to how the result is computed

In parallel distributed programming

functional: the algorithm, the kind of parallel
pattern used

non-functional: parallelism degree, load balance,
fault tolerance, security, ...

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Functional & non functional concerns

Functional

all aspects related to what is computed

Non-functional

all aspects related to how the result is computed

In parallel distributed programming

functional: the algorithm, the kind of parallel
pattern used

non-functional: parallelism degree, load balance,
fault tolerance, security, ...

Application
programmer concerns

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Functional & non functional concerns

Functional

all aspects related to what is computed

Non-functional

all aspects related to how the result is computed

In parallel distributed programming

functional: the algorithm, the kind of parallel
pattern used

non-functional: parallelism degree, load balance,
fault tolerance, security, ...

Application
programmer concerns

System programmer concerns

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Autonomic management of non functional
concerns

Autonomic management
control loop: monitor ➙ analyze ➙ plan ➙
execute
monitoring

mechanisms
analyzing

reference models
planning

strategies
executing

mechanisms

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Autonomic management of non functional
concerns

Autonomic management
control loop: monitor ➙ analyze ➙ plan ➙
execute
monitoring

mechanisms
analyzing

reference models
planning

strategies
executing

mechanisms

Analyse

Monitor Plan

Execute

Monitoring
mechanisms

Abstract
performance

model

Add worker,
migrate

to faster PE, ...

Actuator mechanisms
(deploy, run, ...)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Reactive autonomic management

Monitoring

non-invasive, immediate, effective

Analysis

automatic, prioritized, extendible

Planning

target architecture specific, optimized

Execute

efficient, fast

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Autonomic management in GCM

Behavioural skeleton concept

co-design of

parallelism exploitation pattern

autonomic management

Performance management

initial setup (parallelism degree)

optimization/tuning (load balancing, fault
tolerance)

user driven (contract/SLA)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Autonomic management in GCM

Behavioural skeleton concept

co-design of

parallelism exploitation pattern

autonomic management

Performance management

initial setup (parallelism degree)

optimization/tuning (load balancing, fault
tolerance)

user driven (contract/SLA)

S C

W

W

W

Functional

server port

Functional

client port

AM

AC

skeleton

behaviour

(e.g. ORC)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Behavioural skeleton

Algorithmic

skeleton

Autonomic

manager

Behavioural

skeleton

Functional concern Non functional concern

System programmer concern

Application programmer concern

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Behavioural skeleton

Algorithmic

skeleton

Autonomic

manager

Behavioural

skeleton

Functional concern Non functional concern

System programmer concern

Application programmer concern

Params...
Working

Application

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Behavioural skeleton sample: functional
replication

Autonomic Controller
implements passive actions

Autonomic Manager
manages performance tuning

S port
distributes input tasks to Ws

C Port
collects results from Ws

Worker components
compute results (functional)

S C

W

W

W

Functional

server port

Functional

client port

AM

AC

skeleton

behaviour

(e.g. ORC)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Rule based autonomic management

triggering of actions

first order logic formulae over monitoring figures

analysis

ordering / scheduling of the fired triggers

planning/execute

sequence of mechanism invocation

GCM uses JBoss rules (drools)

rulename salience nn when ... then ...

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Already implemented (single pattern/
manager)

parallelism degree adjustment

increase

suitable input pressure & unsatisfied contract

decrease

over satisfied contract

unsuitable input pressure

fault tolerance

automatic recovery of faulty resources (muskel)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

To be implemented (hierarchical pattern/
manager)

change in (nesting of)
parallelism exploitation
patterns used

pipeline stage
unbalance

stage collapsing

farm out stage

combination of
collapsing and
farming out

S1 S2 S3 S4

2 2 1 1

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

To be implemented (hierarchical pattern/
manager)

change in (nesting of)
parallelism exploitation
patterns used

pipeline stage
unbalance

stage collapsing

farm out stage

combination of
collapsing and
farming out

S1 S2 S3 S4

2 2 1 1

S1 S2 S3;S4

2 2 2

S1

S1

S2 S3 S4

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

To be implemented (hierarchical pattern/
manager)

change in (nesting of)
parallelism exploitation
patterns used

pipeline stage
unbalance

stage collapsing

farm out stage

combination of
collapsing and
farming out

S1 S2 S3 S4

2 2 1 1

S1 S2 S3;S4

2 2 2

S1 S2

S1 S2

S3;S4

S1

S1

S2 S3 S4

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

To be implemented (hierarchical pattern/
manager)

change in (nesting of)
parallelism exploitation
patterns used

pipeline stage
unbalance

stage collapsing

farm out stage

combination of
collapsing and
farming out

S1 S2 S3 S4

2 2 1 1

S1 S2 S3;S4

2 2 2

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Autonomic performance
management @ work

