Rewriting skeleton programs: how to evaluate
the data-parallel stream-parallel tradeoff

M. Aldinucci, M. Coppola & M. Danelutto

Department of Computer Science — University of Pisa
Corso Italia, 40 — 56125 Pisa — Italy

Email: {aldinuc,coppola,marcod}@di.unipi.it

Abstract. Some skeleton based parallel programming models allow the
programmer to use both data and stream parallel skeletons within the
same program.

It is known that particular skeleton nestings can be formally rewritten
into different nestings that preserve the functional semantics. Indeed,
the kind and possibly the amount of parallelism usefully exploitable may
change while rewriting takes place.

Here we discuss an original framework allowing the user (and/or the
compiling tools) of a skeleton based parallel programming language to
evaluate whether or not the transformation of a skeleton program is
worthwhile in terms of the final program performance. We address, in
particular, the evaluation of transformations exchanging data parallel
and stream parallel skeleton subtrees.

1 Introduction

Since the work of Cole on skeletons [1], many researchers worked out the idea of
providing the parallel programmer with a set of skeletons that could be used to
model the parallel structure of applications and algorithms. Different research
teams have designed skeleton sets that vary in the number and specialisation
of the skeletons, as well as in the possibility of performing arbitrary skeleton
nestings within programs [2, 3].

The skeleton idea is very appealing mostly due to the fact that skeletons
allow efficient development of parallel applications by proper specification of the
skeleton nesting to be used. All the details of process decomposition, mapping
and scheduling, as well as the communication and memory management issues
are handled by the skeleton system in place of the programmer. This pleasant
property is paid in two ways. On the one hand, programmers are not allowed
to exploit any arbitrary parallel decompositions of a problem: they are forced
to use just those patterns provided by the skeleton system (skeleton models
belong to the “restricted programming model” class [4]). On the other hand,
the implementation of an efficient skeleton based programming environment is
clearly a hard task, as all the process and communication details the programmer
has not to deal with must be handled by the skeleton system designer.

In most skeleton frameworks equivalences can be established between differ-
ent skeleton nestings. We can state that:

Ei : Xl(Xll Xln) = X2(X21 X2m)

meaning that skeleton X; applied to skeletons X;; to Xi,, computes the same
result of skeleton X5 applied to skeletons X5 to Xs,,. Equivalences such as this
one are of interest to the skeleton programmer, as he can use them as rewriting
rules to rewrite his programs in order to achieve a better program structure
and/or a program sporting a better performance. These equivalences are also of
interest to the designer of the skeleton system/language, as he can use them to
improve the compilation process, once an algorithm is available stating which
equivalences have to be exploited for better performance (efficiency). In both
cases, it is fundamental to devise a framework that could be used to evaluate
the impact of an equivalence rule over a given program. In other words, it is
fundamental to have a formal way of understanding, given two skeleton programs
P, and Ps, such that P> has been obtained transforming P; by using a set of
equivalences {E1, ..., Ey}, which one is the “better” in terms of the performance
achieved (it is supposed to achieve).

In order to be able to answer such kind of questions, we must be able to solve
different problems:

— we must be able to enumerate the programs that are “equivalent” to a given
program modulo a set of rewriting rules.

— we need a reliable algorithm to compute the expected performance of a
skeleton program onto a target machine

— we need an evaluation criteria able to discriminate, among equivalent pro-
grams, the one(s) exhibiting the best performance

These problems are not easily dealt with. In this paper we want to investigate
the possibility of providing the user with some formal reasoning methodology
allowing him to understand whether a given rewrite rule can be efficiently applied
to his programs. Furthermore, since the skeleton system we will take into account
will contain skeletons exploiting both data and stream parallelism, we will focus
on the rules that transform either kind of parallelism into the other. Finding the
best interplay among them with respect to the program performance will be our
goal.

In the following we will at first show our skeleton model, which is a subset
of the P3L one, and a sample of its rewriting rules. We will then briefly outline
the design of a performance model for skeleton implementations on real target
machines, thus providing a formal way to “measure” the expected performance
of left and right hand sides of a rewriting rule. The performance model is built
using a logP-like cost calculus [5] that extends similar ones already developed, in
particular within the P3L project [6, 7]. We will finally show how such a model
can be used to tell the programmer what rewriting rule to use and in which
direction (left hand to right hand side or vice-versa), depending on some param-
eters relative to the data, the program structure and the target architecture at
hand.

