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One main challenge of parallel programming today is the portability between different parallel
architectures under preservation of performance. Most application programs are currently be-
ing written at the low level of C or Fortran, combined with a communication library like MPI;
moreover, they are often tuned towards one specific machine configuration. Since parallel com-
puters are typically replaced within five years, parallel programs which live longer have to be

Towards Parallel Programming by Transformation:
The FAN Skeleton Framework*

M. Aldinuccil, S. Gorlatch?, C. Lengauer? and S. Pelagatti!

'Dipartimento di Informatica, Universitd di Pisa, 40 Corso Italia, I-56125 Pisa, Italy
2 Fakultit fiir Mathematik und Informatik, Universitiat Passau, D-94030 Passau, Germany

Abstract

A Functional Abstract Notation (FAN) is proposed for the specification and design of
parallel algorithms by means of skeletons — high-level patterns with parallel semantics. The
main weakness of the current programming systems based on skeletons is that the user is still
responsible for finding the most appropriate skeleton composition for a given application and
a given parallel architecture.

We describe a transformational framework for the development of skeletal programs which
is aimed at filling this gap. The framework makes use of transformation rules which are se-
mantic equivalences among skeleton compositions. For a given problem, an initial, possibly
inefficient skeleton specification is refined by applying a sequence of transformations. Trans-
formations are guided by a set of performance prediction models which forecast the behavior of
each skeleton and the performance benefits of different rules. The design process is supported
by a graphical tool which locates applicable transformations and provides performance esti-
mates, thereby helping the programmer in navigating through the program refinement space.
We give an overview of the FAN framework and exemplify its use with performance-directed
program derivations for simple case studies. Our experience can be viewed as a first feasibility
study of methods and tools for transformational, performance-directed parallel programming
using skeletons.

Keywords: Parallel programming, program transformations, algorithm design, skeletons,
functional programming, performance models, program refinement tools.

Computing Reviews Categories: D.1.1-3, D.2.2, D.2.6, D.2.10, D.3.1-3, F.1.2, F.3.1,
F.3.3.

Introduction

*Parts of this work were presented in the preliminary version at the HiPS workshop of IPPS’99 (Puerto Rico)

and at the PaCT’99 conference (St.Petersburg).



retuned or redesigned. In addition, programming at this low level of abstraction is cumbersome
and error-prone.

In sequential programming, coding for a specific machine also prevailed three decades ago. The
software engineering solution to overcoming it was to introduce levels of abstraction, effectively
yielding a tree of refinements, from the problem specification to alternative target programs [31].
The derivation of a target program then follows a path down this tree. The transition from one
node to the next can be described formally by a semantics-preserving program transformation or
refinement. Conceptually, porting a program to a different machine configuration means back-
tracking to a previous node on the path and then following another path to a different target
program.

In the parallel setting, high-level programming constructs and a refinement framework for them
are necessary due to the inherent difficulties in maintaining the portability of low-level parallelism
[10,13]. In the Nineties, the “skeletons” research community [11] has been working on high-level
languages and methods for parallel programming [3,4,9,14,21,23]. Skeletons are higher-order
functions which can be evaluated efficiently in parallel. They specify abstractly common patterns
of parallelism which can be used as program building blocks. Typical skeletons include the pipeline,
task farm, reduction and scan.

Current skeleton-based systems typically provide the user with a collection of high-level skeletal
constructs and with a compiler for translating skeleton programs into low-level target code [32].
Typically, skeletons carry a large amount of information on program interaction structure, which
can be used by the compiler to generate efficient code on different target machines. However, high
performance is only reached if a composition of skeletons can be found which matches both the
application and the target machine requirements.

What is still lacking is a sufficiently rich collection of transformation rules for skeletons and
their compositions, and especially tool support for a navigation through the program refinement
tree. One further concept, not as crucial in sequential programming, has to be added: the program
refinements must be adorned with a cost model, since efficiency is the main — often the single —
reason for using parallelism. Several cost models have been developed [26,29,35,37] and have
confirmed that porting a parallel program from one machine configuration to another may dra-
matically alter its performance [20]. Therefore, program design tools must apply transformations
based on performance predictions made in a cost model.

The present paper addresses these two problems — skeleton transformations and cost models
— and gives an overview of a feasibility study of the transformation-based, performance-directed
approach for parallel programming with skeletons. We present:

e a functional abstract notation, FAN, for the specification of skeleton programs and transfor-
mation rules for them, together with its functional semantics given in Haskell,

e examples of semantically sound transformation rules for FAN programs,

e a transformation tool which can identify applicable rules in a FAN program and transform
the program correspondingly by applying a rule chosen by the user,

e a cost model for skeletons and transformation rules, and



e case studies of program development by means of transforming FAN programs and estimating
their cost.

We concentrate here on the design issues for high-level programs based on skeletons. The
translation of skeleton-based programs into executable code, e.g., C+MPI for different parallel
machines like the Fujitsu AP1000 and the Cray T3E, and related performance figures are presented
elsewhere [5].

2 FAN: Functional Abstract Notation

In this section, we introduce a high-level functional notation, called FAN. This notation is intended
for specifying parallelism and for transforming parallel programs in the design process.

The functions in a FAN program are divided into two classes: functions which are skeletons
and functions which are not. Skeletons are distinguished because they have a potential for a
particularly efficient, customized implementation — often involving parallelism. FAN skeletons are
general second-order functions defined on arrays and scalars: they allow the user to concentrate on
the program structure, independently of the syntactic details of a particular skeleton environment.
E.g., one skeleton system FAN can be embedded into is P3L, developed in Pisa [19].

