The Meta Transformation Tool for Skeleton-Based
Languages

Marco Aldinucci

Computer Science Dept. — University of Pisa — Corso Italia, 40 — I-56125 Pisa — Italy
Email: aldinuc@di.unipi.it

Abstract. Academic and commercial experience with skeleton-based systems
has demonstrated the benefits of the approach but also the lack of methods and
tools for algorithm design and performance prediction. We propose a (graphi-
cal) transformation tool based on a novel internal representation of programs
that enables the user to effectively deal with program transformation. Given a
skeleton-based language and a set of semantic-preserving transformation rules,
the tool locates applicable transformations and provides performance estimates,
thereby helping the programmer in navigating through the program refinement
space.

1 Introduction

Structured parallel programming systems allow a parallel application to be construct-
ed by composing a set of basic parallel patterns called skeletons. A skeleton is formally
an higher order function taking one or more other skeletons or portions of sequential
code as parameters, and modelling a parallel computation out of them.

Cole introduces the skeleton concept in the late 80’s [8]. Cole’s skeletons represent
parallelism exploitation patterns that can be used (instantiated) to model common
parallel applications. Later, different authors acknowledge that skeletons can be used
as constructs of an explicitly parallel programming language, actually as the only way
to express parallel computations in these languages [9, 5]. Recently, the skeleton con-
cept evolved, and became the coordination layer of structured parallel programming
environments [4, 6, 17].

Usually, the skeletons’ set includes both data parallel and task parallel patterns.
Data parallel skeletons model computations in which different processes cooperate
to compute a single data item, whereas task parallel skeletons model computations
whose parallel activities come from the computation of different and independent data
items.

In most cases, in order to implement skeletons on parallel architectures efficiently,
compiling tools based on the concept of implementation template (actually parametric
process networks) have been developed [8, 5].

Furthermore, due to the fact that the skeletons have a clear functional and paral-
lel semantics, different rewriting techniques have been developed that allow skeleton
programs to be transformed/rewritten into equivalent ones achieving different perfor-
mances when implemented on the target architecture [7, 11]. These transformations
can also be driven by some kind of analytical performance models, associated with the
implementation templates of the skeletons, in such a way that only those rewritings
leading to efficient implementations of the skeleton code are considered.

The research community has been proposing several development frameworks
based on the refinement of skeletons [9, 10, 18]. In such frameworks, the user starts by
writing an initial skeletal program/specification. Afterwards, the initial specification
may be subjected to a cost-driven transformation process with the aim of improving
the performance of the parallel program. Such transformation is done by means of
semantic preserving rewriting rules. A rich set of rewriting rules [1, 2, 3, 11] and cost
models [18, 20] for various skeletons have been developed recently.

In this paper we present Meta, an interactive transformation tool for skeleton-
based programs. The tool basically implements a term rewriting system that may
be instantiated with a broad class of skeleton-based languages and skeleton rewriting
rules. Basic features of the tool include the identification of applicable rules and the
transformation of a subject program by application of a rule chosen by the user,
or accordingly with some performance-driven heuristics. Meta is based on a novel
program representation (called dependence tree) that allows to effectively implement
a rewriting system via pattern-matching.

The Meta tool can be used as a building block in general transformational refine-
ment environments for skeleton languages. Meta has already been used as transforma-
tion engine of the FAN skeleton framework [3, 10], that is a pure data parallel skeleton
framework. Actually, Meta is more general and may be also used in a broad class of
mixed task/data parallel skeleton languages [6, 17, 20].

The paper is organised as follows. Section 2 frames the kind of languages and
transformations Meta can deal with. The Skel-BSP language, used as a test-bed for
Meta, is presented. Section 3 describes the Meta transformation tool and its architec-
ture. Then, Section 4 discusses a case study. Section 5 assesses some related work and
concludes.

2 Skeletons and transformations

We consider a generic structured coordination language TL (for target language) where
parallel programs are constructed by composing procedures in a conventional base
language using a set of high-level pre-defined skeletons. We also assume that the
skeletons set has three kinds of skeletons: data parallel, task parallel and sequential
skeletons. Sequential skeletons encapsulate functions written in any sequential base
language and are not considered for parallel execution. The others provide typical task
and data parallel patterns. Finally, we constrain data parallel skeletons to call only
sequential skeletons. This is usually the case in real applications and it is satisfied by
the existing skeleton languages [9, 4, 6, 3, 20, 17]. Applications written in this way
have a (up to) three-tier structure shown in Fig. 1.

In order to preserve generality, Meta can be specialised with the TL syntax and
its three skeleton sets. The only requirement we ask is that the above constraint on
skeleton calls holds. This makes our work applicable to a variety of existing languages.