2 The skeleton framework

The skeleton framework we take into account in this work is a subset of P3L.
P3L is a parallel programming language based on skeletons, under development
at the University of Pisa since 1991 [2, 7, 6]. All the skeletons in P3L can be
nested. The semantics of P3L skeletons is data-flow like, as they all process an
input data stream, producing as a result an output data stream whose elements
are computed by applying some function over the items of the input stream (we
will often refer to single data items belonging to the streams as tasks).

Both stream and data parallel skeletons are provided: even the data-parallel
skeletons work on streams, in that they process all the items appearing onto
the input stream, but they are meant to exploit the data parallelism within
the computation of a single input task. The basic skeleton (seq) encapsulates
computations expressed in a sequential language. Of course it is an exception
as it cannot contain any other skeleton. Iterative (data and stream) parallel
computations are handled by a loop skeleton, but we will not deal with it in this

paper.

Stream parallel skeletons Concerning stream parallelism, a farm, a pipe and a
loop skeleton are made available to the programmer. The farm skeleton computes
a given function over the input tasks by using a set of identical, parallel worker
processes. If f is the function computed by the nested skeleton X, for each data
item d in input the structure farm(X) produces onto the output stream the
item f(d). The pipe skeleton computes the composition of a given number of
skeletons on each task d of the input stream. If f; is the function computed by
the skeleton X, pipe(X7, ..., X) computes fix(fr—1(-.. fi(d)...)). Parallelism is
exploited by setting up an independent, parallel process for each pipeline stage.
The amount of parallelism in this skeleton is fixed by the programmer, as we
will not deal here with the stage-merging optimizations explained in [8].

Data parallel skeletons The data-parallel skeletons comp, map and reduce are
provided to the user. The comp skeleton has the semantics of the functional com-
position, just like the pipe skeleton, but it does not deal with stream parallelism.
Instead it uses a unique set of independent processing elements to sequentially
evaluate the functions of the skeleton expressions given as stages of the comp.
Since various skeleton expressions “overlap”, each single processing element se-
quentially participates in the computation of each stage, possibly taking part
in collective communication operations to redistribute data between stages. We
want to stress the point that no parallelism is introduced by the comp itself:
data parallelism is exploited by the nested skeletons. We just mention the fact
that iterative data-parallel computations can be expressed using a combination
of the comp and loop skeletons.

The map(X) skeleton applies the function f computed by the nested skeleton
X to all the items of a set of subsets of the input data structure. Each application
of f over a single independent data subset is usually referred to as the map
virtual processor computation (we will speak of map virtual processors meaning

dat a
reconposi tion

data
deconposi ti

l —¢]

schedul er

—]

[xJooo[x][x]
- o g x]

wor ker s wor ker s
Farm tenpl ate Map tenpl ate

)00 [}

Pi peline tenpl ate

Fig. 1. Implementation templates for the P3L skeletons considered here

these “minimum grain” parallel computations). A set of identical, parallel worker
processes applies the function to the data subsets. The user specifies through the
map skeleton syntax how the subsets can be computed out of the input data,
what function is to be computed on them and how the results can be “merged”
to build output data structures.

The reduce(X) skeleton folds all the sub-items of an input data structure
using the binary, associative and commutative function computed by the nested
skeleton X.

Implementation templates When a P3L program is compiled, each skeleton is car-
ried out using an implementation template, i.e. a known, efficient and parametric
way of implementing a skeleton onto a given target architecture [7, 9]. Imple-
mentation templates are stored in libraries along with performance models. The
result of the compilation is a process network implementing the skeleton program
semantics and running on the target parallel architecture. The implementation
templates used within P3L are outlined in Figure 1. The double boxes represent
nested implementation templates (possibly even seq processes computing user
sequential code) and simple boxes represent system generated processes. Arrows
represent communication channels (either true communications or shared mem-
ory accesses) directed according to the program data flow. In our farm template,
data items are scheduled on-demand to worker processes by a scheduling process
(E), and output data items are delivered onto the output stream by another pro-
cess (C). The map template is similar, but for the fact that the scheduler process
E performs the decomposition of the input data, and the process C performs
recomposition of the output structure out of the sub-tasks. The comp template
is not shown as it is basically the sequential execution of the nested templates
onto a unique set of processing elements.