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Contents

Introduction

Functional vs. non-functional concerns

Autonomic management of non-functional concerns

“Semi-formal” handling of non-functional concerns

ORC

Use case

Performance tuning in stream parallel component
compositions

 Conclusions

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Tools to support reasoning
about autonomic management

the two extremes

formal tools

consistent background needed

nice results demonstrated

possibly with limited scope

implementation

consistent background & ability needed

nice results “demonstrated”

possibly requiring a huge amount of time

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Semi-formal tools

preserve part of the knowledge typical of
programmers

preserve part of the techniques typical of formal
tools

e.g.

a framework

suitable to model interesting properties of a
(distributed/parallel) program

synthetic

supporting program transformations

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

ORC

Introduced by Misra and Cook in early ’00

provides primitive combinators for parallelism and
non determinism (asymmetric parallelism)

look&feel close to a programming language

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

ORC in a slide

site : local or remote (unreliable) unit of computation
combinators

a | b site or expression a and b evaluated in parallel
a >> b (or a > x > b) a evaluated first, then b
f(x) where x:∈ (a | b) a,b and f started, as soon as
either a or b produce a value, it is bound to x and (a|
b) is terminated
(new syntax f(x)<x<(a|b))

Functions
def f(param) =

predefined sites + channels
if, Rtimer, +, -, ... , ch.get(), ch.put(x)

most/all the
abstractions needed

are there

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

Autonomic management

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

Autonomic management

monitoring

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

Autonomic management

triggering

monitoring

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

Autonomic management

triggering

monitoring

plan
execute

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample usage of ORC

Reverse engineering (modelling) of muskel, a full
Java/RMI skeleton library maintained at University of
Pisa

Autonomic management

triggering

monitoring

plan
execute

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Contents

Introduction

Functional vs. non-functional concerns

Autonomic management of non-functional concerns

“Semi-formal” handling of non-functional concerns

ORC

Use case

Performance tuning in stream parallel component
compositions

 Conclusions

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

ORC for autonomic management

semi formal derivation / proof of rewriting rules

e.g. pipe(f,g) = pipe(farm(f),g)

simple example, technique to be used for more
complex derivations

first step: formalization of skeletons

second step: semi formal processing of ORC
expressions

pipe(A, B, chin, chout) = stage(A, chin, chnew)
| stage(B, chnew, chout)

stage(A, chin, chout) = chin.get() > task > A(task) >
result > chout.put(result) >>
stage(A, chin, chout)

farm(W, nw, cin, chout) = | i = 1, nw : Workeri(W, cin, chout)

Worker(W, cin, chout) = chin.get() > task > W (task) >
result > chout.put(result) >>
Worker(W, cin, chout)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Formalization of skeletons

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Semi-formal processing of ORC expressions

e.g. exploit semantics for channels

matching get/put pair collapsing

in actual traces

(R free for x !)

(a > x > ch.put(x) > R) | (. . . >> ch.get() > y > S)
R | . . . >> a > y > S

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

c1.get() > t > A(t) > y > c2.put(y) >> stage(A, c1, c2)

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

c1.get() > t > A(t) > y > c2.put(y) >> stage(A, c1, c2)

c2.get() > t > B(t) > y > c3.put(y) >> stage(B, c2, c3)

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

c1.get() > t > A(t) > y > c2.put(y) >> stage(A, c1, c2)

c2.get() > t > B(t) > y > c3.put(y) >> stage(B, c2, c3)

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

c1.get() > t > A(t) > y > c2.put(y) >> stage(A, c1, c2)

c2.get() > t > B(t) > y > c3.put(y) >> stage(B, c2, c3)

c1.get() > x > stage(seq(A, B))(x) > y > c3.put(y)

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

seq(A, B, chin, chout) = cin.get() > x > A(x) > y > B(y) > z > chout.put(z)

pipe(A, B, chin, chout)↔ seq(A, B, chin, chout)
M. Danelutto, Semi-formal models to support program development: autonomic management within component

based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample semi-formal reasoning

c1.get() > t > A(t) > y > c2.put(y) >> stage(A, c1, c2)

c2.get() > t > B(t) > y > c3.put(y) >> stage(B, c2, c3)

c1.get() > x > stage(seq(A, B))(x) > y > c3.put(y)

pipe(A, B, c1, c3) = stage(A, c1, c2) | stage(B, c2, c3)

Mgr(Sk, SLA) = distribute(Sk, SLA) > s >
monitor(s) > m >
analyse(s, m) > (b, p, v) >
((if(b) >> adapt(s, p) > s1 >

