
MapReduce
CCP A.A. 2008-2009
M. Danelutto
Aprile 2009

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Contents

• Map pattern

• Reduce pattern

• MapReduce: implementations

• MapReduce: theoretical foundations

• MapReduce à la google

• Final course project

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map pattern

• operates on collections

• vectors, arrays, lists, ...

• applies a function f to all the elements in the collection

• f side effect free

• embarrassingly parallel pattern

• collection = stream ⇒ map = farm

• different problems related to parallelism exploitation

• same user view

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Reduce patter

• operates on collections

• vectors, arrays, lists, ...

• “sums” up all the elements in the collection

• using a binary operator ⊕

• definitely not an embarrassingly parallel pattern

• with associative and commutative ⊕

• tree reduction applies (O(log2n))

• plain ⊕ ⇒ O(n)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map typical implementation

• data collection input

• data collection spread

• with partitioning, load balancing ensured as much as
possible

• local computation

• data collection gathering

• key point to efficiency: computation grain

• fine grained f ⇒ iterative local computation

• data dimensions (domain and codomain of f) to be
considered

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map typical implementation

(a) (b)

(c) (d)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map performance model (simple) (1)

• Data parallelism

• overhead:

• scattering of input data + gathering of results

• improvement

• total cost in addition to overhead if #partition*f

• T = nw * Tin +
 Tf * #partition +
 Tout

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map performance model (simple) (2)

• Three stage pipeline to be balanced to exploit stream
parallelism

• distribute input data (code?)
• depends on the interconnection structure
• depends on the data size

• local map
• proportional to partition size and function cost

• collect results
• depends on the

interconnection
structure

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Reduce typical implementation

(a) (b)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Reduce performance model (simple)

• Similar to map:

• data parallel: overhead for distribution and reduce gathering

• stream parallel: balance of the three stages

• partitioning

• local reduction

• global reduction

• with similar problems & evaluation

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

MapReduce pattern

• common in applications

• e.g. map(find this face(myface)) + reduce(is(true))

• e.g. map(applyPhoneCallCostFunction) + reduce(sum)

• ...

• exploitation synergies in
common implementation

• gather phase of the map is
added up with the reduce computation

(a) (b)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

MapReduce pattern

• operates on collections

• vectors, arrays, lists, ...

• applies function f on all the collection elements

• f is side effect free

• “sums” up the results with function ⊕

• first part is embarrassingly parallel (map)

• reduce phase can be implemented with a reduction tree

• the distribution phase is not needed anymore

• data is already in place

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

History

• map and reduce patterns appeared first in 1977 Backus’s
Turing award lecture note

• Can programming be liberated from the Von Neumann style? A
functional style and its algebra of programs (1978)

• FP

• objects + functions (obj→obj) + application + functional
forms

• objects: atoms, numbers, ⊥

• functions: +,-,distl,distr,trans,lenght,...

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

FP (cont’d)

• functional forms:

• composition: (f ◦ g):x = f(g x)

• construction: [f,g,...]:x = <f:x, g:x, ...>

• insert: /f:<x1,x2,...> = f:<x1,/f:<x2,...>>

• this is actually the reduce

• apply to all αf:<x1,x2,...> = <f:x1, f:x2, ...>

• this is actually the map

• algebra of programs defined with transformations

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

FP sample code

• def IP = (/+) ◦ (α x) ◦ trans;
IP :<<1,2,3> <3,2,1>> =
 ((/+) ◦ (α x) ◦ trans) : <<1,2,3> <3,2,1>> =
 ((/+) ◦ (α x)) : <<1,3>,<2,2>,<3,1>> =
 (/+) : <3,4,3> =
 10

• def MM = (α α IP) ◦ (α distl) ◦ distr ◦ [1, trans ◦ 2]

• [1, trans ◦ 2] transposes second matrix

• distr creates pairs of the 1st matrix and a column of the 2nd

• (α distl) creates row column pairs

• (α α IP) performs IP on all the pairs

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

FP: rules in the algebra

• [f1, ... , fn] ◦ g = [f1 ◦ g, ... fn ◦ g]

•αf ◦ [g1, ... , gn] = [f ◦g1, ... , f ◦gn]

• /f ◦ [g1, ... , gn] = f ◦[g1, f ◦ [g2, ... f ◦[gn-1,gn]...]