A FAN program consists of a header and a body. The header specifies the program name and
the list of variables taken as input (in) and produced as output (out), as follows:

prog.name (in invars, out outvars)

Input/output variables are specified by name and type: for example, v : T states that the variable
named v has type T. Types can be scalars or arrays according to the following syntax:

T := Scalar | Array idx T

Here, idx defines the array dimensionality and size, and T is the type of the array elements. For

instance, Array n Scalar denotes a vector of size n of scalars and Array n (Array m Scalar) denotes

a vector of vectors of scalars. The actual type of the scalars (int, real, ...) is not needed during

the transformation and can be supplied by the user in later stages of the program development.
A program body is a sequence of equations defining variables via expressions:

T =é€1

T =€k 5

FAN programs obey the single-assignment rule: there is at most one equation defining each vari-
able. All output variables of a program must be assigned in the program’s body. Each equation
is terminated by a semicolon.

Expressions (e) can be constants (c), variables (z), function definitions, function applications
or skeleton applications expressed by F1, Fs, 3, such as map, reduce, etc.

e=cl|z| ee| Aze| Eyee| Eye| Eseee

Ey =map | mapg | reduce | scanlL | copy| split| part| rearrange
E5 = pair | projl

E5 = loopfor | loopwhile | looprepeat



The scope of each variable definition extends across all subsequent definitions in the same
body. At the end of the body, we can specify local definitions using a where clause. Names of FAN
programs can be used as functions in expressions.

Skeletons offered by the current version of FAN represent common patterns of parallelism. In
this paper, we restrict ourselves to the data-parallel skeletons, which comprise data arrangements
and computations expressed by map, reduce, and scanL. It turns out that these skeletons form
a basis of linear recursion [39]. Similar constructs are included in most skeletal systems in the
literature [3,9,14]. We define skeletons formally in Section 3 and introduce an execution model
for them in Section 6.

Let us now discuss a small example of a FAN program and give an intuitive idea of its possible
parallel execution. Figure 1 shows the FAN code for a program, named inner.product, which takes
as input two vectors a and b of length n and returns their inner product, scalar c.

inner.product (in a,b : Array n Scalar, out ¢ : Scalar)
t = map (*) (pair (a,b));
¢ = reduce (+) t;

Figure 1: A FAN program to compute the inner product of two vectors

The program body defines the function to be computed. Expression pair (a,b) returns a vector
of length n of pairs (a[é],b[:]). The application of the map skeleton yields the vector ¢ of all
products t[i] = a[i] * b[i]. Then, reduce (+) t yields the sum of all elements in ¢.

The FAN program in Figure 1 simply defines a function and is not tied to a particular execution
model. One possible model of parallelism in FAN programs is that the program statements are
evaluated in sequence and only skeleton applications in them are considered for a parallel execution.
In the example, supposing p = n processors are available, all pairs (a[é], b[i]) and products a[i] * b[i]
could be computed in parallel. Then, parallelism can be exploited in the computation of ¢,
exploiting the associativity of operator +. If p < n, computations can be performed on blocks of
data in sequence. The adopted execution model is presented in more detail in Section 6.

Our choice of skeletons studied here is dictated by the current repertoire of the typical skeleton
systems and also by the recent results in skeleton transformations.

3 FAN Skeletons

FAN skeletons are partitioned into two classes: skeletons performing actual computation (com-
putational skeletons) and skeletons which reorganize data to enable subsequent computation (ar-
rangement skeletons). We describe the two classes in the subsequent subsections.

We give every FAN skeleton two different semantics: (1) a functional semantics which defines
the input/output behavior, and (2) a more detailed operational semantics which specifies the
opportunities of parallel execution. We provide the functional semantics formally, in Haskell [8],
and the operational semantics informally (in a later section). Most Haskell definitions are relegated
to the appendix.



3.1 Computational data-parallel skeletons

The simplest computational data-parallel skeleton, map, applies a function f to all elements of an
array, and arranges the results in an array with the same shape, for instance:

mapf[xoa"'axn] = [fxO,---,fxn]

The functional semantics of map is given by the Haskell function fanmap:

fanmap:: (Ix c) => (a -> b) -> Array c a -> Array c b
fanmap f x = array (bounds x) [ (i,f (x!i)) | i <- (range (bounds x)) ]

Function fanmap takes as parameters a function £ and an array of any dimensionality and size,
applies £ to all array elements and returns the array of the same shape with all results. Functions
bounds and range are predefined in Haskell: bounds returns the index bounds of an array, and
range defines the multi-dimensional range corresponding to some bounds.

FAN function mapy is an extended version of map, which expects the argument function to
have the element index as an additional parameter:

mapy f [o,...,2n] = [f 0 zo,..., [ n 2]
The Haskell definition of the functional semantics of mapy is

fanmapsh:: (Ix c) => (c -> a -> b) -> Array c a -> Array c b

fanmapsh f x = array (bounds x) [ (i,f i (x'i)) | i <- (range (bounds x)) ]

The reduce and scan skeletons represent data-parallel computation patterns, whose parallel

implementation may involve communication. They are informally defined as follows:

reduce (®) [z1,...,Zn] = 21D ... Bz,
scanL (®) [z1,...,2s] = [z1, Z1 D22, ..., 21D ... Dy
Here, [21,...,%,] denotes an array of length n and @ is an associative operator. These definitions

can be generalized to arrays of any dimensionality.

The according Haskell definitions are shown in Fig. 2. Note that we have chosen a represen-
tation which is parameterized in the index type, i.e., also in the dimensionality of the array. The
index set is given by type variable c; elems returns the list of all the elements of an array, in the
lexicographic order of the index set; listArray constructs an array from a list of elements and
a bound definition; foldl1l is the Haskell fold operation without neutral element; scanll is the
usual scan operation without neutral element. Function fanscan is a generic scan function over
arrays, which takes a scan function s working on lists, an operator £ and an array x, and applies
s to the list resulting from applying elems to x. The semantic function for scanlL is then obtained
by specializing fanscan with the appropriate Haskell scan functions on lists (scanl1). There is
also an analogous rightward version of scan, scanR, whose definition we omit for brevity.

