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Abstract We discuss the properties of the compo-
sition of stream parallel skeletons such as pipelines
and farms. By looking at the ideal performance fig-
ures assumed to hold for these skeletons, we show that
any stream parallel skeleton composition can always
be rewritten into an equivalent “normal form” skeleton
composition, delivering a service time which is equal
or even better to the service time of the original skele-
ton composition, and achieving a better utilization of
the processors used. The normal form is defined as
a single farm built around a sequential worker code.
Experimental results are discussed that validate this
normal form.
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1 Introduction

Skeleton based programming models represent an in-
teresting subject in the field of parallel programming
models. Cole introduced the skeleton concept in the
late 80’s [1]. Cole’s skeletons represented parallelism
exploitation patterns that can be used (instantiated)
to model common parallel applications. Later, the
skeleton concept evolved. Different authors recognized
that skeletons can be used as constructs of an explicitly
parallel programming language, actually as the exclu-
sive way in these languages to express parallel compu-
tations [2, 3, 4]. Recently, the skeleton concept evolved
again, and became the coordination layer of struc-
tured parallel programming environments [5, 6, 7]. In
all cases, however, a skeleton can be understood as a
higher order function taking one or more other skele-
tons or portions of sequential code as parameters, and
modeling a parallel computation out of them. Differ-
ent parameters passed to the same skeleton give differ-
ent parallel applications, all exploiting the same kind
of parallelism: the one encapsulated by the skeleton
used.

In most cases, in order to implement skeletons effi-
ciently on parallel architectures, compiling tools based
on the concept of the implementation template have
been developed [1, 8, 9]. The implementation tem-
plates are known, efficient and parametric ways (pro-

OThis work has been partially supported by the MOSAICO
and PQE2000 italian projects.
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cess networks, actually) of implementing a skeleton
on a given target architecture. Therefore, the pro-
cess of generating parallel code from a skeleton source
code can be performed by looking at the skeleton nest-
ing in the source code and deriving a corresponding
nesting of (suitably instantiated) implementation tem-
plates [10, 9]. Furthermore, due to the fact that the
skeletons have a clear functional and parallel seman-
tics, different rewriting techniques have been devel-
oped (or derived from other functional programming
contexts [11, 12]) that allow skeleton programs to be
transformed /rewritten into equivalent ones, achieving
different performance when implemented on the target
architecture [2]. These rewritings can also be driven by
some kind of analytical performance models associated
with the implementation templates of the skeletons, in
such a way that only those rewritings leading to more
efficient implementation of the skeleton code at hand
are considered [13].

The skeletons considered by the structured parallel
programming community range from a small number
of very simple, general purpose skeletons [1, 2, 8] to
a large number of very specific, application oriented
skeletons [14]. Usually, the skeleton set comprises both
data parallel and control parallel skeletons. The data
parallel skeletons model parallel computations whose
parallel activities come from the computation of a sin-
gle data item, whereas control parallel skeletons model
parallel computations whose parallel activities come
from the computation of different, independent data
items. In turn, stream parallel skeletons are those
control parallel skeletons exploiting parallelism in the
computation of streams of results out of streams of
(independent) data items.

In this paper, we discuss the properties of programs
derived by nesting stream parallel skeletons and imple-
mented via implementation templates. Both the skele-
tons and the implementation templates considered are
those used in P3L and SklEc! [8, 15]. In particular, we
will show how arbitrary compositions of stream paral-
lel skeletons, including pipelines and farms, can always
be rewritten as farms of sequential code and we will
prove that this second form delivers a better service
time.



2 The skeleton framework

We consider a skeleton framework containing only
stream parallel skeletons, i.e. we do not take into ac-
count data parallel skeletons. In particular, we con-
sider skeletons modeling pipeline and farm parallelism
as well as sequential composition of sequential compu-
tations, similar to the ones used in [2, 8].