Besides a skeleton-based TL, the other ingredient of program refinement by trans-
formation is a set of semantic preserving rewriting rules. A rule for TL is a pair L — R,
where L and R are fragments of TL programs with variables v, v; ... ranging over TL
types, acting as placeholder for any piece of program. We require that every variable
occurring in R must occur also in L and that L is not a variable. Moreover, a variable
may be constrained to assume a specified type or satisfy a specific property (e.g., we

Program Program

Task Parallel layer

TP skel 2
DP skel A,'
‘l (DP skel C] Data Parallel layer
DP skel B) (bPskeic) (DP skelB)
[seqfuni1] [seqfun2] [seqfun3]l Sequential layer [seqfun1]l [seqfun2]

Fig. 1. Three-tier applications: two correct skeleton calling schemes.

may require an operator to distribute over another operator). The left-hand side L of
a rule is called a pattern.

In the rest of the paper, we consider a simple concrete target language as a test-bed
for the Meta tranformation tool: Skel-BSP[20]. Skel-BSP has been defined as a subset
of P3L [5] on top of BSP [19] and it can express both data and task parallelism.
The following defines a simplified Skel-BSP syntax which is particularly suitable for
expressing rules and programs in a compact way:

TL_prog ::== TP | DP

TP ::= farm “(" TP)" | pipe “{” TPlist “}” | DP

TPlist := TP | TP, TPlist

DP ::= map Seq | map2 Seq | scanL Seq | reduce Seq | Seq |
comp “(” out Var, in Varlist “)” “{” DPlist “}”

DPlist ::= Var “=" DP Varlist | Var “=" DP Varlist, DPlist

Var ::= (a string)

Varlist := Var | Var, Varlist

Seq ::= (a sequential C function)

TL_prog can be formed with skeleton applications, constants, variables or functions
applications. Each skeleton instance may be further specified by its name just adding
a dotted string after the keywords (e.g. comp.mss). Variables are specified by a name
and by a type ranging over (all or some of) the base language types (e.g. all C types
except pointers). Variable types may suppressed where no confusion can arise.

The pipe skeleton denotes functional composition where each function (stage) is
executed in pipeline on a stream of data. Each stage of the pipe runs on different
(sets of) processors. The farm skeleton denotes “stateless” functional replication on
a stream of data. The map, scanL and reduce skeletons denote the namesake data
parallel functions [7] and do not need any further comment. map2 is an extend-
ed version of map, which works on two arrays (of the same lengths) as follows:
map2 f [zo, ..., Tn) [Yo,---sYUn] = [f o Yo, -, f Tn yn]. The comp skeleton expresses
the sequential composition of data parallel skeletons. The body of the comp skeleton
is a sequence of equations defining variables via expressions. Such definitions follows
the single-assignment rule: there is at most one equation defining each variable.

comp.name (out outvar, in invars){
outvar, = dp.1 Op; invars;

ou.tvarn = dp.n Op,, invars,}

where: Vk = 1..n, invarsy C (U, <1, outvar; U invars) , outvar € U<, outvar;

The skeletons into the comp are executed in sequence on a single set of processors in
a lock-step fashion, possibly with some (all-to-all) data re-distributions among steps.
The cost estimate of Skel-BSP is based on the Valiant’s Bulk-Syncronous Parallel
model [19, 20].

2.1 Examples

In this section, we consider a couple of simple Skel-BSP programs: the maximum
segment sum and the polynomial evaluation. Both programs are the Skel-BSP presen-
tation of parallel algorithms appeared in [3, 10].

Maximum segment sum Given a one-dimensional array of integers v, the max-
imum segment sum (MSS) is a contiguous array segment whose members have the
largest sum among all segments in v. Suppose we would like to compute the MSS of
a stream of arrays. The following code is a first parallel program for computing MSS
following a simple strategy [3, 10]:

pipe.mss {
map pair, /¥ int [n] —int [n][2] */
scanL Op., /* tint [n][2] — int [n][2] */
map Py, /* vint [n][2] = int [n] */
reduce mazx} /¥ :int [n] —int */

The comments on the right hand side state the type of each skeleton instance;
types are expressed using a C-like notation. The operator Op, is defined as follows:

(i1, i 2)Opi ()1, Tj2] = [max{z;1 + xj2, %1}, Ti2 + Tj2]

while pair © = [z,z| and Pj [z, 23] = z;. Intuitively, the purpose of scanL is to
produce an array s whose ith element is the maximum sum of the segments of x ending
at position ¢. Using a sequential program, this task can be accomplished simply by
using scanL with operator Op,(a,b) = max(a + b, b). Unfortunately, such operator is
not associative, thus this simple scanL cannot be parallelised. Op, uses an auxiliary
variable to preserve the associativity. This variable is thrown away at the end of the
scanL computation by the P; operator. Finally, reduce sorts out the maximum element
of array s yielding to the desired maximum segment sum r.

