@
g =
Y
¢

Common concepts among various
components models
Components

=_runtime entities with contractuallv s
time entitlies with contractually-s

u
2
b
=
@
5
5

§e

)

s)
Q@

ramminag lanat
amming lang

. ~11 AL~ Al PRG-I (PR I SRR w Y oS -y [y 4 I w ¥ B Y
- UbUdlly Jucelirieu usi Iy dlil irmneriadace ellliuoll Lallguagu \ILJL}
Bindings (aka connectors) l___> Jp,va- = 1\ﬂtav'&<c

= connectors among interfaces of the components

= various types: synchronous/asynchronous, local/remote, ...
Architecture Description Language (ADL)

= to define relationships among components and their properties

Concepts depending on the component

model and implementation language #1/2

= ADL

dedicated Ignglmnn (ie. XML base usina ¢
age LAY sing C

IL based) or
programming language (ie. Java 5 Ann

u “Hierachical components

only at design time (in the ADL)

also at runtime time (primitive and composite components)

= |ntrospection and intercessions capabilities

r.lvv\.lw SV LR LR RS AY LIRSS R i)

among them

Qelhlllf\/ to discover components interfaces and relationshins
ponents-Interraces-and-relationships

possibility to reconfigure the architecture at runtime
fixed (by the model) / open reflection capabilities

in general, how much they can be controlled, introspected,
instatiated, destroyed

otations
U &
w))| AL

Concepts depending on the component

model and implementation language #2/2
Multi-language support

= implementations for different pro
Java)
——
= interoperability among components written in different languages
= je. through an ORB

Programming language invasiveness

= mandatory interfaces to implement / classes to extend

Interface Definition Language (IDL)

= dedicate language (ie. Corba IDL) or using constructs of the
language used to write components code (ie. Java Interfaces)

Container

= do components need to be deployed on a container?

—_—

ML Components Reﬁrerrraﬁ'tr Example
| -7 C,

Service interface C

Servegd,\Q C
" iding a Service in

TRAME (LK lﬂ@l
Ty _/ =
et service SEH‘IM

- Lco—T 1
— |

UML Components Representation Example

= Two components
= Client
= _requiring a Service interface

= Server

= providing a Service interface

b

Lo

L] service service I:|_I Server
—

-
I —

Component models used nowadays

= niche market
= mainly C++ and Java implementations
Microsoft Component Model (COM)

= Microsoft platforms

The Fractal Component Model

Reasons for the Fractal Component Model

= |imitations in other component models and ADLSs:
N Y P Ry (IR S I P PP P Ty}
= jimitead SUppPOIt 101 UXLGIIbIUII dllu dUdplauori

= fixed for
= fixed forms of introspection & intercession
= « Develop a powerful (refiective) but fiexibie / extensibie /
customisable language independent component model for
any kind of software (from middlewares to operative systems)
throughout the complete software lifecycle, with an enphasis on
runtime reconfiguration and management which iSimgeneral
the least well handled nartc in mqqun annnnpn’r models. »

The Fractal Component Model #1/2 Cw%

B
o)
5
o)
5
-~
Q
)
5
o
o)
<
&

*(Rocursive

= components can be nested in composite components
e e——

= uniform view at any level of the system architecture
— - -

= Execution Model Independant

= no execution model is imnosed. Combonents can be run within
n X ionm Hs - Imbosed. Componhehis can be run-within

other execution models than the classical thread-based model
such as event-based models and so on

m @uage agnostic™

= implementations for various programming languages (Java,

C, ..

10

The Fractal Component Model #2/2

s((Component Sh@

= a2 given component instance can be included (or shared) by
more than one component. This is useful to model shared

resources such as memaory manager or device drivers for instance

-@inding Compone@

= a single abstraction for components connections that is called
bindings. Bindings can embed any communication semantics
from synchronous method calls to remote procedure calls

-@i!ective ref!ect@

capabilities

= different components in the same architecture may have different
level of introspection and intercession

@Mrosp. & @zpéaag W

11

£e

gll/@@lpgetation of "classical’-concepts——

= Components

= Bindings

= no fixed semantics

= primitive bindings: in the same address space (ie. an object

referance)

FTOITITINivo)

=_composite bindings: for distributed (ie. RMI) or heterogene

DI MU g O TUT WIS U I UiT v

JNI) co mmunlcatlon

1

2
TéBL'YﬂL . Interpretation of "classical" concepts

= Components

|
5

-
(1]

[]
==
)
(@]

=
Q
o
o
ol
n
n

o
(@]

[]
Q
@
=3

—~
=
(4]

o]
C
=
(o)
Q.