3.2 Data arrangement skeletons

Skeletons for data arrangements take care of data replication, alignment and distribution to arrange
data properly for a subsequent application of computational skeletons like map, reduce, etc. Note
that the data is viewed globally, since there is no notion of processors at this abstract level.



fanred:: (Ix c) => (a-> a -> a) -> (Array c a) —> a
fanred f x = foldll f (elems x)

fanscan:: (Ix c) => ((a -> a -> a) -> [a] —> [al])
-> (a -> a -> a) -> (Array c a) -> Array c a
fanscan s f x = listArray (bounds x) (s f (elems x))

fanscanl:: (Ix ¢) => (a -> a -> a) -> (Array c a) -> Array c a

fanscanl = fanscan scanlil

Figure 2: Haskell definition of reduce and scanL.

Some of the arrangement functions depend on the array dimensionality, while others can be
defined for arrays of any dimensionality. We discuss, first, data arrangements for one-dimensional
arrays and, subsequently, some specific two-dimensional arrangements. Similar definitions can be
given for higher dimensionalities.

3.2.1 Omne-dimensional arrays

Here are the arrangement skeletons for one-dimensional arrays:

e pair (z,y) = [(z0,%0),-- -, (Tn,Yn)] pairs two arrays = [zg,...,z,] and y = [yo, .-, Yn] Of
the same length and returns bottom if the lengths do not match; similar constructors can
be defined for making tuples of any other arity.

e projl x = [z},...,z}]

returns the first components of the elements of an array of tuples; similar functions exists for
subsequent components; projl can be viewed as a notational shorthand for map fst, where
function fst yields the first component of a tuple.

e copyns=]Is...,s

creates a one-dimensional array of length n, filled with copies of s.

e split p [zo,...,zn] = [[Toy -y Th—1]y s [Trky - -+ Tn]

slices an array into p non-overlapping intervals (k = (n + 1)/p), and

e part (r,5) [2o,. -+, Zn—1] = [[T(1=r)modns- - > T0s- - - Ts],
e [xnfra ey Tp—1ye - x(n—l—i—s) modn]]
returns an array of the same length as the input array, in which each element x; is sur-

rounded by a halo or stencil of neighboring elements. The ith element of the returned array
corresponds to a segment of x comprising the r elements before and the s elements after x;.



fanpartl:: (Int,Int) -> Array Int a -> Array Int (Array Int a)
fanpartl (r,s) x =
let (1b,ub) = bounds x
in array (1b,ub)
[ (i, array (0,r+s)
[ (x, x!((i-r+k) ‘mod‘(ub-1b+1))) | k <= [0..(r+s)] 1)
| i <- [1b..ub]

fanpair :: Ix a => (Array a b,Array a c) -> Array a (b,c)
fanpair (x,y) =
if (bounds x) == (bounds y)
then array (bounds x)
[ (1,&!(E),y! (1)) | i <~ range (bounds(x)) ]
else error "Pairing two non-conformant arrays!'!"

fanprojl:: (Ix a) => Array a (b,c) -> Array a b

fanprojl x = fanmap fst x

Figure 3: Haskell definition of part, pair and projl.

Figure 3 shows the functional semantics of some of the arrangements. Note that function
part in FAN translates to a series of functions fanparti, fanpart2, etc. in Haskell. For instance,
fanpartl returns an array of arrays; each element of the result array is a slice of the input array .
The first and the last element of x are considered neighbors. The Haskell functions corresponding
to the other arrangements can be found in the appendix.

3.2.2 Two-dimensional arrays

Some of the arrangement skeletons for two-dimensional arrays are extensions of the skeletons
defined for one-dimensional arrays:

e copy (n,m) s creates a two-dimensional array of extent n x m, filled with copies of s.
e split (p, q) z slices a matrix in p * ¢ non-overlapping submatrices.

e part ((r, s), (p,q)) x returns a matrix ¢ of the dimensionality and size of z; each element (i, 7)
is an array of the (r+ s+ 1) x (p + ¢ + 1) elements surrounding (%, j).

The corresponding Haskell functions are similar to the one-dimensional case (see the appendix).
A specific arrangement for multi-dimensional arrays is shown in Figure 4. Function rearrange
f x takes as input a rearrangement pattern f and permutes the elements of an array x according
to f; here, ixmap is a standard Haskell function permuting array elements. Function f must be
bijective. Using rearrange, it is easy to define the transposition of an array of any dimensionality.



fanrearrange :: Ix a => (a -> a) -> Array a b -> Array a b
fanrearrange f x = ixmap (bounds x) f x

fantranspose2:: (Ix a) => Array (a,a) b -> Array (a,a) b

fantranspose2 x = fanrearrange (\(i,j) -> (j,1)) x

fantranspose3:: (Ix a) => Array (a,a,a) b -> Array (a,a,a) b
fantranspose3 x = fanrearrange (\(i,j,k) -> (k,j,i)) x

Figure 4: Haskell definition of multi-dimensional array rearrangements.

3.3 Iteration skeletons

FAN offers three different skeletons for iterative computation: forloop iterates in a finite loop, and
looprepeat and loopwhile iterate, potentially infinitely, until a given condition is met. The Haskell
definition of loopwhile is given in Figure 5. The others can be found in the appendix.

fanloopwhile :: (a -> Bool) -> (a -> a) -> a -> a
fanloopwhile ¢ f x = if ¢ x then fanloopwhile ¢ f (f x) else x

Figure 5: Haskell definition of loopwhile.