Polynomial evaluation Let us consider the problem of evaluating in parallel a
polynomial a;z + asz? + ...a,x" at m points yi,...y,. The most intuitive solution
consists in parallelising each basic step of the straightforward evaluation algorithm,
i.e. first compute the vector of powers ys® = [y%,...,9"],i = 1...n, then multiply by

the coefficients, and, finally, sum up the intermediate results. The algorithm can be
coded in Skel-BSP as follows.

comp.pol_eval (out zs, in ys, as) {

ts = scanL * ys, /* ts[i] = ys' : float [n][m] */
ds = map2 (x4,) as, ts, [* ds[i] = [a; x %, ... a; %yt] : float [n][m] */
zs = reduce + ds} J*¥ zs[i] = [2haix vt .., 0 a; x yl] float [m] */

where *,, multiplies each element of a vector by a scalar value, x and + are
overloaded to work both on scalars and (element-wise) on vectors. On the right side
(in comments) we describe the variable values and types.

2.2 Transformation rules

When we design a transformation system a foremost step is the choice of the rewriting
rules to be included and the definition of their costs. The goal of the system is to
derive a skeletal program with the best performance estimate by successive (semantic
preserving) transformations (rewrites). Each transformation /rewrite correspond to the
application of a rewriting rule. Here, we only collect the transformations needed to
demonstrate the use of Meta on an example. We refer back to the literature for the
proofs of the soundness of the rules [1, 2, 3, 7, 11]. For the sake of brevity, we use
L 2 R to denote the couple of rules L —+ R and R — L.

In the following, TSk; can be any skeleton (task or data parallel, sequential), DSk;
can be any data parallel or sequential skeleton. Opy, Ops, . .. denote variables ranging
over sequential functions. pair and P; are sequential auxiliary functions, defined in
the previous section. The labelled elision < --- >, represents an unspecified chunk of
code that appears (unchanged) in both sides of the rules.

farm insertion/elimination These rules state that farms can be removed or intro-
duced on top of a TSk skeleton [2]. The rule preserves the constraint on layers since
TSk cannot appear into a data parallel skeleton. A farm replicates TSk without chang-
ing the function it computes. Thus, it just increases task parallelism among different
copies during execution.

ﬁ
TSk farm (TSk)

pipe — comp The pipe skeleton represents the functional composition for both task
and data parallel skeletons. The comp models a (possibly) more complex interaction
among data parallel skeletons. If all the stages DSk;, DSks. . . of the pipe are data par-
allel (or sequential) skeletons, then the pipe can be rewritten as a comp in which each
DSk; gets its input from DSk;_; and outputs towards DSk;,; only. Also in this case
the two formulations differ primarily in the parallel execution model. When arranged
in a pipe, the DSk;, DSks. .. are supposed to run on different sets of processors, while
arranged in a comp, they are supposed to run (in sequence) on a single set of processors.

pipe { comp (out z, in a) {
DSk1 Opl, b= DSkl Opl a,
DSk2 Opg, — Cc = DSk2 Opg b,

< .« >1 < P >1
DSk, Op,} z = DSk, Op, y}

map fusion/fission This rule denotes the map (backwards) distribution through
functional composition [7]. Notice that when we apply form left-to-right we do not
require the two maps in the left hand side to be adjacent in the program code. We
just require that the input to the second one (g) is the output from the first one.

comp (out outvar, in invars) { comp (out outvar, in invars) {
< e > < -0 >
q = map Op; p, _ ¢ = map Op p,
<> - r = map (Op; 0 Op1) p,
r=map Op, g, < o>y
<eee>g) < ee>g)

It is important to notice that, while rules are required to be locally correct, Meta
ensures the global correctness of programs. For instance, using the rule from left-to-
right (map fusion) the assignment in the grey box is not required to appear. Meta
provides the program with the additional assignment (in the grey box) only if the
intermediate result ¢ is referenced in some expressions into < --- >, or < --- >3.

SAR-ARA This rule (applied from left-to-right) aims to reduce the number of com-
munications using the very complex operator Ops. In general, the left-hand side is
more communication intensive and less computation intensive than the right-hand
side. The exact tradeoff for an advantageous application heavily depends on the cost
calculus chosen (see [3, 10]).

comp (out outvar, in invars){ comp (out outvar, in invars){
< “ e >1 < .« .. >1
q = scanL Op, p, t = map pair p,
r = map P q, : u = reduce Op; t,
s = reduce Opy T, v =map P; u,
< o>) r = map P, v,
< e >y }

Op, must distribute forward over Op,.. Ops is defined as follows:

[%’,17 33i,2]0p3 [%’,1, -ij,2] = [xi,lOpaux(xiQOplxj,l); mi,zOPauxl’j,z]
[l’i,l, $i,2]0paux[$j,1, xj,Z] = [xi,10P2in,1, mi,20p2-75j,2]

Notice that, whereas operator Ops works on single elements, operators Op; and
Opaux are defined for pairs (arrays of length 2), and Ops works on pairs of pairs.

3 The transformation tool

In this section, we describe a transformation tool which allows the user to write, eval-
uate and transform TL programs, preserving their functional semantics, and possibly
improving their performance. The tool is interactive. Given an initial TL algorithm, it
proposes a set of transformation rules along with their expected performance impact.
The programmer chooses a rule to be applied and successively (after the application)
the tool looks for new matches. This process is iterated until the programmer deems
the resulting program satisfactory, or there are no more applicable rules.