Stream parallel skeletons exploit parallelism in the
computation of streams of results from streams of in-
put data. By data stream we mean an ordered, fi-
nite collection of homogeneous (i.e., having the same
type) data items, possibly being available at differ-
ent times. We denote a data stream with data items
Zi,..., &y by ( Zp,...,x; ) and we assume that data
item z; is available immediately after data item z;
was available and immediately before x,, is be avail-
able. When computing any stream parallel skele-
ton o onto a data stream (z,..., 1), the computa-
tion of any result data item appearing onto the out-
put stream (y,,...,y1) is independent of the com-
putation of any other result data item. In other
words, according to the usual definition of pipeline
and farm skeletons (such as the one given by [2, 8]),
our stream parallel skeletons denote stateless compu-
tations. Therefore, given any skeleton program o an
input data stream ( x,,...,z; ) and the correspond-
ing output data stream ( y,,...,y1 ), it holds that
Vi € [1,n] y; = F(x;) provided that F(z;) is the func-
tion computed by skeleton o.

In the following paragraphs, we give the functional
and parallel semantics of the skeletons included in our
set. The functional semantics (denoted in the following
by F) just denotes the results computed by each skele-
ton, and it will be used to show that different skeleton
programs (i.e. programs exploiting different skeleton
nestings) compute the same results. The functional
semantics of our skeletons will be given by formally
defining the function F. The (informal) parallel se-
mantics, instead, denotes the parallelism exploitation
patterns of the skeletons and will be used to derive
the analytical cost models of Section 2.2, that, in turn,
will be used to prove the effectiveness of normal form,
stream parallel skeleton programs discussed in Section
3. For each skeleton, the informal parallel semantics
will be given by discussing the parallelism exploitation
pattern used to implement the skeleton. Of course,
both functional and parallel semantics of a skeleton
must be taken into account in order to understand the
skeleton peculiarities.

Sequential skeleton The sequential skeleton (de-
noted by the keyword seq) simply transforms a se-
quential portion of code, written in some language
[ in a skeleton that can be used as a parameter of
other skeletons, such as the pipeline, the farm and
the sequential composition ones. We assume that a
function H; exists, for any sequential language [, such
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that #H;[prog] = ¢ : a — B, where ¢ is the function
computed by the sequential fragment of code prog,
the type of input data processed by ¢ is a and the
type of output data produced by ¢ is 3. Therefore,
the function computed by a sequential skeleton is (its
functional semantics is defined by): F[seq(prog)] =
H[prog] = ¢ No parallelism is exploited while com-
puting a sequential skeleton, i.e. we assume that the
whole computation of F[seq(prog)] is performed se-
quentially on a single processing element.

Sequential composition The sequential compo-
sition skeleton (denoted by the infix operator “;”)
models the sequential composition of sequential skele-
tons. Therefore, the function computed by the skele-
ton: ¢1;. ..t turns out to be?: Flii;. .. ;ux] = Flug] o

. 0 F[u1] provided that each 1; = seq(prog)?, and
the type of the resulting function is a; — ag+1 (pro-
vided that Vi F(i;) : @; = a;41). No parallelism is
exploited when evaluating the sequential composition
skeleton, i.e. we assume that the whole computation
of Fli1;...;uk] is performed on a single processing ele-
ment.

Pipeline The pipeline skeleton (denoted by the in-
fix operator “|”) models function composition. When-
ever a function f of the input data has to be computed,
such that the function can be expressed as the compo-
sition of some functions fi,..., fx, i.e. f = fro...0f1,
a pipeline skeleton can be used. Given a pipeline skele-
ton, such as o1]...|oy the function computed by the
skeleton is Flo1]...|ok] = Flog]o ... o Fo1] and the
type of the resulting function is a; — ag41 (provided
that Vi F(o;) : a; = a;11). Parallelism is exploited in
the computation of a pipeline skeleton as the compu-
tations relative to the different stages on different data
items can be performed in parallel. In principle, given
a k stage pipeline operating on an input data stream
(Tn,--.,21), the computation of stage ¢ (i.e. the com-
putation of F[o;]) relative to the input data item z;,
can be performed in parallel with the computations of
stages i’ € (1,k) s.t. i’ # i relative to the input data
items x;_(;r_y).