4 Case Studies: Formulation in FAN

In this section, we illustrate the use of FAN in the specification of some small example prob-
lems. The examples will be used later on to demonstrate our approach. In particular, we will
discuss how the performance of the programs described in this section can be predicted, and how
transformations can be applied to improve their performance.

4.1 Polynomial evaluation
Consider the problem of evaluating a polynomial
a1 *T+as xz: + ... +a, xz"

at m points y1,...,Yn. We start the design process by determining how the parallelism inherent
in polynomial evaluation can be expressed. To this end, we try to use skeletons with a larger
amount of parallelism: for instance, we prefer map and reduction to (sequential) iteration. The



most direct way of computing a polynomial at a coordinate vector ys = yi,...,¥yn is to compute
the vectors of powers, ys' = [yi,...,9..], i = 1,...,n, then multiply all values in ys’ by the
polynomial coefficient a; and, finally, sum up all intermediate results.

This simple idea can be expressed by the following FAN algorithm:

pol-evall (in ys : Array m Scalar, as : Array n Scalar, out zs : Array m Scalar)
ts = scanlL (x) (copy m ys);
ds = map (*s,) (pair (as,ts));
zs = reduce (+) ds;

The algorithm takes as input vectors as and ys (represented as arrays) and proceeds as follows:
e copy n ys returns an array of n copies of vector ys;
e scanl (x) computes ts : Array n (Array m Scalar), where ts[i] = ys® for all i;

e map (#sa) (pair (as,ts)) computes array ds of type Array n (Array m Scalar), such that
ds[i] = [a; * yi,...,a; * y,]; Operator %y, takes a scalar and an array and multiplies each
array element by the scalar:

T *gq [yla---ayk] = [J"*yla"'ax*yk]
e reduce (+) ds sums up all rows of ds elementwise and returns the results in the output array
zs, such that zs = [Y 0 ai* yi, ..., > iy ai % yb,].

Note that operator * in the scan skeleton and operator + in the reduction skeleton are overloaded
to work both on scalars and on arrays of equal shape; in the latter case, the operator is applied
elementwise.

4.2 Maximum segment sum

Our next example is the famous mazimum segment sum (MSS) problem — a programming pearl [6],
studied by many authors [7, 12, 34, 36, 38]. Given a one-dimensional array of integers, function mss
finds a contiguous array segment, whose members have the largest sum among all such segments,
and returns this sum. For example, mss [2,—4,2,—1,6,—3] = 7, where the result is contributed
by the segment [2, —1, 6].

A first FAN program for computing mss could be quite simple:

mss-algl (in = : Array n Scalar, out r : Scalar)
s = scanlL (opl) z;
r = reduce (max) s;

where operator opl is defined as follows:
a1 opl az = max (aj+ag, az) (1)
Algorithm mss-algl takes array x as input, and proceeds intuitively as follows:

e The first stage, scanL (opl), produces array s of type Array n Scalar, whose ith element is
the maximum sum of segments of x ending in position i.



e The second stage, reduce (max), computes the maximum element of array s, thus yielding
the desired value, r, with r = mssz.

This first algorithm has several nice features. First, it is intuitively clear, and its correctness
with respect to the specification of the MSS problem can be proved. Second, it consists of only two
skeletons, scan and reduction, which are both potentially easy to parallelize. However, a closer
look reveals also a serious drawback: the scan skeleton cannot be parallelized in this case, since
operator opl, defined by equation (1), is not associative. Thus, the asymptotic time complexity
of this algorithm is linear in the length of the input array.

In order to enable a parallelization, we must construct an associative operator for use in the
scan skeleton. A common technique for this purpose is the introduction of auxiliary variables.
In our case, we define the new, associative operator on pairs, such that the original operator is
modeled by the first element of the pair:

(al,bl) Op2 (ag,bz) = ( max (a1+b2,a2), b1+b2 ) (2)

Note that it is exactly this construction which is the main reason for having data arrangement
skeletons like pairing and projection in the FAN language. In particular, the following holds:

ayopyaz = projl ((al,al) op2 (02,02))

Consequently, scanlL (op1)z = projl (scanl (op2) (pair(z, z))). Using the new operator opa, we
can rewrite the initial program as follows:

mss-alg2 (in = : Array n Scalar, out r : Scalar)
y = scanL (op2) (pair (z,z))
s = projl y;
r = reduce (max) s;

Note that the first two statements of mss-alg2 are semantically equivalent to the first statement
of mss-algl, but the asymptotic complexity has become logarithmic. A transformation of the MSS
program with the goal of improving the performance further is described in Subsection 8.2.

4.3 A simple cellular automaton

The game of life [16] is a simple cellular automaton that models the world as a two-dimensional
grid of cells which can adopt two states: dead or alive. The grid is represented by a boolean matrix
w in which each element corresponds to a cell: w(i,7) is true iff the corresponding cell is alive.
Evolution is simulated by iteratively updating the state of the grid at successive instants of time.
The state of a cell at instant t;, is determined by the state of its neighbors at the previous instant
tn—1: a cell is alive if it has exactly three alive neighbors; if it has exactly two alive neighbors it
maintains its state; otherwise, it is dead. The computation terminates when the world has reached
a stable state, i.e., when an update does not incur a change of any cell state.

For the sake of illustration, we consider a neighborhood of eight cells, as shown in Figure 6.