The strategy of program transformation is in charge of the programmer since, in
general, the rewriting calculus of TL is not confluent: applying the same rules in a
different order may lead to programs with different performance. The best transfor-
mation sequence may require a (potentially exponential) exhaustive search.

In the following, we define an abstract representation of TL programs and transfor-
mation rules, we describe the algorithm used for rule matching, and finally we sketch
the structure of the tool.

3.1 Representing programs and rules

The Meta transformation system is basically a term-rewriting system. Both TL pro-
grams and transformation rules are represented by means of a novel data structure,
so-called dependence tree. Dependence trees are basically labelled trees, thus the search
for applicable rules reduces to the well established theory of subtree matching [12].
The tool attempts to annotate as many nodes of the tree representation as possible
with a matching rule instance, i.e., a structure describing which rule can be used to
transform the subtree rooted at the node, together with the information describing
how the rule has been instantiated, the performance improvement expected and the
applicability conditions to be checked (e.g., the distributivity of one operator over
another).

The dependence tree is essentially an abstract syntax tree in which each non-leaf
node represents a skeleton, with sons representing the skeleton parameters that may
in turn be skeletons or sequential functions. The leaves must be sequential functions,
constants or the special node Arg(). Unlike a parse tree, a dependence tree directly
represents the data dependence among skeletons: if the skeleton Sk; directly uses
data produced by another skeleton Sk, then they will compare as adjacent nodes
in the dependence tree, irrespectively of their position in the parse tree. Each edge
in the dependence tree represents the dependence of the head node from the data
produced by the tail node. The dependence tree of a program is defined constructively,
combining information held in the parse tree (PT) and in the data flow graph (DFG)
of the program. The algorithm to build dependence trees is shown in Table 1. The
algorithm is illustrated in Fig. 2, which shows the parse tree, the data flow graph
and the correspondent dependence tree of the polynomial evaluation example (see
Sect. 2.1). The nodes labelled with DPblock mark the minimum subtrees containing
at least one data parallel skeleton, nodes Arg(as) and Arg(ys) represent the input
data of a DPblock. In other words, DPblock nodes delimit the border between the
task parallel and the data parallel layers.

It is important to understand why we need to introduce a new data structure
instead of using the parse tree directly. The main reason lies in the nature of the class of
languages we aim to deal with, i.e. mixed task/data parallel languages. Nested skeleton
calls find a very natural representation as trees. On the contrary, data parallel blocks
based on the single-assignment rule (e.g. Skel-BSP comp) need a richer representation
in order to catch the dependences among the skeletons (for example a data flow graph).
The dependence tree enables us to compact all the information we need in a single
tree, i.e. in a data structure on which we can do pattern-matching very efficiently.

There is one more point to address. The dependences shown in Fig. 2 are rather
simple. In general, as shown in Fig. 3, a data structure produced by a single TL state-
ment may be used by more than one statement in the rest of the program. We have

Table 1. Building up the dependence tree.

Input: PT and DFG for a correct TL program. The starting node z is the root of PT.
No nested DPblock are allowed (which can be easily flattened).
Output: The dependence tree DT.

Method:

1. Let = denote the current node, starting from the root of PT;

2. Copy z from PT on DT along with the arc joining it with its parent (if any),
the arc is undirected as it comes from PT;

3. if not(z = DPblock)

4. then Recursively apply the algorithm to all sons of = in PT (in any order);

5. else Apply Procedure dpb(DPblock).

Procedure dpb(Node):
From Node follow backward the incoming edges in DFG;
for each node C; reached in this way, do
Copy C; from DFG to DT along with its out-coming edges;
Recursively apply dpb(C;) until the starting node DPblock or a sink is reached;
In the former case add a node Arg to represent the formal parameter name.

oo oo

two choices: (1) to keep a shared reference to the expression (tree), or (2) to replicate
it. In option (1), the data flow can no longer be fully described by a tree. In addition,
sharing the subtrees rules out the possibility of applying different transformations at
the shared expression (tree) for different contexts. The Meta transformational engine
adopts the second option, allowing us to map the data flow graph into a tree-shaped
dependence structure. The drawback of replicating expressions is a possible explo-
sion of the code size when we rebuild a TL program from the internal representation.
To avoid this, the engine keeps track of all the replications made. This ensures a
single copy of all replicated subtrees that have not been subject to an independent
transformation.