Farm The farm skeleton (denoted by the prefix op-
erator “o”) models functional replication. Given a
farm skeleton o(o) the function computed is given by
Flo(o)] = Flo] and the type of the resulting function
will be Flo(o)] : @ — B provided that Flo] : a — S.
The farm skeleton has to be interpreted as identity,
from the strict viewpoint of its functional semantics.
Its effectiveness derives from its parallel semantics: in
the computation of a farm skeleton, parallelism is ex-
ploited as the computations relative to different (avail-
able) items of the input data stream can all be per-

Lf:a — B denotes that function f has type a — 3.

20 denotes the usual function composition (g o f)(z) =
9(f(2)-

3In the following, we will denote by 1; sequential skeletons
such as seq(prog).



formed in parallel. Therefore given a farm skeleton
such as o(¢) and an input stream such as (z,,...,z1)
the computations Flo](z;) and Flo](z;) (i # j) can
be performed in parallel once the data items z; and x;
are available on the input stream.

Using the skeleton framework described above,
skeleton expressions (i.e. programs) such as the fol-
lowing may be written:

Threshold = seq ...(C code here) ... endseq
Contour = seq ...{C code here) ... endseq
Recognize = seq ...{C code here) ... endseq
o(Threshold | Contour | Recognize)

Assuming that the C code in sequential skeleton
Threshold processes Bitmaps in order to keep black
the pixels whose color value is above a given thresh-
old (F[Threshold] : Bitmap — Bitmap), that the
C code in the Contour skeleton processes black and
white bitmaps in order to recognize contour lines
(F[Contour] Bitmap — Contour[]) and, even-
tually, that the C code in Recognize recognizes
printable characters out of a set of contour lines
(F[Recognize] : Contour|] — char]]), the skeleton ex-
pression ¢(Threshold | Contour | Recognize) for each
Bitmap of an input data stream places onto an out-
put data stream a char vector holding all the charac-
ters recognized in the Bitmap. Parallelism is exploited
both by overlapping the computations of Threshold,
Contour and Recognize relative to one of the Bitmaps
appearing onto the input stream (this is because of
the pipeline skeleton) and by performing in parallel
the computations relative to the different Bitmaps ap-
pearing onto the input stream (this is because of the
outermost farm skeleton).

2.1 Stream parallel rewriting rules

Many equivalences can be established between skele-
ton expressions involving the stream parallel skeletons
defined in Section 2. Those equivalences can be proved
by looking at the functional semantics of the skeletons
involved. As an example, given the two skeleton ex-
pressions o and (o), we can immediately see that both
compute the same function F (o), due to the fact that
farm represents identity from the functional semantics
viewpoint. Therefore we can conclude that, from the
point of view of the results computed by the programs
denoted by the two expressions, o = o(o). This, in
turn, leads to the two rewriting rules Fe (farm elimi-
nation) and Fi (farm introduction) of Figure 1: the Fi
rule allows farms to be introduced on top of any skele-
ton expression, whereas Fe rule allows farms to be re-
moved from the top of any skeleton expression. Both
rules preserve the functional semantics. Instead, par-
allel semantics is not preserved, since different kinds
and, consequently, different amounts of parallelism are
exploited in the left-hand and right-hand side.
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o — o(0) (Fi)

olo) > o (Fe)
(01](2]03)) = ((01]02)|03) (Pasl)
((o1lo2)|os) = (01](02]03)) (Pas2)
(e15(e2se3)) = ((ea5e2)3e8) (SCasl)
((Ll,LQ) ) — (L1 (LQ,L3)) (SCasz)
HON (Se)
L= 3(¢) (Si)
(ea]oo o) = (o1 5tk) (Coll)
(115 500) = (- 1) (Expd)