• (αf) ◦ (αg) = α(f ◦ g)

• used to derive new programs from existing ones

• used to prove equivalence of two programs

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

• Bird Meertens formalism (Skillicorn ’92)

• Operate on lists:

• Two operations
(map&reduce):

• Set of rules:

Map and Reduce in ’80s and ’90s

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Map, reduce and homomorphisms

• h ◦ /f = /g ◦ αh

• a reduce with function f followed by the applications of an
homomorphism
 can be implemented (is equivalent)
to an map of function h followed by a reduce

• the function mapped h is in relation with the function f

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Homomorphism

• informally: “Structure” preserving functions

• e.g. (from Wikipedia)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Skeleton frameworks with map/reduce

• P3L (Pisa, 1991)

• Gorlatch skeleton theory (Passau, ’90)

• ASSIST (Pisa, 2001)

• embedded in parmod construct

• SkeTo (Tokio Univ. 2003)

• Muesli (Passau, 2005, but former work in Skil, late ’90)

• ...

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Google MapReduce

• The context

• searching engine with huge data

• most frequent operation is searching, all the matching
results should be given to the user

• data to be searched must be split among different machines
(size too big for a single machine/storage + fault tolerance)

• The idea: paper by Jeffrey Dean and Sanjay Ghemawat 2004
MapReduce: Simplified Data Processing on Large Clusters

• with a few/none references to skeleton work !

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

The concept

• map reduce à la skeleton

• implemented on their clusters

• map local

• reduce local + global

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Google examples

• Distributed Grep: The map function emits a line if it matches a given pattern. The reduce function is an
identity function that just copies the supplied intermediate data to the output.

• Count of URL Access Frequency: The map function processes logs of web page requests and outputs
<URL, 1>. The reduce function adds together all values for the same URL and emits a <URL, total count>
pair.

• Reverse Web-Link Graph: The map function outputs <target, source> pairs for each link to a target URL
found in a page named "source". The reduce function concatenates the list of all source URLs associated
with a given target URL and emits the pair: <target, list(source)>.

• Term-Vector per Host: A term vector summarizes the most important words that occur in a document or
a set of documents as a list of <word, frequency> pairs. The map function emits a <hostname, term
vector> pair for each input document (where the hostname is extracted from the URL of the document).
The reduce function is passed all per-document term vectors for a given host. It adds these term vectors
together, throwing away infrequent terms, and then emits a final <hostname, term vector> pair.

• Inverted Index: The map function parses each document, and emits a sequence of <word, document ID>
pairs. The reduce function accepts all pairs for a given word, sorts the corresponding document IDs and
emits a <word, list(document ID)> pair. The set of all output pairs forms a simple inverted index. It is easy
to augment this computation to keep track of word positions. [1]

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Google “skeleton”

• User 1 provides

• map function

• reduce function

• Google provides

• mapreduce C++ class

1 users are internal google users, actually

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Google implementation
1. The MapReduce library in the user program first shards the input files into M pieces of typically 16 megabytes to 64

megabytes (MB) per piece. It then starts up many copies of the program on a cluster of machines.

2. One of the copies of the program is special: the master. The rest are workers that are assigned work by the master.
There are M map tasks and R reduce tasks to assign. The master picks idle workers and assigns each one a map
task or a reduce task.

3. A worker who is assigned a map task reads the contents of the corresponding input shard. It parses key/value pairs
out of the input data and passes each pair to the user-defined Map function. The intermediate key/value pairs
produced by the Map function are buffered in memory.

4. Periodically, the buffered pairs are written to local disk, partitioned into R regions by the partitioning function. The
locations of these buffered pairs on the local disk are passed back to the master, who is responsible for forwarding
these locations to the reduce workers.

5. When a reduce worker is notified by the master about these locations, it uses remote procedure calls to read the
buffered data from the local disks of the map workers. When a reduce worker has read all intermediate data, it
sorts it by the intermediate keys so that all occurrences of the same key are grouped together. If the amount of
intermediate data is too large to fit in memory, an external sort is used.

6. The reduce worker iterates over the sorted intermediate data and for each unique intermediate key encountered, it
passes the key and the corresponding set of intermediate values to the user's Reduce function. The output of the
Reduce function is appended to a final output file for this reduce partition.

7. When all map tasks and reduce tasks have been completed, the master wakes up the user program. At this
point, the MapReduce call in the user program returns back to the user code.

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Google optimizations

• Partitioning

• data mapped to hash(...) % R

• Combiner function

• leave the programmer express a local “reduction” applied
before networking the results for the overall reduce

• Backup tasks

• computation of the last tasks is replicated to avoid “slow”
processor problems

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Sample google code (1)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Sample google code (2)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Sample google code (3)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Sample google code (4)

Complementi di Calcolo Parallelo - A.A. 2008-2009 - Map Reduce patterns - M. Danelutto

Usage of the Java Hadoop

• Installation

• download the hadoop.xxx.tar.gz

• unpack and set up in the HADOOP_HOME

• $HADOOP_HOME/bin in the PATH

• $HADOOP_HOME/hadoop-xxx-core.jar in the CLASSPATH

• run local examples

• conf/*xml as of distrib (with hadoop_env.xml JAVA_HOME
set, at least)

• run non local (see web page and sample code)