Figure 4 depicts the internal representation of rule map fusion from Section 2.2. We
represent the two sides of the rule as dependence trees, some leaves of which are vari-
ables represented by circled numbers. During the rule application, the instantiations
of the left-hand side variables are substituted against their counterparts on the right-
hand side. We call the set of circled figures a rule interface. Since in all our rules, the
left-hand and the right-hand sides have the same variables occurring the same number
of times, the interfaces of both rule sides are the same. Figure 4 demonstrates how
the conditions of applicability and the performance of the two sides of a rule are re-
ported to the programmer. Notice in Fig. 4 the “functional” fcomp, i.e. a special node
used to specify rules in which two (or more) variables of the pattern are rewritten in
the functional composition of them. Since variables have no sons, Meta first rewrites
variables as sons of fcomp, then it makes the contractum {vy = fo,...v, = f,} and,
afterwards the result is equated using fcomp(fo,... fu) = fno--- o fo.

3.2 Rule matching

Since programs and rules are represented by trees, we can state the problem of finding
a candidate rule for transforming an expression as the well-known subtree matching
problem [14, 16, 12]. In the most general case, given a pattern tree P and a subject tree

Parse Tree (PT) Node attributes Dependence Tree
Out

/\ /\ /\ DPblock

ts scanL ds map2 zs reduce T
A /N A reduce
* ys *sa as ts + ds /\

x FAR
In parameters Out parameters /\

as
4 — DPblock — zs " Agls)

map2 reduce
tsa

Fig. 2. The parse tree, the data flow graph and the dependence tree of polynomial evalua-
tion. Skel-BSP skeletons are in serif font. Special nodes are in slanted serif font. Sequential
functions are in italic font.

Data Flow Graph (DFG) Dependence Tree

In parameters
DPblock

Replicated subtree <~~~

Fig. 3. Replicating shared trees. Each triangle stands for a tree representing a TL expression.

map map

® e
026 ®0

Keys: [u]p [d]own Rule 10 map fusion
Advantageous: Alvays

Where: fcomp(f,g)=fg)
Cost (n/pit_op + 2L Cost 2inipit_op + L

Fig. 4. Internal representation of rule map fusion, conditions of its applicability and perfor-
mance of the two sides of the rule.

T, all occurrences of P as a subtree of T can be determined in time O(|P| + |T'|) by
applying a fast string matching algorithm to a proper string representation [16]. Our
problem is a bit more specific: the same patterns are matched against many subjects
and the subject may be modified incrementally by the sequence of rule applications.
Therefore, we distinguish a preprocessing phase, involving operations on patterns inde-
pendent of any subject tree, and a matching phase, involving all operations dependent
on some subject tree. Minimising the matching time is our first priority.

The Hoffmann-O’Donnell bottom-up algorithm [12] fits our problem better than
the string matching algorithm. With it, we can find all occurrences of a forest of
patterns F' as subtrees of T" in time O(|T|), after suitable preprocessing of the pattern
set. Moreover, the algorithm is efficient in practice: after the preprocessing, all the
occurrences of elements in F' can be found with a single traversal of T'. The algorithm
works in two steps: it constructs a driving table, which contains the patterns and their
interrelations; then, the table is used to drive the matching algorithm.

The bottom-up matching algorithm We textually represent labelled trees as X-
terms over a given alphabet Y. Formally, all symbols in Y are Y-terms and if a is a
g-ary symbol in X' then a(t4,...,t,) is a X-term provided each of ¢; is. Nothing else
is a Y-term. Let S, denote the set of (X U {v})-terms.

In addition, let F' = {P, P, ...} be a pattern set, where each pattern P is a tree.
The set of all subtrees of the P; is called a pattern forest (PF). A subset M of PF is
a match set for F' if there exists a tree ¢ € S, such that every pattern in M matches
t at the root and every pattern in PF \ M does not match ¢ at the root.

The key idea of the Hoffmann-O’Donnell bottom-up matching algorithm is to
find, at each point (node) n in the subject tree, the set of all patterns and all parts of
patterns which match at this point. Suppose n is a node labelled with the symbol b, and
suppose also we have already computed such sets for each of the sons of n. Call these
sets, from left to right M, ..., M,. Then the set M of all pattern subtrees that match
at n contains v (that match anywhere), plus those patterns subtrees b(ty,...,t,) such
that ¢; is in M;, 1 < ¢ < g. Therefore, we could compute M by forming b(t1,...,1,)
for all combinations (ti,...,t,), t; € M;. Once we have assigned these sets to each

node, we have essentially solved the matching problem, since each match is triggered
by the presence of a complete pattern in some set.

Notice that there can be only finitely many such sets M, because both X" and the
set of sub-patterns are finite. Thus we could precompute these sets, and code them by
some enumeration to build driving tables. Given such tables, the matching algorithm
becomes straightforward: traverse the subject tree in postorder and assign to each
node n the code of the set of partial matches as n. However, for certain pattern forest
the number of such sets M (thus the complexity of the generation of driving tables)
grows exponentially with the cardinality of the pattern set.

Nevertheless, there is a broad class of pattern sets which can be preprocessed in
polynomial time/space in the size of the set: all sets yielding simple pattern forests. For
an extensive treatment we refer back to Hoffmann-O’Donnell paper [12] and provide
only a brief explanation here.