-
o
[¢]

]
L

= emit and receive Upt:lduuu invocations
= Bindings
= no fixed semantics
—————

= primitive bindings: in the same address space (ie. an object

referance)

FTOITITINivo)

m_comho
e

—

wposite bindings: for distributed (ie. RMI) or heterogeneus (ie.
JNI) communication

LA~ g S Vil

13

The membrane

= Composition and reflection behaviour

and intercession

= Can have interceptors

= Components in the same architecture can have different

membrane structure

20

14

Components: membrane + content

Y S G
e
. O O-€ /'____“

e

15

Standard Controllers

Reflection : minimal

= Comnonent controller (discovering compnonent interfaces)
mpohnent controlier (aiscovering componentinternaces)
o "~ —_—
=_Binding controller (binding an external component interface)
L
aflartinn = ctriintiiral
I\uwiivuiLlivii U uviLiurai

PR I PP L

R -~ e . o\
gy, TeImoviing subCuITIpuIIeriw)

~ et . FRRTI] R |
1Y, yeuurly CuIitipuorieric aurivutes)

= Lifecycle controller (starting, stopping the component)

—

22

16
A Fractal example: HelloWorld

server itf (functional
or controller)

Liant i4f
1 [18

Controller legend:
C: Component controller
AC: AttributeController I

CC: ContentController
LC: LifeCycleController
BC: BindingController

23

I —
—3
3
=
Qo
]
Q
g
— 6
@
(2]
e ()
)
o)
®
N Y N N

17

Programming with Fractal

Host programming environments
= Java: Julia, AOKell

C: Think, Cecilia

C++: Plasm

SmallTalk: FracTalk

= NET: FracNet

24

18

Fractal ADL

m The Fractal XML-based extensible Architecture Definition
Language

= different modules to cover different aspects: components
definition, their interfaces, bindings among them, attributes

\pIUPUI LIUb), CuITipuricel IL CUI Il.dll Inriel II. corripuoriel IL CUI II.UI II.
component remote deployment, component definition extension
from another definition, ...

= new modules can be added to cover other aspects

= je. BindingFactory module to allow bindings (client/server interfaces)

over arhﬁrar\l commu |n|r~9+|nn nrotocols
" A% 1) V Vivuuviv

= The lan means of an XM
DTD (

LA NS § =S

lage grammar is defined by

ql
gu
Document Type Def|n|t|on)

25

19

35 <component name='client'>

<interface name='c' role

crontant 1 o~ nt+ ! /S
SLVUITLCIIL L Lldoo— 11w, L (9 /-

</component>

~—™ <component name='server'

<content class='hw.server' />
nw.serveyt />

SLUIiLTiic v itaGoS Lh} v

</component>

<binding client='this.main' server='client.m' />
<binding client='client.c' server='server.s' />

</definition>

<interface name='m' role='server' signature='boot.api.Main' />
‘client' signature='hw.Service' />

>
<interface name='s' role='server' signature='hw.Service' />

Hel0)

‘E f

————]

26

20

Composition and binding rules

Top level component in an ADL file as a <definition>
element

Sub components as <component> sub elements

Primitive components deciare their impiementation artifact

= <content class="path.to.implFile" />

= type of the artifact depends on the Fractal implemetation (Java
class, Cfile, ...)

SoSS

S
Q
=
7
=
~—
@

-}

S
L
=
—
=t
=¥
Q

®

7

27

21

The Fractal ADL toolchain

= |tis itself a Fractal application

antains a uniform represei
heterogeneus languages t
= ADLs, IDLs, DSLs, ...

= may cover different architectural concerns:

= analysys, code generation, code compilation, deployment, ...
= handling components written in different languages:

= Java, C
= plugin based

28

22

Fractal ADL toolchain architecture

Code

——

deneration

J

Analysis

Code

deployment
J

H""\;Ud%—bo

semantic
checker

syntactic
analyzer

Loader module

execution

on
4e Q\'\\.\

A S

[T1, T2, T3, T4]

O'._.‘“
execution dependencies |/ <% «
engine resolution T3 T3

Scheduler module J

29

23

Samples of the Fractal versatility

Operating systems: written with Think or Cecilia
Transaction management: GOTM, Jironde
Persistency Services: Speedo, Perseus, JORM
Computational Grids: Proactive

Middleware for enterprise application integration (EAI):
Petals

Auto-adaptive EJB servers: ReflectAll

30

24

Fractal: conclusions

From objects to reflective components to build
manageable systems

= |nterfaces
= Explicit connections
= Membranes (reflective components)

Computational model for open systems

@D
3
D
5
[l
)
wn

= _open binding sema
=_open reflection semantics

Extensible ADlL & associated toolchain

PR} I - Py
OIl Ulie websile

= http://fractal.objectweb.org/

= http://fractal.objectweb.org/fractai-distribution (experimental)

31

Q:e;(,). 5 Jel downcle A+ Prodelbive

(4,&2)