Most of the implementation templates used within P3L are parametric in the
parallelism degree supported; the parallelism exploited is fixed at compile-time,

not in the source program. The exact value for the template parameters can
be derived in such a way that a good performance is achieved by the resulting
process network. For instance, the number of workers in the map can be com-
puted in such a way that the processing bandwidth of the workers matches with
the task delivering capacity of process E and with the task receiving capacity
of C. In order to automatically compute these figures, basic parameters must
be known, such as the E and C processes comunication bandwidth and the data
decomposition overhead, as well as the average time spent in computation by
the worker processes. In order to obtain the data needed to perform this kind
of calculations, some performance models such as the one discussed in Section 4
have been developed within the P3L project.

3 Rewriting rules

Within the skeleton framework outlined in Section 2, many rewriting rules stat-
ing equivalences between skeleton trees can be established. As an example, at
any point where we have a skeleton tree X we can insert a farm, thus obtain-
ing the skeleton tree farm(X'). This because the farm skeleton just enhances the
parallelism degree of a computation without affecting the function computed.
Therefore the following rule (farm introduction/elmination rule) holds:

X = farm(X) (1)

Like the other rewriting rules discussed in this Section, the rule (1) is to be
intended as a couple of rewriting rules: the left-to-right rule ((17), for short),
namely the rule X — farm(X) and the right-to-left rule ((1¢), for short), namely
farm(X) — X. In this work, we will always refer to right-hand and left-hand side
with respect to the bi-directional rule, even when speaking of the two derived
rules with — in place of the =.

Rules such as rule (1) hold independently of the parameters of the skeletons
involved in the transformation. There are also rules that only hold if certain
conditions over the parameters of the involved skeletons hold. As an example,
consider the following rule:

map(pipe(X1, ..., X)) = pipe(map(Xy), ..., map(Xy)) (2)

This rule corresponds to the well known “map distributivity” of the Bird-Meertens
formalism [10] (map(fio...ofr) = map(fi)o...omap(fi)) as well as to the “map
fusion law” of SCL [3]. In the P3L framework, the rule states that we can ex-
change the pipe skeleton with the map one. The rule (27) always holds, whereas
rule (2¢7) only holds if all the maps of the right hand side use the same task
decomposition (i.e. if the data decomposition performed by the different maps in
the right-hand-side of rule (2) in order to obtain the finest task decomposition
is the same).

A large set of rules holding in the P3L framework can be found in [11]. Beside
the farm rule stated above, the following rules, which are of interest for this work:

map(pipe(Xy, ..., Xy)) = pipe(map(X1), ..., map(Xy)) 3)
map(comp (X7, ..., Xy) = comp(map(X1),...,map(Xy)) (4)
map(pipe(X1, ..., Xx)) = map(comp(Xy, ..., X)) (5)
pipe(map(X1), ..., map(Xy)) = comp(map(X1), ..., map(Xy)) (6)

Rules 3 and 4 concern map distribution with respect to pipe and comp. Rules 5
and 6 insert and remove pipeline parallelism within or immediately outside maps.
It is easy to convince ourselves that the rules above actually hold. In particular,
rules 5 and 6 hold because pipes and comps compute the same function, with
different amounts of parallelism exploited as stated in Section 2. Rules 3 and 4
just state map distributivity with respect to both pipes and comps.

By using the rewriting rules stated above, we can get the following diagram,
concerning the transformations of a simple skeleton program:

pipe(map(seq(A)), map(seq(B))) «— map(pipe(seq(A),seq(B)))))
comp(map(seq(A)), map(seq(B))) <— map(comp(seq(4),seq(B)))

Both skeleton nestings in the first row exploit pipeline parallelism. In the
first one this is actually the main (outermost skeleton) parallelism form taken
into account. In presence of a small number of processing elements to execute
the program, such parallelism exploitation pattern will be the only one actu-
ally exploited. The skeleton nestings in the lower row, instead, do not exploit
pipeline parallelism at all. All the pipelines have been transformed into sequential
composition of (possibly parallel) functions via the comp skeleton. In the lower,
leftmost skeleton composition, the processing elements computing the first map
are re-used to compute the second map. In the lower, rightmost skeleton compo-
sition the processing elements used to implement the map workers, first compute
the sequential code of A and then the sequential code of B.

Now the interesting point is: how can we decide whether or not it is the case
of applying any of the matching rewriting rules to a given skeleton program? How
can we decide how a schema such as the one just discussed has to be traversed?