Let a,b,c... € X. Now, let P and P’ be pattern trees. P subsumes P’ if, for
all subject trees T, P has a match in 7" implies that P’ has a match in 7. Then
P is inconsistent with P’ if there is no subject tree T" matched by both P and P’
P and P’ are independent if there exist Ty, T, and T3 such that 77 is matched
by P but not by P’, Ty is matched by P’ but not by P, and T3 is matched by
both P and P’. Given distinct patterns P and P’, exactly one of the three previous
relations must hold between them. A pattern forest is called simple if it contains
no independent subtrees. For instance, the pattern forest including the pattern trees
P = a(b,v) and P' = a(v,c) is not simple, since P and P’ are independent with
respect to Ty = a(b,b),To = a(c,c),T3 = a(b,c). On the contrary, the pattern set
F; ={a(a(v,v),b), a(b,v)} lead to a simple pattern forest. The current set of Skel-BSP
rules [1, 2, 20] and FAN rules [3] can be fully described by simple pattern forests. Simple
pattern forests suffice even for the implementation of much more complex languages
like LISP and the combinator calculus are based on simple pattern forests [13]. In
addition, since the driving table depends only on the language and on the list of rules,
it can be generated once and for all for a given set of rules and permanently stored
for several subsequent match searches.

3.3 Tool architecture and implementation

The transformation engine applies the matching algorithm in an interactive cycle as
follows:

1. Use the matching algorithm to annotate the dependence tree with the matching
rules.

2. Check whether the rules found satisfy the type constraints and whether the side

conditions hold (possibly interacting with the user).

Apply the performance estimates to establish the effect of each rule.

4. Ask the programmer to select one rule for application. In case no rule is applied,
terminate; otherwise start again from Step 1.

w

We envision the Meta tool as a part of a general tool implementing a transforma-
tional refinement framework for a given target language TL. The global tool structure
is depicted in Fig. 5 (the part already implemented is highlighted with a dotted box).
The whole system has two main capabilities: the conversion between TL programs

TL program TL rules

O
| | %
D E o =

scanner / parser ‘ data dependence analyzer = % :
: \ \ S 2D
& M
T T = Fl &
program rule list ~ S
PT & DFG PTs & DFGs 3
- =
= S
2 . 3
g dependence tree generation Ez :
£ S
: | | :
g_ N
g dependence tree list of dependence pattern trees é
% (program representation) (lhs of rules representation) P~
o ~
= \
S ¥
() pattern forest
. generation
pattern matching i

I pattern sorting

(3) Rule Manager
independent from TL

customizable via instantiation of the ADT

v

B

» .

S list ofmat\fhed rules (by subsumption)
N

2 . ubsumpti h
g matches presentation) Subsump vzon grap
§ and use‘r dialog driving table
= the rule to apply generation

£ —T
¥ tree tranformation <— —— driving table

\ J i
—]

- pattern library file
-...L_User Interaction TS AU

[rebuild TL program from internal representation]—> TL program

‘ TL spec.

(5) Back End

Fig. 5. Global structure of the Meta transformation system.

and their internal representation (dependence tree) and the transformation engine
working on dependence trees.
The system architecture is divided into five basic blocks:

1. The Front End converts a TL program into a parse tree and a data flow graph.

2. The Normalisation uses the PT and DFG to build the dependence tree both for
the TL program and for the set of transformation rules.

3. The Rule Manager implements the matching preprocessing; it delivers a matching
table to drive the transformation engine. The driving table may be stored in a file.

4. The Transformation Engine interacts with the user and governs the transformation
cycle.

5. The Back End generates a new TL program from the internal representation.

A prototype of the system kernel (highlighted in Fig. 5 with a dotted box) has
been implemented in Objective Caml 2.02. Our implementation is based on an ab-
stract data type (ADT) which describes the internal representation (dependence tree)
and the functions working on it. The implementation is very general and can han-
dle, via instantiation of the ADT, different languages with the requirement that rules
and programs are written in the same language. Moreover, since several execution

models and many cost calculi may be associated with the same language, any com-
positional way of describing program performance may be embedded in the tool by
just instantiating the performance formulae of every construct. We call a cost calcu-
lus compositional if the performance of a language expression is either described by a
function of its components or by a constant.

The Meta tranformation tool prototype is currently working under both Linux and
Microsoft Windows. A graphical interface is implemented using the embedded OCaml
graphics library.

4 A case study: design by transformation

We discuss how Meta can be used in the program design process for algorithm MSS,
introduced in Section 2.1 and reported in the top-left corner of Table 2.

First, the tool displays the internal representation of the program (Fig. 6 (a)) and
proposes 5 rules (Fig. 6 (b)). The first one is pipe—comp rule, the others are instances
of the farm introduction rule. The four stages of the pipe use exactly the same data
distribution, but since each stage use a different set of processors each stage has to
scatter and gather each data item. Transforming the pipe in a comp (that use just
one set of processors) would get rid of many unnecessary data re-distributions. Let
us suppose the user chooses to apply pipe—comp, the resulting version is shown in
Fig. 6 (c). Next, Meta proposes a couple of rules (Fig. 6 (d)): SAR-ARA to further
reduce the number of communications into the comp, thus to optimise the program
behaviour on a single data item, and farm introduction to enhance the parallelism
among different data items of the stream. Both rules improve the performance of the
program, let us suppose to choose the SAR-ARA (Fig. 6 (e)).