An intuitive solution is to update all cells simultaneously, check the termination condition and,
if it is not met, repeat. This is expressed by the following FAN algorithm:

10



Figure 6: Neighborhood for the game of life cellular automaton.

life.step (in w : Array (n,m) Scalar, d : Scalar, out wl : Array (n,m) Scalar, y : Scalar);
wl = map update (part ((1,1),(1,1)) w)
¢ = map (#) (pair (w,wl))
y = reduce (or) ¢

game.life (in z : Array (n,m) Scalar, out w : Array (n,m) Scalar);
(w, ) = loopwhile is_true life.step (z, True)

The algorithm is composed of two FAN functions: life.step updates the cells and computes the
termination condition, and game.life iterates the grid update and checks for termination.
Function life.step is computed in three steps as follows:

e First, part returns an array b of arrays in which each element b(4, j) is a 3 x 3 matrix with
the cell (7, 7) and the stencil of its neighbors. update is a sequential function which takes the
stencil of a cell and computes the update as described above, returning the new cell value.
map update t returns the new grid state applying update to all cells.

e Matrices w and wl, modeling the new and old state of the grid, are paired and the corre-
sponding elements are compared. This is done by the second map which returns a matrix of
boolean values c. ¢(i, ) is True if and only if the values of w(i,j) and wl(%, j) differ.

e Finally, the reduce skeleton reduces all elements of ¢ using the boolean or operator.

Function game.life iterates life.step until function is_true returns False. is_true returns the
second element of the input pair, which is False only when no cell has changed in the last grid
update.

5 Transformation Rules

The design of a skeleton program consists of the transformation and the cost estimation steps.
The goal is to derive a program with the best performance estimate, which requires very often a
reduction of the number of communications. A rich set of transformation rules for various skeletons
has been developed recently [2,18,20,39]. These rules transform compositions of two or three
skeletons — like copy, reduce, scan, etc. — into more efficient expressions. Some transformations, e.g.,
the scan-reduction fusion, originated in the functional Bird-Meertens formalism [7] for sequential
algorithms, some are new.

11



In this section, we describe some of the transformations rules available in the repository of our
transformation engine. We use these rules to transform our case studies in Section 8. More on
these and other rules can be found elsewhere [20].

We present our transformation rules in a format consisting of four boxes, from top to bottom:
1. the FAN program fragment before the transformation (the “left-hand side” of the rule),

2. the fragment after the transformation (the “right-hand side”),

3. a precondition stating when the rule is applicable (optional),
4

. local definition(s) of function(s) used in the rule (optional).
The first rule we discuss transforms a computation of scan followed by reduction:

Rule SR-ARA
b = reduce Op2 (scanL Opl a)

b = projl (reduce Op3 (pair (a,a)))

If Opl distributes forward over Op2

(a1,b1) Op3 (az,bs) = (a3 Op2 (by Oplaz), by Op2bs)

The name of the rule, SR-ARA, hints on the transformation it specifies: “Scan;Reduce —
Arrange;Reduce;Arrange”, where “arrange” stands for any arrangement skeleton. Rule SR-ARA
expects two operators as parameters, Opl and Op2, and makes use of a local operation, Op3,
constructed of them. The rule transforms a sequence of two relatively costly skeletons — a scan
and a subsequent reduction — into one reduction, with a pre- and a postarrangement of the data.
The prearrangement is pairing and the postarrangement is projection. Both are simple operations
requiring no communication. Thus, the SR-ARA rule usually saves communication and improves
performance (its performance analysis follows in the next section).

Sometimes, when trying to apply rule SR-ARA, we might find that the scan and reduction
operation are separated by some skeleton performing data rearrangements. In this case, it may be
useful to apply rules which swap a reduce with an arrange skeleton, like the following rule AR-RA
for reducing a projection over a list of pairs:

Rule AR-RA
b = reduce Op1 (projl a)

b = projl (reduce Op2 a)
(al, bl) Op2 (ag, bg) = (a1 Opl as, b1 Opl bg)

This rule presumes that the input, a, is an array of tuples; we present here the version for
pairs. The rule is universally applicable, since it has no If box. The AR-RA rule is applicable
in both directions, with completely different consequences. From right to left, the transformation
eliminates redundant computations, thereby reducing the overall cost of the composition. From
left to right, the rule restructures the program in order to enable further transformations, by
pushing the projection behind the reduction, at the price of redundant computations. Since the
left-to-right application is useful only if it enables subsequent transformations, such as SR-ARA,
it makes sense to combine both the AR-RA and the SR-ARA rule into a new rule, SAR-ARA:
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Rule SAR-ARA
¢ = reduce Op2 (projl (scanL Opl a))

¢ = projl (projl (reduce Op3 (pair(a,a))))

If Opl distributes forward over Op4

(a1,b1) Op3 (az2,b2) = (a1 Op4 (by Oplaz),by Oplbs)
(a1,b1) Op4 (az,b2) = (a1 Op2az, by Op2bs)

Note that, whereas operator Op2 works on single elements, operators Opl and Op4 are defined
for pairs, and Op3 works on pairs of pairs.

Another transformation, rule CS-CM, states that a copy operation followed by a scanL with
operator Opl can always be transformed into a copy followed by some local computation:

Rule CS-CM

b = scanLOp (copy n a)

b = mapy f (copy n a)
fix = fst(repeat i (z,z))

repeat k x = if k =0 then z else repeat (k div 2) (if (k¥ mod 2 = 0) then e z else o z)
e(t,u) = (t,u Op u), o(t,u) = (t Op u,u Op u)

Here, function repeat performs the local computation of g* using a logarithmic-time algorithm.
It traverses the binary digits of number %k from the least significant to the most significant. If the
digit is 0, repeat applies function e, if the digit is 1 it applies function 0. When the computation
is finished, we select the first element of the result pair (fst). More details can be found in [20].