Figure 1: Rewriting rules

Figure 1 presents some of the rewriting rules we can
prove for the skeleton set taken into account in this
paper (the acronyms on the right stand for farm intro-
duction and elimination (Fi, Fe), pipeline and sequen-
tial composition associativity (Pasl, Pas2, SCasl,
SCas2), sequential composition elimination and in-
troduction (Se, Si), pipe collapse and sequential com-
position expansion (Coll, Expd)). These rules state
that farms can be introduced or removed from skeleton
expressions, that pipeline and sequential composition
skeletons are associative, that the sequential compo-
sition of a single sequential skeleton is equivalent to
the sequential skeleton itself, and that pipeline and
sequential skeletons can be freely interchanged. Due
to pipeline and sequential composition associativeness,
we will simplify in the following (... ((¢1;¢2);¢3);- - tn)
by ¢1;. .- 5en-

These transformations can be performed without af-
fecting the result computed by the program, but affect-
ing the amount and the kind of parallelism exploited
and, therefore, the performance eventually achieved.
Despite their simplicity (we do not prove their validity
here, but the proofs are straightforward), these rules
can be effectively used to rewrite any stream parallel
skeleton expression into a “normal form” expression
(defined in Section 3) which will be proven to be more
efficient that the non-normal, original one.

2.2 Performance estimation

We assume that programs written with the skeletons
of Section 2 are compiled to parallel object code using
template based compiling tools, such as those used in
both P3L and SklEcl [8, 15, 9, 7]. Such kind of tools are
based on the existence of a predefined, parametric and
efficient process network for each one of the skeletons.
These parametric process networks, the implementa-
tion templates, are used to implement the skeleton in-
stances. Here, in particular, we assume that each im-
plementation template is a parametric (in the number
of processing nodes used) process network with a single
input and a single output “point”. That is, we assume
that there is a unique place where data of the input
stream are taken and another unique place where data



of the output stream are placed by the template pro-
cess network (these “places” can be channels, memory
locations, etc.). Although this assumption may look
like to be restrictive, it perfectly models the concept of
data stream, which is a single entity hosting data items
available at different, consecutive times. Furthermore,
this assumption allows effective implementation tem-
plate composition to be performed, which in turn is
necessary to implement full skeleton nesting [9]. This
is also the assumption currently made in the compiling
tools of both P3L and SklEcl, the skeleton based paral-
lel programming environments currently being devel-
oped in Pisa.

In order to estimate the performance of our skele-
ton programs, we need some performance model as-
sociated to the implementation templates we assume
to use to implement the skeletons on the target archi-
tecture. Such performance models should reflect the
performance achieved when implementing a particular
process network on a particular target architecture,
however, and therefore they are strongly related to
the templates used and to the target machine used.
Instead, we are interested in the general properties of
the skeletons, and therefore here we try to abstract
the performance models of the templates from tem-
plates peculiarities and from target architecture fea-
tures. Eventually, we come up with “ideal” perfor-
mance models that have to be intended as asymptotic
models, i.e. models that represent the best perfor-
mance that can be achieved by a template implement-
ing the skeleton under the assumptions made in this
work. This because we are interested in the evalua-
tion of the lower bounds, rather than in the precise
modeling of the template performance.

In this work we consider the service time of a tem-
plate as the performance measure to be optimized.
The service time is the time occurring between the
delivery of two distinct, consecutive result data items
onto the output stream. It can also be defined as the
time necessary to the first process of the template to
accept and process a new input data item *.

We introduce now the ideal performance models for
the implementation templates of our skeletons. We
denote by Ts(o) the service time of the template im-
plementing the skeleton o, and by Te4(¢) the average
amount of time spent in computing the code embed-
ded by the seq skeleton ¢+ = seq(...). We denote by
Ti(c) and T,(o) the time spent by the template im-
plementing o in receiving an input data item and de-
livering an output data item from/to a distinct pro-
cessing node. These parameters can be used to model
either the overhead associated with a communication
or the actual (total) time spent in the communication,