Mgr(s1, SLA))
| (if(∼ b) >> raise(v) >

Mgr(s, passiveMode(SLA)))

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Design of autonomic managers

BSekl(Sk, Mgr, SLA) = Sk | Mgr(Sk, SLA)

Mgr(Sk, SLA) = distribute(Sk, SLA) > s >
monitor(s) > m >
analyse(s, m) > (b, p, v) >
((if(b) >> adapt(s, p) > s1 >

Mgr(s1, SLA))
| (if(∼ b) >> raise(v) >

Mgr(s, passiveMode(SLA)))

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Design of autonomic managers

BSekl(Sk, Mgr, SLA) = Sk | Mgr(Sk, SLA)

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Adaptation in BS

modelling of management before actual
implementation

adapt(pipe(A, pipe(B, C)), plan) =
(if(plan = collapseF irst) >> pipe(seq(A, B), C))
| (if(plan == collapseLast) >> pipe(A, seq(B, C)))
| (if(plan == farmoutF irst) >> pipe(farm(A), pipe(B, C))))

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Adding metadata

annotations on Orc code

modelling several non functional concerns

e.g. security, communication costs

formal process deriving the aggregated metadata
from primitive/elementary/ground one (synthesis) or
primitive metadata from aggregated (analysis)

Analysis

placement annotations

policy managing nested skeleton annotations

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample metadata: process placement

placement(pipe(A, B), loc(X)) ∧ distribPolicy(keep)
placement(A, loc(X)) ∧ placement(B, loc(X))

placement(pipe(A, B), loc(X)) ∧ distribPolicy(distrib)
placement(A, loc(fresh())) ∧ placement(B, loc(fresh()))

placement(ch.get(), loc(X) ∧ placement(ch, loc(Y))
nonLocalCost(ch.get())

skeleton program + placement metadata (includes
support: channels, manager process(es), ...)

communication cost

automatic derivation of communication cost in
typical traces of execution

placement(ch.get(), loc(X) ∧ placement(ch, loc(Y)
nonLocalCost(ch.get())

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample metadata usage

placement(ch.get(), loc(X) ∧ placement(ch, loc(Y))
nonLocalCost(ch.get())

skeleton program + placement metadata (includes
support: channels, manager process(es), ...)

communication cost

automatic derivation of communication cost in
typical traces of execution

placement(ch.get(), loc(X) ∧ placement(ch, loc(Y)
nonLocalCost(ch.get())

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample metadata usage

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Sample metadata: security

Synthesis

marking of root depending on the marks at leaves

Usage:

node marking => securing code and data only
when needed

placement(A, loc(X)) ∧ insecure(X)
insecure(pipe(A,)) insecure(pipe(, A))

ORC modelling
of distributed code

O2J
library

Distributed prototype

implementation

user contrib

JAVA COW/NOW
target architecture

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

An Orc based development framework

user reasoning
results directly
translated to
runinng code

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

O2J internals (abstract view)

User Workstation

ORC specification

Sites
&

Processes
(use get, put,

call, ...)

Main
(declare sites
run manager

run sites
run top level
expression)

PE1

O2J RTS
Site

PE2

O2J RTS
Site

Process

Pen

O2J RTS
Site

Process
O2J lib

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

O2J internals (2)

...
send("B",new OrcMessage(x);
...

...
Object x = receive().getValue();
...

Socket s = ss.accept();

Socket s =

 new Socket(site.getIp(), site.getPort());

SiteId site = lookup("B");

ObjectOutputStream oos =

 new ObjectOutputStream(s.getOutputStream()); ObjectInputStream ois =

 new ObjectInputStream(s.getInputStream());

OrcMessage callMessage =

 (OrcMessage) ois.readObject();

oos.writeObject(message);

// register "A" to NS // register "B" to NS

Aldinucci, Danelutto, Dazzi, Kilpatrick, From ORC models to distributed Java code, CoreGRID IW’08 Herklion, April, 2-5, 2008

Experimental results

Aldinucci, Danelutto, Dazzi, Kilpatrick, From ORC models to distributed Java code, CoreGRID IW’08 Herklion, April, 2-5, 2008

Experimental results

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Conclusions

Autonomic management of non functional features

a must

a complex task

Semi formal modelling

provides insights and design hints

can be used to support reasoning

event stronger with proper metadata

Experience in GCM / CoreGRID / GridCOMP

M. Danelutto, Semi-formal models to support program development: autonomic management within component
based parallel and distributed programming, FMCO 2008, Sophia Antipolis, October 22nd, 2008

MC
G

GridCOMP

Thank you for your attention

Any questions ?