Finally, we consider the map-fusion law [7] which suggests the transformation of a composition
of two maps into one map. In FAN, we extend the rule for both versions of the map skeleton, map
and mapy; moreover, they may be interspersed with an arrangement skeleton, e.g., pair:

Rule M, M-M,, Rule M, AM-M,
b=mapy fa b=mapy fa
c=mapghb ¢ = map g (pair (d,b))
c=mapy ha ¢ = mapy h (pair (d,a))
hiz=g(fix) hi(zy) =g (= fiy)

6 An Execution Model, and Performance Prediction

The functional semantics of FAN provided in Section 3 does not prescribe any particular execution
model. This allows for several different parallel implementations of one FAN program, depending
on the machine architecture or the system software used. On the other hand, this freedom of
choice prevents a practical estimation of the program performance and is, thus, a hindrance for
performance-guided design by transformation. One of the advantages of FAN is that a small
number of execution models can cover the main classes of parallel and distributed systems.
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In this section, we describe one such execution model, oriented towards parallel machines with
distributed memory, programmed using communication libraries like MPI and PVM. We use this
model to estimate the execution time of the main FAN skeletons, depending on the main machine
parameters like the processor and channel speed and the number of processors.

We assume a processor network with bidirectional communication links: any two processors
can send messages of size m to each other simultaneously in time t; +m x t,,, where ¢t is the start-
up time and ¢, is the per-word transfer time. A processor is allowed to send/receive messages on
only one of its links at a time. We ignore the computation time it takes to split or concatenate
vectors within a processor.

6.1 One-dimensional arrays

Let us first consider the cost (i.e., time required) for executing each skeleton on an array of n
elements on p processors, where p < n. We assume that all input arrays are distributed blockwise
on processors, while input scalars are replicated. Skeletons in the body of a FAN program are
executed in sequence on all available processors, and the total cost of a program is the sum of the
costs of all skeletons in the body. The results of our analysis of the execution schemata are listed
in Table 1 and explained subsequently.

FAN Operation | Time required

map f mxty

projl x 0

pair (z,y) 2 % M * teopy

copy n x prts+mx*(p—1)*ty,/p

part (r,s) x 2xts+ (r+8) xty

reduce (@) z m*tg +logp * (ts + tw + ta)

scanL (&) = 2xmxtg +logp* (ts +ty +2xtg)

Table 1: Costs of skeletons on one-dimensional arrays.

Since p < m, m = [n/p] contiguous elements are allocated on each processor. When executing
map f, each processor applies f sequentially to all local elements. Since this is done in parallel
on all processors, the total cost of map is m * ¢y, where 7 is the cost of applying f to a single
element.

The behavior and cost of arrangement skeletons depends on the amount of data being moved.
Projection projl does not incur any cost, since it only selects one local value and ignores the rest.
Consider now pair (z,y). Since z and y have the same length, our allocation strategy places z][i]
and y[i] on the same processor. Thus, processors can compute the local block of the result array ¢
using only local data. Each t[i] requires two copies of the corresponding elements of = and y. The
total cost is 2 m x tcopy, since all processors can compute the local part of result in parallel. The
cost of skeleton copy n z depends on whether z is a scalar or an array. Scalars are replicated on
all processors, which requires m = [n/p] local copies to construct the local portion of the results.
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The cost is 0 if we choose to make the implementation code a bit more complex and share a single
result copy on each processor. When z is an array, we gather all the blocks distributed on different
processors, which costs pxts +m#* (p— 1) xt,, /p. Finally, part (r, s) x requires that each processor
reads 7 + s elements from its two neighbors, which costs 2 * ts + (7 + ) * ty,.

Skeleton reduce () z is executed in two steps. The first step reduces data locally to each
processor according to the operator @; this costs m * tg. Then, a global reduce step is computed
in logp phases using a butterfly-like communication pattern [17]. Note that we do not assume
any particular communication topology: in our model, the communication time is independent of
the two processors which communicate. In each phase, two elements of the vector are exchanged
pairwise between processes. Since t;+ m *t,, is the cost for exchanging m-sized messages between
two processors, the cost estimate in the global step is logp * (ts + ¢, + tg). Adding up the cost of
the two steps, we obtain m * tg + logp * (ts + t,, + tg) as the cost of reduce .

The execution model for scanL @ z differs from reduction in that we need three steps. The
first step computes scanL locally in parallel on the blocks of data resident on each processor (cost:
m * tg). The second step executes a global scanL combining the rightmost element of the vector
resulting from the local scan on each processor. This global scan of p values can be computed
using a schema similar to the one used for reduction, except that reduction requires one operation
per element received whereas scan requires two. The second step costs logp * (ts + ty + 2 * tg);
its result is a vector of length p distributed one element per processor. In the third step, each
processor combines the local element of the vector from step two with the result of the local scan
computed in step one, which costs mxtg. Thus, the total cost is 2xm*tq +log p* (ts+ty, +2%tg).

The costs in Table 1 can be generalized straight-forwardly to the two-dimensional arrangement
skeletons. Note that, if £y and ¢ are not uniform, different scheduling strategies must be adopted
in the execution model in order to keep the load of the processors balanced and allow for similarly
simple prediction models.

6.2 Costing the rules

The costs of our transformation rules are listed in Table 2. We assume the cost of copying and
local operations to be uniformly constant, and normalize ¢, and ¢,, with respect to this cost.

The cost of the left-hand side of rule SR-ARA is obtained by adding the costs of reduce and
scanL (vectors a and b have length n). On the right-hand side, initial pairing doubles the size of
the elements in vector b with respect to vector a. Thus, reduce works on elements of length 2, and
the cost of sending/computing is 2 * (¢, + 1).