Assume we have a program with a skeleton nesting matching the map(pipe(Xi,
..., X)) structure. It’s worthwhile, in terms of performance, to apply the rule
(57) and remove the pipeline parallelism or this transformation does not make
any sense? Can we state a set of conditions (concerning either the parameters
of the skeletons in the rule or the skeleton context where they appear) that
make the transformation worthwhile? In other words: being P some kind of
measure of the performance of a skeleton implementation, given any rewriting
rule Lhs = Rhs, can we give a set of conditions C' on the structure of Lhs, Rhs
and on the features of the target architecture in such a way that the formula
C D (P(Lhs) > P(Rhs)) holds?

In order to be able to answer such kind of questions, we will discuss in the
next Section a performance model framework extending the classical model used

within the P3L framework. Then, in Section 5, we discuss how the model can be
used to evaluate “in insulation” the performance effect of applying the rewriting
rules presented above, especially focusing on the transformations between stream
parallelism and data parallelism. The evaluations presented in that Section can
be suitably used when programs with a limited skeleton nesting have to be
transformed. Finally, in Section 6 we will present some arguments aimed at
understanding how the performance model of Section 4 can be used to optimise
skeleton program performance by properly using the rewriting rules presented
in this Section.

4 Performance models

A performance model is a formal way of computing some performance measures
out of a set of basic cost parameters. The performance model we want must
be able to model performance measures such as the completion time (the time
elapsed from the moment the first input is read and the moment the last output
is delivered), the service time (the time elapsed between the moment an output
is delivered and the moment the next output is delivered) and the efficiency (the
speedup per processing element, basically). Furthermore, they must be “precise
enough” to allow us to accurately study things such as the communication grain
effect or the impact of pipeline parallelism within data parallel computations.

In this work, we consider an extension of the performance models tradition-
ally used in the P3L research group [7, 12]. These models have been shown
powerful enough to model performance measures such as the service time of
templates. The extension consists in having a larger number of basic cost pa-
rameters and using the completion time as the main performance measure for
optimizations, as opposed to the service time alone.

Therefore we adopt as cost parameters variables like the time spent in broad-
casting b bytes to a set of k processes, the average amount of time spent in
computing a portion of (user) sequential code, or the amount of data needed by
each virtual processor in a map skeleton, as well as things such as the template
capacity, i.e. the amount of tasks needed to make an implementation template
compute according to its steady state behaviour.

By using this kind of basic parameters we model the completion time of P3L
templates (relative to a target machine made out of the complete interconnection
of a large number of processors) by formulas having a well defined structure,
namely:

Te = (Ls+ M)Ts

where T stands for the completion time, Lg is the overall number of tasks
the template must process, M is the capacity of the template in terms of tasks
buffered at the steady state and T's stands for the service time of the nested
template. The capacity parameter is the real new parameter with respect to the
classical P3L performance models. By properly using the capacity we are able
to devise proper performance models for the completion time in terms of the
service time. The capacity and completion time of a P3L program are derived by

inductively composing formulas relative to all the templates used to implement
the skeletons in the program.

We developed a full set of performance models using this parameters [11].
These models will not be described in detail in this work. We just want to demon-
strate the usage we can make of such models while analysing the performance
effects of skeleton program rewriting. Therefore, in Section 5 we will discuss how
the models can be used to analyse the performance behaviour of two equivalent
skeleton programs obtained by applying some of the rules of Section 3.

The formulas derived by using our performance models looks like to be com-
plex (see Section 5). However, we succeeded in deriving an analysis for all the
templates taken into account here. This kind of template behaviour analysis is
exactly what we need in order to be able to study the rewriting rules of Section
3. We could have used different cost models, such as PRAM-like or BSP mod-
els [13]. Those models abstract the machine behaviour by using a much smaller
parameter set and therefore they lead to more “concise” performance formulas.
However, such models do not seem to be able to distinguish all the parameters
we need in order to perform precise analysis of the effects of rewriting rules on
performance. Actually, within our research group some researchers are investi-
gating whether some slight variation of BSP-like models can be used to perform
more efficiently the kind of cost analysis we describe in this paper.

5 Evaluation of rewriting rules via the performance
models

In this Section we will show how the performance model framework outlined in
Section 4 can be used to evaluate the effectiveness of a rewriting rule such as
the ones discussed in Section 3.