4This measure is different from the completion time, i.e. the
time occurring between the arrival of the first data item of the
input stream to the template and the delivering of the last result
data item onto the output stream.
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depending on the parallelism degree of the target ar-
chitecture processing element (i.e. on the presence of
some kind of independent communication processor).
Sequential skeleton: Ts(1) = T;(¢) + To (1) + Tseq(t)
i.e. the service time of a sequential skeleton should be
at least equal to the time spent in receiving the input
data plus the time spent in executing the code, plus
the time spent in delivering the result data.
Sequential composition skeleton: Ts(t1;...;t,) =
Ti(e1) +To(er) + Zle Tseq(t;) i-e. the service time of a
sequential composition of sequential skeletons should
be at least equal to the time spent in gathering param-
eters and delivering results plus the time spent in the
computation of each one of the seq skeletons involved.
Pipeline: Ts(o1]...|lor) = NTs(o1),...,Ts(ok)}®
i.e. the service time of a pipeline should be at least
equal to the maximum of the service times of its stages
[16].

Farm: Ts(o0) = [{1{Ti(0),T,(0)},Ts(0)}, denoting
the fact that a farm template with single input/output
points cannot serve requests in a time shorter than the
time spent in receiving an input or delivering an output
data item. Furthermore, it does not make sense to use
a farm when the time spent in delivering a data item
is greater that the time spent in computing the result
of that data item, as in this case the results could be
computed with better service time without using the
farm [17]. It’s worthwhile pointing out that this kind of
performance modeling of the farm corresponds to the
assumption that a farm template is basically a three
stage pipeline: the first stage gathers data items from
the input data stream, the second (parallel!) stage
computes the farm results and the third stage gathers
the results from the second one and delivers them on
the output stream.

3 Collapsing skeletons

We first define a “normal form” of stream parallel
skeleton compositions, then we will show how normal
forms of skeleton compositions always achieve an equal
or better performance (in terms of the service time)
w.r.t. the equivalent, non-normal form skeleton com-
positions, despite their simpler structure in terms of
the skeleton nesting used.

Given any skeleton composition A, we define
fringe(A) to be the ordered list of all the sequential
portions of code in A. Formally, we define fringe(A)
by induction on the structure of A as follows:

e fringe(t) =1
o fringe(t1;...5tk) = [t1,. -, Lk
e fringe(o(o)) = fringe(o)

(

5We denote by 1{...} and }{...} the maximum and the min-
imum of a set, respectively.



We define the normal form of a generic skeleton com-
position A, denoted by A, as®

& = of;(fringe(A)))
It is easy to prove the following statement:

Statement 1 Given any skeleton composition A,

FIA] = FIA]

Proof The proof is by induction on the structure of
the skeleton program.

Base case The program just contains a sequential
skeleton or a sequential composition one In this case

.) and therefore L—> ;e )Ego(;(L))
or A = u1;...;u; and therefore ¢1;. .. 5t K o1y - 5tk)

Inductive cases The program is elther a pipe or a
farm of normal form skeletons. In this case

either A =1 = seq(. .

o either A = (o(t115. - stang )| - - [(0(tk1s- - - tkns ),
therefore .
e
(o(ta1; - stam N - -- 100kt - - - 5tkng)) —
Coll
(Lll;---;bln1)| |(Lk1;---;[fknk) —
SCas
(b115 o3ty )5« 5 (Lk1s o 3bkng ) =
Fi
(b115 - 3bings e bkl e - - 3lkny ) —
O(0113 -+ 5bny s - kLS - bk )

e or A =o(o(i1;...;tn)) and therefore

F
o(o(t1; .- -3tn)) = o(L1s .. 5tn)

3.1

Using the abstract performance models for templates
introduced in Section 2.2, we can prove the following
result, which is the main result discussed in this paper.

Collapsing effects

Statement 2 Given any stream parallel composition
A, such that Vi € fringe(A) Ti(1) < Tseq(r) and Tp(1) <
Tseq(t), then To(A) < Ts(A)

Proof We prove the statement by induction on the
structure of A.