The cost of rule SAR-ARA is derived assuming that, before the application, a and b are vectors
of pairs of length n and, after the application, a is a vector of pairs of length n and b is a vector of
quadruples of length n. Thus, before the application, scanL and reduce work on elements of length
2 while, after the application, the composed reduce works on elements of length 4.

We can use these costs to state the conditions under which a particular rule is worth applying;
see the rightmost column of the table. Rule SR-ARA always reduces the cost, whereas rule AR-
RA, applied alone, increases the cost (as expected). The combined rule SAR-ARA reduces the
cost if a particular condition relating the machine characteristics and the problem size holds:

(ts+ty+2)xlogp > 2m
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Rule Time left hand side Time right hand side Improves if
SR-ARA 3xm+logp (2% (ts +tw) + 3)) 2xm+logp* (ts + 2 x ty + 2) always

AR-RA m +logp * (ts + tw + 1) 2+xm+logp* (ts + 2 (tw + 1)) never
SAR-ARA 3xm+logp* (2% (ts +tw) + 3) 5%m +logp * (ts + tw + 1) (ts + tw + 2) x logp > 2m
CS-CM p*ts+m*(tw+%"+1) p*ts+m*(tw+t?w+1) always

+logp * (ts + tw + 2)
M M-My 2%xm m always
My AM-My 4xm m always

Table 2: Performance estimates for optimization rules

The remaining three rules always reduce the cost.

7 The FAN Transformation Tool

In this section, we describe a transformation tool which allows the user to write, evaluate and
transform FAN programs while preserving their functional semantics and possibly improving their
performance. The tool has an interactive behavior. Given an initial FAN algorithm, it suggests
a set of transformation rules along with their expected performance impact. The programmer
chooses a rule to be applied and, after the application, the tool looks for new matches. This
process is repeated until the programmer deems the resulting program satisfactory or there are no
more applicable rules.

The strategy of program transformation is in the hands of the programmer since, in general,
the rewriting calculus of FAN is not confluent: applying the same rules in a different order may
lead to programs with different performance. The best transformation sequence may require a
(potentially exponential) exhaustive search.

In the following subsections, we define an abstract representation of FAN programs and trans-
formation rules, describe the algorithm used for rule matching, and sketch the structure of the
tool.

7.1 Representing programs and rules

The FAN transformation system is basically a term-rewriting system. Both FAN programs and
transformation rules are represented by means of labeled trees (so-called dependence trees). Thus,
the search for applicable rules reduces to the well established theory of subtree matching. The tool
attempts to annotate as many nodes of the tree as possible with a matching rule instance, i.e., a
structure describing which rule can be used to transform the subtree rooted at the node, together
with the information describing how the rule has been instantiated, the performance improvement
expected and the applicability conditions to be checked (e.g., the distributivity of one operator
over another).

The dependence tree is essentially an abstract syntax tree in which each non-leaf node repre-
sents a skeleton, with children representing the skeleton parameters that may in turn be skeletons
or sequential functions. The leaves are either sequential functions, constants or special nodes,

16



Arg( ), for program arguments. The dependence tree of a program is defined constructively, com-
bining information held in the parse tree (PT) and in the data flow graph (DFG) of the program. A
compact representation of the DFG is obtained by adding edges to the parse tree. Both structures
— and the algorithms for their construction — are part of standard compiler technology. The parse
tree, the data flow graph and the data dependence tree for the polynomial evaluation algorithm
pol-evall, introduced in Subsection 4.1, are shown in Figure 7. The node labeled with DPblock
represents the root of a data-parallel FAN program; nodes Arg(as) and Arg(ys) represent the input
data of the program. Each edge in the dependence tree represents the dependence of the head
node on the data produced by the tail node.

Parse Tree (PT) Node attributes Dependence Tree
DPblock - In_|Out
A /\ A DPblock
ts  scanL  ds map zs  reduce T
VAN A YA recluce

/\ /\ + o map
n ys as s f\
xgg  pair

Data Flow Graph (DFG) /\
In parameters Out parameters ﬁ Arg(as) scanL
as
ys — DPblock — zs j /\
* copy

map reduce

o~ /s

Figure 7: The parse tree, the data flow graph and the dependence tree of polynomial evaluation.
FAN skeletons are in serif font. Special nodes are in slanted serif font.

The dependences shown in Figure 7 are rather simple. In general, as shown in Figure 8, a
data structure produced by one FAN statement may be used by more than one statement in the
rest of the program. We have two choices: (1) to keep a shared reference to the expression (tree),
or (2) to replicate it. In option (1), the data flow can no longer be fully described with a tree.
Moreover, sharing the subtrees rules out the possibility of applying different transformations at
the shared expression (tree) for different contexts. The FAN transformational engine adopts the
second option, allowing us to map the data flow graph to a tree-shaped dependence structure.
The drawback of replicating expressions is a possible explosion of the code size when we rebuild
a FAN program from the internal representation. To avoid this, the engine keeps track of all the
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replications made. This ensures a single copy of all replicated subtrees that have not been subject

to an independent transformation.

Data Flow Graph (DFG) Dependence Tree

In parameters
DPblock

Replicated subtree s

Figure 8: Replicating shared trees. Each triangle stands for a tree representing a FAN expression.

Let us consider how a FAN rule L = R is represented, where L and R are pieces of FAN
programs with variables ranging over FAN types. We require that every variable occurring in L
must occur also in R, that L is not a variable, and that every variable in L occurs at most once.
Moreover, a variable may be constrained to assume a specified type or satisfy a specific property
(e.g., we may require an operator to distribute over another operator). The left-hand side L of a
rule is called a pattern.