We will discuss two cases: in Section 5.1 we will discuss the performance
effects of the map promotion rule (3) while in Section 5.2 we will discuss the
effects of transforming pipeline stream parallelism into comp data parallelism via
the rule (5).

5.1 Map promotion rule (rules (37) and (3))

The templates corresponding to the two sides of the rule are shown in Figure 2.
It is clear that the pipe of map template composition presents a higher number
of “synchronization” points due to the E and C processes. Such syncronisation
points seem to make the pipe of map template inherently slower than the map of
pipe. However, due to the fact that pipeline parallelism is exploited, using differ-
ent processing elements to compute the different X; in the pipe of map template
composition, we can expect that the time loss due to the emitter/collector pro-
cesses is overwhelmed by the time gain obtained from parallel computations of
the stages X;. Furthermore, each one of the maps of the pipe of map side can
be optimized (e.g. by devising a different number of worker processes), thus

! pipe(map(X9, ..., map(Xn))
map(pipe(X, ..., Xp)

Fig. 2. Template implementation of left and right hand side of rule (3)

achieving a better balancing of the computation. And this better balancing will
eventually lead to a better overall performance of the template.

By using our performance models we eventually come out with the completion
time formulas for the pipe of map and map of pipe template composition, that
is:

TP = (Ly+ M™)T™ ps TP™ = (L, + MP™)TP™

We denote with ¢™P (¢ € {T¢,Ts,M}) the value of function ¢ for the
map(pipe(...)) and with ¢ the value of function ¢ for the pipe(map(...),...).
In the general case, ¢X will refer to the value of function ¢ in the skeleton X.

By instantiating all the formula parameters and looking at the number of used
PEs that minimizes the completion time, we see that the service time is almost
the same in the two cases. Therefore, to look for the better completion time we
must look at the behavior of the capacity of the two template compositions. If we
take into account the amount of resources used (the amount of processing nodes
needed to implement the template compositions, actually), and the number of
tasks that have to be present onto the input stream in order to achieve the steady
state of the template, the pipe of map and the map of pipe template are very
different.

In the two cases, the number of tasks needed to reach the steady state turns
out to be:

n MXi EMXl
.ZMmP:an;e—f-z:(kle) VS le-f-L:Mpm (7)
=1 i

where: kin represents the number of virtual processors scheduled for execution
on a PE of template X, k. represents communication grain and n is the number
of pipeline stages.

In pipe of map template, the maximum parallelism (the minimum number
of virtual processors per PE) is achieved in the pipeline stage implementing the
skeleton with the highest service time. Similarly, the unique map template of the
map of pipe template will be dimensioned with the same parallelism degree, as
its service time will be the maximum of the service times of the inner stages.

Furthermore, we must point out that:

— the terms 2k, and 2nk. are due to the E and C processes of the maps. The
map of pipe term is obviously always better than the corresponding pipe
of map term. The skeleton nesting map(pipe(...)) is always more efficient
of the pipe(map(...),...,map(...)) one, according to this viewpoint. This is
because data structures are decomposed and distributed just once in the map
of pipe template (possibly using expensive communications), whereas in the
pipe of map template the decomposition/distribution is performed n times.

— the terms (37, M¥) /k; and 31, (MX/k:lX) represent the capacities
introduced by the replication of pipe in the stage of the map worker (map of
pipe template) and by the replication of the map within each pipeline stage
(pipe of map template), respectively. The map of pipe term is always worst
than the pipe of map one as for every i € (1,n) it holds that k; < le In
fact, the skeleton nesting map(pipe(...)) is less correct with respect to the
parallelism exploited, because all the pipeline stages are executed with the
parallelism degree of the stage having the higher service time, thus leading
to a capacity larger than the one actually needed to exploit all of the stage
parallelism.

Although some “qualitative” reasoning can actually be performed looking at
the performance model formulas, in order to fully assert the behaviour of the two
template compositions we need to exactly evaluate the two formulas, providing
all the parameters and looking at the numerical result. However, this is not
too much useful. Many parameters can be supplied just after having completely
specified the skeleton parameters. Instead we are interested in general guidelines
stating whether, under a precise set of conditions, a rule can be conveniently
applied or not. Such guidelines can be obtained restricting the variability of
parameters, or, in other words, simplifying the formulas in such a way that well
defined cases are modeled instead of the general ones.