Base cases Either A =1 or A = 44;...
fore:

it and there-

Ts(o([’la RN

Inductive cases Either A = o0 or A = o]0y and
therefore:

6We use the sequential composition operator in prefix form,
in this case, assuming that ;(¢1,...,t%) = t1;. .. lk-
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e A = ¢¢. In this case Ts(c) > Ts(7) by induc-
tion hypothesis. Furthermore, we assume that
fringe(o) = t1,. .., and therefore:

T5(A) = Ts(oo) = I{{MTi(0), To(0)}, Ts(o) } >

HMNTi(0), To(0)}, T5(@)} =

HMTi(1), To () }, T5(@) } =

HMTi(n To(Lk)} HH{Ti(n),

Ts(e1;- - Lk)}}—

HMTi(n aTo(Lk)})}T{T i(01), To(er)},

Lk =

i{T{T (t1), To(uw) }s Ts(eas - 5en) } =
joeetk)) = Ts(o0)

e A = 0'1|(72 (Wlth fringe(al) = L1ly-y
fringe(oa) = t21,.-.,tan,). In this case, Ts(o
Ts(73),4 € {1,2} by induction hypothesis:

l1n, and
i) >

Ts(o1]o2) = H{Ts(01),Ts(o2)} >

HTs(01), Ts(02)} =

T{Ts(O(Ln;---;Llnl)):Ts(O(ILQh-- Slony))} =

AN Ti(e11), Totiny) b5 2252000 Tseq (i)}
HMTi(e21), Tot2ns) }, Efn% Tseq(vi)}} =

MMTi(e11), Tolting) }, HTi(e21), To(tan,) }} =

T{Ti(Lll); o(Llnl):To(L2n2)} >

T,
NTi(u11), To (L2n2)} >
HMNTi(e11), Toleans) } >
HMTi(e1), T, (L2nz)},zzlni1 Tseq(ti)+
Z?n§1 Tseq( z)} -
TS(O(LH, . aLan)) = Ts(0'1|0'2)

This result tells us that any time we have a stream
parallel composition in a larger skeleton composition
we can rewrite it in normal form and expect that per-
formance (service time) is either the same or better
than the original one. The assumptions on the input
and output times (Ve € fringe(A) T;(1) < Tseq(t) and
To(1) < Tseq(t)) are not restrictive in that every time
we have a module whose latency is smaller than the
time spent to feed the module with new data to be
computed and to extract results out of the module, the
parallel module can be conveniently eliminated and a
sequential module can be used instead.

Concerning the effects of collapsing stream paral-
lel skeleton compositions to normal form on the re-
sources used, a different kind of reasoning has to be
performed. The farm introduced by the normal form
compute “heavy” functions, the functions obtained by
merging all the sequential stages of the original com-
position. Therefore, in order to be effective, a large
number of parallel processes have to be included in the
farm template, in such a way that, every time a new
data item is available to schedule a new parallel com-
putation, a process happens to be idle, ready to start
this new computation. This, in turn, allows to achieve
the asymptotic performance modeled by performance
formulas of Section 2.2. The number of parallel pro-
cesses used in the normal form farm should there-

Ts(e1;. .50k
—T{Ti(Ll)vTo(Lk)}- Whether or

fore be something like



TableA | 11500 o(tr;t2)  o(o(ur)|o(ee))  (o(er)|o(ta))  o(erfta)  o(ea)|ea  t1]o(e2)
T, 6.03 0.33 0.35 0.37 0.35 1.08 4.98
T, 1207.76  71.11 76.60 81.00 74.64 222.04 1003.75
#PE 1 24 44 24 34 9 7

€ (%) 75.60 38.85 66.99 50.71 62.05 17.29
TableB | 1500 o(t15t2)  o(o(tr)]o(ea))  (o(er)|o(e2))  o(eafea) o(tr)]ea  ta]o(e2)
T, 6.03 0.39 1.30 0.72 0.43 1.12 4.99
T, 1207.76  84.50 286.62 151.67 91.43 230.35 1004.69
#PE 1 20 20 20 20 20 20

e (%) 75.52 23.08 41.93 69.56 26.88 6.04

Figure 2: Normal form vs. non-normal forms. Table A: optimal number of processing elements for each run Table
B: same number of processing elements for each run (Ts: service time, T.: completion time, #PE: number of