Then, the transformation process continues choosing (in sequence) map fusion rule
(2 times) and farm introduction rule. The resulting program is only one of the more
than twenty different formulations Meta is able to find applying the transformation
rules to the initial program. Table 2 shows some of the semantic-equivalent formula-
tions derivable.

5 Related work and conclusions

In this paper, we have discussed the design and the implementation of an interac-
tive, graphical transformation tool for skeleton-based languages. The Meta tool is
(indeed) language-independent and is easily customisable with a broad class of lan-
guages, rewriting rules and cost calculi.

The design of our transformation engine Meta was influenced by the PARAMAT
system [15]. However, our approach differs in many aspects. First, our goal is the
optimisation of high-level parallelism, rather than the parallelisation of low-level se-
quential codes. Second, we do not define (as PARAMAT does) any a priori “good”
parallel structure, we rather try to facilitate the exploration of the solution space
toward the best parallel structure.

Beyond the described features, Meta may be instantiated with a set pre-defined
heuristics to work as semi-automatic optimisation tool. As an example Meta recognises
Skel-BSP data-parallel-free programs and optimises them with a standard sequence of
rewriting rules. Such program formulation (called normal form) is proved to be, under

(@) Matches Found: (b)
pipe

1) rule n. 1 (pipe —> comp)
DPpiock B DFviock BN DPoiock BN DPbiock B 2) rule n. 18 (farm introduction)
| | | | 3) rule n. 18 (farm introduction)
4) rule n. 18 (farm introduction)

map seanl. map reduce 5) rule n. 18 (farm introduction)
peair Arg(r) Op+ Arg(r) Pl Arg(®) max Arg(3) Would you like to apply any rule [0=Exif] 1
Matches Found: (d)
(© DPblock
1 C rehuce ” 77777777777777777777 1) rule n. 18 (farm introduction)
pipe—>comp /‘H-r‘n"ap 2) rule n. 13 (SAR-ARA)
| PR I
L} H/ﬁ‘“‘;‘gan,_ o Would you like to apply any rule [0=Exit] 2
| T |
| Op+ map ! \
| | SAR-ARA
| pair Arg(r) ! :
1 Matches Found:
(e) ¥ ®

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)
3) rule n. 10 (map fusion)

..-—"'"'-’—-‘-"“'\-..
Fi reduce

e —
op3 map
P T

max Op+ pair map

Would you like to apply any rule [0=Exit] 2

Matches Found:

- (g) D.:-"biock (h)

map 1) rule n. 18 (farm introduction)
map fusion | 7 Siquce 2) rule n. 10 (map fusion)

o) 053 Would you like to apply any rule [0=Exit] 2

;’ map g9 ‘;
max Op+3 peir map 3
1 P 1
L pair _Ag@® >
) n rb - Matches Found: (J)
- map map fusion 1) rule n. 17 (farm introduction)
PJI ,,—fg-f:_g 7777777777 | Would you like to apply any rule [0=Exit] 1
Pl Cal : map | !
P N ! J
maxr Op+. pair Arg(?) =~
b |

cam|igraphics,

(k) farm Matches Found: 1)

|
- pPolock Y 1) rule n. 17 (farm elimination)
farm intro mlap 2) rule n. 18 (farm introduction)
L s - -
Pi reduce Would you like to apply any rule [0=Exit] 0
| —
Fi Op3 map

A A
max Op+ pair Arg(T)
[

peir

Fig. 6. Transformation of the MSS program using the Meta tool. Skel-BSP skeletons are in
serif font. Special nodes are in slanted serif font. Sequential functions are in 4talic font.

Table 2. Some of the transformations proposed by Meta for the MSS example. The double-
arrow path denotes the derivation path followed in Fig. 6.

pipe.mss { pipe.mss { pipe.mss {
map pair, . map pair, , map pazir,
f f
scanL Op., form e farm(scanL Op.), arm i/ farm(scanL Op.),
map P, map P, farm(map P),
reduce maz } reduce maz } reduce maz }
pipe—Ucomp farm i/e farm /e
comp.mss (out 7, in z) { pipe.mss { pipe.mss {
y=map pair z, map pair, farm i/ map pair,
€
s=scanL Op; v, scanL Opy, ~———— scanl Op.,
v=map Pj s, farm(map P1), farm(map P1),
r=reduce mazx v} reduce mazx } farm(reduce max) }
SARﬁARA
U
comp.mss (out 7, in z) {
a=map pair T, comp.mss (out r, in z) { farm.mss (
b=map pair a, map fusion g=map (pair o pair) o comp (out r, in z) {
c=reduce b=reduce arm i/e a=map (pair o pair) ,
Ops(maz,Op,) b, Ops(maz,Opy) a, b=reduce
d=map P; c, map fusion, "=map (P1o P1) b} Ops(maz,Op+) a,
r=map P; d } r=map (PyoP1)b})

mild requirements, the fastest among the semantic-equivalent formulations that can
be reached (using the rewriting rules) [2].