In the following two subsections, we will discuss in particular the rewriting
rules (37) and (37) in case two different hypothesis hold: the X; skeletons are
plain sequential skeletons or they are arbitrary skeleton compositions such that
all of them take a comparable service (completion) time.

Sequential X; computations Suppose the different X; skeletons are sequen-
tial skeletons. This is a significant case, as independent data parallel computa-
tions over large data structures usually allow high degrees of parallelism to be
exploited, making useless any further parallelism exploitation within the workers
computing the X;.

The skeleton nesting pipe(map(...),...,map(...)) looks like to be asintoti-
cally better, due to the fact that every stage of the pipeline can be independently
optimized. The price to pay is the high number of “synchronising” processes in-
serted in the template composition. Such synchronising processes (the E and C
processes in Figure 2, right), may cause a minimum performance loss in case
the subtrees computing the different X; are very complex. However, in case all
the X; are computed by sequential code, the performance penalty due to the

synchronization introduced by the processes turns out to be very high. In this
case, using our models we derived the following formulas:

o vS 2nk. + Z = = MP™

i=1 i

M™ = (n+ Dk + >
i=1

As the capacity of a sequential template is constant and equal to 1, and the
number of virtual processors allocated over a single node must always be less
than the overall number of virtual processors (1 < k¥ < d) we eventually get:

ke > nfin—-1) = M™ < MP™"

and therefore we can conclude that the map of pipe template composition always
performs better that the other one.

Balanced X; computations Now take into account the case of having non-
sequential X; skeletons, but assume that the different X; computations all take
a similar (“balanced”) service time. This is the case we can achieve by using
farm-introduction rule over the “heavy” X; skeletons, for instance.

Under this assumptions, the number of virtual processors allocated to the PEs
running the map workers in the map of pipe skeleton tree will be equal to the one
used in the maps of the pipe of map template composition. The capacity and,
as a consequence, the startup times of the nested template will be comparable,
therefore the pipe of map template composition will pay a high overhead due to
E and C processes. Transposing this reasoning into formulas we eventually get:

n n
2> M 25 M

M™ =2k, + —=p— < 2nke + = — = M""

A

M™ =2k, < 2nk, = MP™

where ¥ essentially represents the number of virtual processor in every map, i.e.
in this case also it is always convenient use the map of pipe template composition
with respect to the pipe of map one.

5.2 Transforming pipes into comps within a map (rule (57))

We consider now the rule (57) of Section 3. This rule states that a pipeline skele-
ton within a map skeleton can be substituted by a comp skeleton. In other words,
the rule states that pipeline parallelism within a map can be neglected and plain
sequential computations can be performed instead. We restrict the analysis to
the cases the different X; are either sequential modules or data parallel modules.

By looking at the performance models of the completion time of left and
right hand side of the rule, we observe that in case the two sides are dimensioned
with respect to the minimal completion time, they are basically equivalent. The

parallelism we loose in removing the pipe skeleton is restored by using a larger
amount of PEs in the implementation of the maps in the pipe of map template.
This holds until we reach the limit of the amount of PEs that can be included in
a map template (which is equal to the number of the virtual processors defined
by the map skeleton).

Due to the higher service time of the comp, such limit can be reached in the
map of pipe and map of comp with different values of the parameters. By looking
at the models, we know that reaching the map PE limit in the left hand side
implies that the limit (using the same parameters) should have been reached
even in the right hand side. However the viceversa is not true. As a result, we
can conclude that:

— in case the communication/computation ratio represents the bottleneck, the
two sides of the rule are roughly equivalent,

— in the other cases (i.e. when a virtual processor computes a lot with respect
to the time it spends in communications) the map of pipe presents a better
completion time than the right hand side.

6 Using the “evaluated” rewriting rules

The kind of reasoning developed in Section 5 can be usefully applied when pro-
grams are poorly structured. In case programs contain simple skeleton nestings,
the programmer may look at the results of this kind of analysis and decide, as an
example, whether or not the program he originally conceived as a pipe of maps
may usefully be turned into a map of pipes.

When larger programs are considered (i.e. programs with deeper skeleton
nestings), the “local” optimisations we evaluated in Section 5 may lead to mis-
takes. As usual, local optimisations may drive the programmer towards a local
minimum rather than to the global one. We are currently looking for algorithms
(heuristic based search algorithms, basically) able to find some kind of “opti-
mal” transformation of a skeleton program among all the valid transformations,
but we have no concrete results, yet. Therefore, we do not pretend to present
a general algorithm. Instead, here we want to point out how an expert skeleton
programmer can take advantage of the methodology aimed at evaluating the
rewriting rules discussed in this paper, by using a simple example.