processing elements used, €: efficiency)

not this amount of processing resources (parallel pro-
cesses) is greater than the amount of resources needed
to implement the corresponding non-normal form is
not known, at the moment, but we are currently look-
ing for a result, similar to the one discussed above
for the service time, that could assess the relation-
ships between the resources used in the normal and
non-normal forms of stream parallel skeletons compo-
sitions. We expect that normal form programs can
be implemented with a smaller amount of resources
dedicated to the skeleton run time support, because
of the simpler skeleton structure of normal form pro-
grams with respect to non-normal form ones. This
should lead to smaller overheads in the execution of
normal forms and, in general, to a better utilization of
the processing elements at hand.” Preliminary experi-
mental results (shown in Section 3.2) seem to validate
this kinds of reasoning.

3.2 Experimental results

We performed some experiments aimed at validating
the theoretical results discussed in Section 3.1. We
used two skeleton compilers, Anacleto [10], the Pisa
prototype P3L compiler, and the skeleton compiler
integrated within SkIE [6]. Both compilers handle a
skeleton language including the stream parallel skele-
tons discussed in Section 2, and both use implementa-
tion templates such as those discussed in Section 2.2.
In order to check whether normal form programs
perform better than equivalent, non-normal form ones,
we performed multiple runs of normal and non-normal
versions of the same programs on a cluster of 10 Pen-
tium IT PCs interconnected by a 100Mbit switched
Ethernet and on a Fujitsu AP1000 parallel machine.
First of all, we looked at the behavior of the dif-
ferent, equivalent forms of a program, with respect to

TWe expect to achieve better service times and, at the same
time, better efficiency.
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performance. Table A of Figure 2 summarizes the ser-
vice and completion time, the resource usage count and
the efficiency measured when running different forms
(equivalent skeleton compositions) of the same pro-
gram. In this case, the program is a two stage pipeline
with the first stage taking five times the time taken by
the second one to compute a result.® All the differ-
ent versions compute a stream of 200 input tasks (on
a Fujitsu AP1000). In this first set of runs, we used
the exact amount of resources (processing elements)
that maximizes the run performance. This amount
of resources can be derived by the performance mod-
els associated to the implementation templates used
to implement the skeletons and depends, of course, on
the kind of skeleton nesting used within the program.
The normal form (second column, in the table) run
takes less time to complete (T¢), delivers a better ser-
vice time (Ts) and presents a better efficiency (com-
puted on the service time) than the others, semanti-
cally equivalent forms of the program. In particular,
the normal form uses the same amount of processing
elements of the pipe of farms version, but this version
of the program is slower.

In Table B of Figure 2, we summarize the times
taken when the different versions of the programs are
run using the same amount of processing elements.
The amount of processing elements used has been cho-
sen to be slightly smaller of the “optimal” amount of
processing elements required by the normal form and
farm of pipeline programs. In this case, the advantage
coming from the usage of the normal form is more
evident. This is due to the “better” usage of the avail-
able processing elements by normal form (i.e. to the
smaller overheads introduced in computations and to
the smaller number of processing elements dedicated to
the execution of the bare skeleton/template run time
support).

8The latencies of sequential computations are randomly cho-
sen in accordance with a normal distribution N (y, o) with vari-
ance ¢ = 0.6.



Anacleto Compiler on Fujitsu AP1000
0.55 T T T T

T
Normal Form ——
o@l...[) —+-

Ideal Service Time

05§

Ts (sec)