Space limitation has prevented us to deal with performance prediction capabilities
of Meta. It is clear that the accurateness of performance prediction made by Meta
primarily depends on the accurateness of the target language cost calculus. The use
of Meta with FAN has proved that in many cases good parallel programs can be
obtained via transformations [3]. We are currently completing the integration of Meta
with FAN and we plan to experiment it in the transformation of large real world
application structures.

Acknowledgements I am very grateful to Sergei Gorlatch, Christian Lengauer and
Susanna Pelagatti for many fruitful discussions. This work has been partially sup-
ported by a travel grant from the German-Italian exchange project VIGONI.

References

[1] M. Aldinucci, M. Coppola, and M. Danelutto. Rewriting skeleton programs: How to
evaluate the data-parallel stream-parallel tradeoff. In S. Gorlatch, editor, CMPP’98:
First International Workshop on Constructive Methods for Parallel Programming, num-
ber MIP-9805 in University of Passau technical report, May 1998.

[2] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In proceedings
of the 11th IASTED International Conference on Parallel and Distributed Computing
and Systems, MIT, Boston, USA, November 1999. IASTED/ACTA press.

[3]

[4]

[14]

[15]

[16]

[17]

M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Towards parallel program-
ming by transformation: The FAN skeleton framework. Parallel Algorithms and Appli-
cations, 2000. To appear.

P. Au, J. Darlington, M. Ghanem, Y. Guo, H-W. To, and J. Yang. Co-ordinating
heterogeneous parallel computation. In L. Bouge, P. Fraigniaud, A. Mignotte, and
Y. Robert, editors, Proc. of Furopar ’96, pages 601-614. Springer-Verlag, 1996.

B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured
High level programming language and its structured support. Concurrency Practice
and Ezperience, 7(3):225-255, May 1995.

B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: an heterogenecous HPC
environment. Parallel Computing, 25(13-14):1827-1852, December 1999.

R. S. Bird. Lectures on constructive functional programming. In Manfred Broy, editor,
Constructive Methods in Computing Science. NATO ASI Series, 1988.

M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

J. Darlington, A. J. Field, P.G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and
R. L. While. Parallel Programming Using Skeleton Functions. In M. Reeve A. Bode
and G. Wolf, editors, PARLE’93 Parallel Architectures and Langauges Furope. Springer
Verlag, June 1993. LNCS No. 694.

S. Gorlatch and S. Pelagatti. A transformational framework for skeletal programs:
Overview and case study. In Jose Rohlim, editor, Proc. of Parallel and Distribut-
ed Processing. Workshops held in Congunction with IPPS/SPDP’99, volume 1586 of
LNCS, pages 123-137, Berlin, 1999. Springer.

S. Gorlatch, C. Wedler, and C. Lengauer. Optimization rules for programming with
collective operations. In proceedings of 13th Int. Parallel Processing Symp. € 10th Sym-
p. on Parallel and Distributed Processing (IPPS/SPDP’99), IEEE Computer Society
Press, pages 492-499, 1999.

C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal of the ACM,
29(1):68-95, January 1982.

C. M. Hoffmann and M. J. O’'Donnell. Interpreter generation using tree pattern match-
ing. In Conference Record of the sixth Annual ACM Symposium on Principles of Pro-
gramming Languages (POPL’79), pages 169-179, New York, USA, January 1979. ACM
Press.

S. R. Kasaraju. Efficient tree pattern matching. In Proceedings of the 30th IEEE
Annual Symposium on Foundations of Computer Science, pages 178-183, Research
Triangle Park, North Carolina, 1989. IEEE Computer Society Press.

C. W. Kessler. Pattern-driven automatic program transformation and parallelization.
In Proc. 3rd EUROMICRO Workshop on Parallel and Distributed Processing. IEEE
Computer Society Press, January 1995.

E. Mékinen. On the subtree isomorphism problem for ordered trees. Information
Processing Letters, 32:271-273, September 1989.

T. Rauber and G. Riinger. A coordination language for mixed task and data paral-
lel programs. In proceedings of 8rd Annual ACM Symposium on Applied Computing
(SAC’99), pages 146-155. ACM Press, 1999.

D. B. Skillicorn and W. Cai. A cost calculus for parallel functional programming.
Journal of Parallel and Distributed Computing, 28:65-83, 1995.

L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-11, August 1990.

A. Zavanella. Skeletons and BSP: Performance portability for parallel programming.
PhD thesis, Computer Science Department, University of Pisa, Italy, December 1999.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