Suppose we have a program originally structured as pipe(farm(map(7})),
map(T)) and suppose we know all the parameters needed to instantiate and
evaluate the performance formulas relative to the program, derived by using the
models of Section 4. By working out the skeleton structure of the program with
the rewriting rules of Section 3 we eventually get a graph such as the one of
Figure 3. In this graph some skeleton programs semantically equivalent to the
original one are shown. Vertically or horizontally adjacent skeleton programs
represent programs equivalent modulo the application of a single rewrite rule,
but for those separated by a —* arrow, requiring more than a single rewriting
step. Each skeleton program has associated the expected completion time and
the efficiency, derived by using the models discussed in Section 4. In the Figure

(T = 1054, = 35%) (T. = 1066, & = 46%) (T. = 931,& = 49%)

pipe(map(farm(T41)), map(72)) —e pipe(map(7T4), map(7Ts)) —e map(pipe(Ty, T2))
7. le
(T. = 1007, £ = 31%) (T. = 1027, £ = 38%) (T =875, = 66%)
pipe(map(farm(T1)), map(farm(72))) pipe(map(T1), map(farm(Tz))) (—%) map(comp(Th, T2))
‘1.
(T. = 904, € = 28%) (T- = 1036, & = 12%) (T. = 1052, € = 46%)
map(pipe(farm(Th), farm(Tx))) map(pipe(T1, farm(T2))) (—=*) farm(map(comp(T1, T2)))

Fig. 3. Transformation of the original example program by using the rewriting rules
(completion times are in msecs)

we also show two paths. The path labeled with —¢ corresponds to the path we
follow if at any moment we choose to apply the more convenient transformation
rule (with respect to efficiency) matching the inner skeletons. The path labeled
with —7, instead, corresponds to the path we follow if we apply a similar al-
gorithm looking for the better completion time. In other words we apply in the
two cases a greedy algorithm to the skeleton tree representing the program.

We see that if we try to optimize the completion time we eventually come
to the lower left skeleton program. This program does not represent a “good”
transformation of the original one, as the efficiency is really poor. By looking
at the overall picture, we easily see the program transformation we reached is
a local minimum. We could move one step right from the leftmost top skeleton
composition by applying farm elimination rule, but this move actually increases
the target function value, i.e. the completion time. If we make this move, we can
subsequently move one step right and one down right and reach the program
transformation with the minimum completion time. Instead, if we follow the
algorithm trying to optimize efficiency, starting at the original program node we
eventually come to the skeleton program (map(comp(77,7%))) which is the one
with the better completion time and efficiency. The communication/computation
ratio happens to be below 0.3, both for the first and for the second map, in this
case, and the input stream we take into account is quite “short”. These are the
reasons why we almost always get an improvement when eliminating pipeline
parallelism from the program. If the stream is longer, we obtain a different
graph.

Although this example clearly demonstrates the failure of greedy search al-
gorithms due to local minimums, it shows the kind of reasoning a programmer
may perform once he has available all the parameters needed to instantiate the
performance model formulas, before he actually has to write a single line of code.

7 Conclusions

There is a problem, when using program transformations in a skeleton frame-
work: functionally equivalent programs exploit different kind of parallelism. In

order to understand which one of a set of equivalent programs is the best one,
we need to establish evaluations of rewriting rules (in terms of the performance
achieved), i.e. we need to set up a framework telling us whether or not a rule
can be conveniently applied (left-to-right or right-to-left).

Here we outlined a performance model that allows such evaluations to be per-
formed. In particular we showed how the performance model can be used to eval-
uate program transformations affecting the basic kind of parallelism exploited,
i.e. those rules changing stream parallelism to data parallelism and viceversa.
We presented some of these rules and discussed how they can be “evaluated”,
i.e. how a generic, bi-directional rewriting rule can be transformed into a uni-
directional rule with preconditions. In case the preconditions are satisfied, the
bi-directional rule is to be used just in one direction, if we want to achieve a bet-
ter program performance. Eventually, we showed how the framework discussed
in the first part of the paper can be used to reason onto “the real program at
hand”.