14 16
Processing Elements
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We also considered programs that are expected to
pay a minor performance slowdown with respect to the
normal form programs: we considered skeleton compo-
sitions in the form o(s1]...|t) vs. the equivalent nor-
mal forms o(t1; ... ;). In both cases the mean load of
all sequential computations is equal and fixed. We ex-
pected minimum differences between the service times
of first and second form of these programs, because
of the poor structuring of the first form. Further-
more, we expected that normal form is not sensibly
better than the other form when the difference be-
tween times spent in sequential computations is low,
as in this case the load balancing effects of normal
form farm are poorer. Figure 3 (left) plots the ser-
vice time of a o(i1]...|ux) program in function of the
parallelism degree (the number of processing elements
used, actually) vs. the service time of the equivalent
normal form program (times taken on a Fujitsu AP
1000). The ideal service time (i.e. the service time
computed by using the performance models of Section
2.2) of normal form program is also plotted. The nor-
mal form times are better than non-normal form times
even if the load of all the sequential computations is
exactly the same (and this should be the best condi-
tion for farms of pipelines with respect to the corre-
sponding normal form: the farm of sequential compo-
sition skeleton) and, furthermore, normal form times
are very close to the ideal ones.

In order to evaluate the effect of the local load imbal-
ances on normal and non-normal form programs, we
run programs with a variable variance in the sequen-
tial latencies. Figure 3 (rigth) plots the service times
of programs when the latencies of sequential compu-
tations are randomly chosen in accordance with a nor-
mal distribution N(u,o0) (times taken on the Linux
Pentium II/Fast Ethernet cluster). Again, the nor-
mal form times are better than those achieved with
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the equivalent non-normal form programs. Moreover,
due to the better load balancing capabilities of the
normal form, the gap between the performances grows
as the unbalancing of sequential latencies grows. We
obviously expect that even better results can be mea-
sured in case of more structured programs, as in this
case normal form leads to a sensible decrease in the
run time support code that has to be executed to dis-
tribute data amongst the processing elements involved
in the parallel execution of skeleton code.

4 Related work and conclusions

Rewriting techniques with some kind of associated
cost calculus have been developed by different research
groups working on skeletons, parallel functional pro-
gramming and general structured parallel program-
ming.

Papers have been published demonstrating the po-
tential usage of a particular cost calculus in the eval-
uation of program transformations [18, 19]. Other re-
searchers developed transformation techniques aimed
at improving specific data parallel computations [12],
mostly derived from the Bird-Merteens parallel func-
tional programming framework [11]. However, most of
these works just deal with data parallel computations
and the associated transformations.

Both the Darlington group at the Imperial Col-
lege and the authors’ group working on P3L discussed
transformation rules involving both stream (control)
parallel and data parallel skeletons [2, 8, 13]. Even
in these works, however, no idea of “best” or “normal
form” skeleton composition such as the one discussed
here has been presented.

The main result discussed in this paper is that any
arbitrary composition of stream parallel skeletons can
be rewritten into an equivalent “normal form” skeleton



composition. Such normal form skeleton composition
computes the same results computed by the original
program, delivering a service time which is better or
equal to the service time of the original program. This
result has been derived taking into account ideal per-
formance models, i.e. not taking into account all the
overheads associated with the exploitation of nested
skeleton programs, which are quite hard to measure
within the abstract cost model we devised for the skele-
ton implementations. Therefore it has to be considered
“optimistic” in the sense that normal forms are sub-
ject to a smaller amount of overhead with respect to
highly nested, equivalent, non-normal forms.

Experimental results demonstrated that normal
form programs deliver a better service time than the
equivalent, non-normal form ones. All the experiments
we performed on different machines, with different
compiler and different programs showed that the nor-
mal form programs run faster than the equivalent, non-
normal ones even in those cases where we expected the
behavior to be quite close (e.g. farm of pipeline of bal-
anced sequential stages). Furthermore, in those cases
where the load imbalances in the sequential computa-
tions affect the load balancing features of non-normal
form program implementations, normal forms achieve
a sensibly better service time.

Currently, we are investigating two different ways
to extend the results discussed in this work. On
the one hand, we are trying to evaluate the relation-
ship between the number of resources (processing el-
ements) needed to implement non-normal forms and
the equivalent normal form programs. Experimental
results show that the amount of resources needed to
run normal form programs is close (usually smaller) to
the amount of resources needed to run the equivalent
non normal form programs achieving the best perfor-
mance. On the other hand, we are currently investi-
gating whether or not some kind of normal form can
be found even in case that data and stream parallel
skeletons are taken into account.
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