The ideas behind our transformations can be found in many other skeleton
related works. Most of these works, however, just take into account data parallel
skeletons and, as a consequence, they do not address any kind of transforma-
tion between stream and data parallelism [14, 15, 16]. Furthermore, these works
often use “asymptotic” cost calculus [17, 15]. Our cost calculus, although more
complex, looks like to be more suitable to model real machines. The approach
we take in performing transformations is closer to Gorlatch’s work [18]. The
transformations he uses to remove unnecessary synchronisation points between
consecutive stages of a computation are similar to the transformation we perform
with the rewrite rules of Section 3.

The performance models discussed in Section 4 are original, as they repre-
sent a concrete evolution of the models used until now within the P3L project,
that only model the service time of template and do not take into account the
completion time, built out of the service time and capacity, as a performance
measure to optimize. These models have still to be extensively validated. Our
experience and some restricted experimental results make the models look like
to be correct. Currently we are trying to achieve a full validation of the models
via the simulation of the templates onto a real parallel architecture.

The main result is that we have shown a possible way to set up a framework
able to discriminate stream parallel and data parallel skeleton compositions with
respect to performance.

References

[1] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

[2] M. Danelutto, R. Di Meglio, S. Orlando, S. Pelagatti, and M. Vanneschi. A
methodology for the development and support of massively parallel programs.
Future Generation Computer Systems, 8(1-3):205-220, July 1992.

[3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Darlington, Y. Guo, H. W. To, Q. Wu, J. Yang, and M. Kohler. Fortran-S: A
Uniform Functional Interface to Parallel Imperative Languages. In Third Parallel
Computing Workshop (PCW’9/4). Fujitsu Laboratories Ltd., November 1994.

D. B. Skillicorn. Models for Practical Parallel Computation. International Journal
of Parallel Programming, 20(2), April 1991.

D. R. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos, R. Subra-
monian, and T von Eicken. LogP: towards a realistic model of parallel computa-
tion. In ACM/SIGPLAN PoPP, 1993.

S. Pelagatti. A methodology for the development and the support of massively
parallel programs. Technical Report TD-11/93, Dept. of Computer Science — Pisa,
1993. PhD Thesis.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P?L: A Struc-
tured High level programming language and its structured support. Concurrency
Practice and Ezperience, 7(3):225-255, May 1995.

B. Bacci, M. Danelutto, and S. Pelagatti. Automatic Balancing of Stream-Parallel
Computations in P3L. Technical Report TR-35/93, Department of Computer
Science, University of Pisa (Italy), 1993. Available on ftp anonymous at the site
ftp.di.unipi.it.

S. Pelagatti. Structured Development of Parallel Programs. Taylor & Francis,
1998.

R. S. Bird. Lectures on constructive functional programming. In Manfred Broy,
editor, Constructive Methods in Computing Science. NATO ASI Series, 1988. In-
ternational Summer School directed by F. L. Bauer, M. Broy, E. W. Dijkstra and
C. A. R. Hoare.

M. Coppola and M. Aldinucci. Optimisation techniques for structured parallel
programs. Graduation thesis (in italian), Department of Computer Science, Uni-
versity of Pisa, 1997.

B. Bacci, M. Danelutto, S. Pelagatti, S. Orlando, and M. Vanneschi. Unbalanced
Computations onto a Transputer Grid. In Proceedings of The 1994 Transputer
Research and Application Conference, pages 268-282. IOS Press, October 1994.
Athens, Georgia, USA.

L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-11, August 1990.

Eric Violard, Stephane Genaud, and Guy-Ren Perrin. Refinement of data parallel
programs in pei. In Richard Bird and Lambert Meertens, editors, IFIP TC2 Work-
ing Conference on Algorithmic Language and Calculi. Chapman & Hall, February
1997.

H. Deldarie, J. R. Davy, and P. M. Dew. The performance of parallel algorithmic
skeletons. Technical Report 95/6, University of Leeds, School of Computer Studies,
1995.

C.B. Jay, D.G. Clarke, and J.J. Edwards. Exploiting shape in parallel program-
ming. In 1996 IEEE Second International Conference on Algorithms and Archi-
tectures for Parallel Processing: Proceedings, pages 295-302. IEEE, 1996.

D. B. Skillicorn and W. Cai. A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing, 28:65-83, 1995.

S. Gorlatch. Stages and transformations in parallel programming. In Abstract
Machine Models, pages 147-161. IOS Press, 1996.