As an example, Figure 9 depicts the internal representation of rule SR-ARA from Section 5.
We represent the two sides of the rule as dependence trees, some leaves of which are variables
represented by circled numbers. During the rule application, the instantiations of the left-hand
side variables are substituted for their counterparts on the right-hand side. We call the set of
circled figures a rule interface. Since, in all of our rules, the left-hand and the right-hand sides
have the same variables, occurring the same number of times, the interfaces of both rule sides are
the same. Figure 9 demonstrates also how the conditions of applicability and the performance of
the two sides of a rule are reported to the programmer.

7.2 Rule matching

Since programs and rules are represented by trees, we can state the problem of finding a candidate
rule for transforming an expression as the well-known subtree matching problem [25,27,30]. In the
most general case, given a pattern tree P and a subject tree T, all occurrences of P as a subtree
of T can be determined in time O(|P| + |T|) by applying a fast string matching algorithm to a
proper string representation [30]. Our problem is more complicated: patterns are matched against
a subject which may be modified incrementally by the sequence of rule applications. Therefore,
we distinguish the preprocessing phase for a given set of skeletons and their transformation rules,
and the matching phase for a particular subject tree.
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Figure 9: Internal representation of rule SR-ARA, conditions of its applicability and performance
of the two sides of the rule.

Minimizing the matching time is our first priority. The Hoffmann-O’Donnell bottom-up algo-
rithm [25] fits our problem better than the string matching algorithm mentioned before. With
it, we can find all occurrences of a forest of patterns, F, as subtrees of T in time O(|T), after
appropriate preprocessing of the pattern set. Moreover, the algorithm is efficient in practice: after
the preprocessing, all the occurrences of elements in F' can be found with a single traversal of T
The algorithm works in two steps: it constructs a driving table, which contains the patterns and
their interrelations; the table is then used to drive the matching algorithm.

The complexity of the generation of the driving table (the preprocessing phase) is, in the worst
case, exponential in the cardinality of the pattern set. Nevertheless, there is a broad class of
pattern sets which can be preprocessed in polynomial time/space in the size of the set: all sets
yielding simple pattern forests. For a formal definition, we refer to Hoffmann-O’Donnell [25] and
provide only a brief explanation here.

Let F = {Py, Pa,...} be a pattern set in which each pattern P; is a tree. The set of all subtrees
of trees in F is called a pattern forest. Now, let P and P’ be pattern trees. P subsumes P’ if, for
all subject trees T, P has a match in T implies that P’ has a match in T. Then P is inconsistent
with P’ if there is no subject tree T matched by both P and P’. P and P’ are independent if there
exist T1, T», and T3 such that T3 is matched by P but not by P’, T is matched by P’ but not
by P, and T3 is matched by both P and P’. Given distinct patterns P and P’, exactly one of the
three previous relations must hold. A pattern forest is called simple if it contains no independent
subtrees. For instance, the pattern forest including the pattern trees P = a(b,v) and P’ = a(v,c)
is not simple, since P and P’ are independent w.r.t. Ty = a(b,b), T = a(c,¢), T3 = a(b, ¢); here,
P = a(b,v) denotes a tree with root a and subtrees b and v.

Let us give an example in the FAN framework. Labels are names of either skeletons or sequential
functions. Since, in pattern matching, the names of variables are not significant, we replace all vari-
ables vy, vy, ... with v (the distinction of names become important in the application of rules). The
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pattern of rule SR-ARA (the left tree in Figure 9) is represented by P = reduce(v, scanL(v,v)). The
pattern of rule CS-CM is represented by P’ = scanL(v, copy(v,v)). The pattern forest associated
with F = {P,P'} is PF = {v,scanL(v,v),copy(v,v),scanL(v, copy(v,v)), reduce(v, scanL(v,v))}.
Since there is no pair of independent subtrees in PF, the pattern forest PF' is simple.

Our current set of FAN rules can be described fully by a simple pattern forest. Simple pattern
forests suffice even for the implementation of much more complex languages like LISP and the
combinator calculus [24]. In addition, since the driving table depends only on the language and on
the list of rules, it can be generated once and for all for a given set of rules and stored permanently
for several subsequent match searches.

7.3 Tool architecture and implementation

The transformation engine applies the matching algorithm in an interactive cycle as follows:

1. Use the matching algorithm to annotate the dependence tree with a matching rule.

2. Check whether the found rules satisfy the type constraints and whether the side conditions
hold (possibly interacting with the user).

3. Apply the performance estimates to establish the effect of each rule.

4. Request the programmer to select one rule for application. In case no rule is applied,
terminate; otherwise start again with Step 1.

We envision the matching engine as a part of a general tool implementing the FAN transforma-
tion framework. The global tool structure is depicted in Figure 10 (the part already implemented
is highlighted with a dotted box). The whole system has two main capabilities: the conversion of
FAN programs into dependence trees and the transformation engine working on dependence trees.

The system architecture is divided into five basic blocks:

1. The Front End converts a FAN program into a parse tree (PT) and a data flow graph (DFG).

2. The Normalization uses the PT and DFG to build the dependence tree both for the FAN
program and for the set of transformation rules.

3. The Rule Manager implements the matching phase; it delivers a matching table to drive the
transformation engine. This table may be stored in a file.

4. The Transformation Engine interacts with the user and governs the transformation cycle.
5. The Back End generates a new FAN program from the internal representation.

A prototype of the system kernel (highlighted in Figure 10 with a dotted box) has been im-
plemented in Objective Caml 2.02. Our implementation is based on an abstract data type (ADT)
which describes the internal representation (dependence tree) and the functions working on it.

The implementation is very general and can handle, via instantiation of the ADT, different lan-
guages with the requirement that rules and programs are written in the same language. Moreover,
since several execution models and many cost calculi may be associated with the same language,
any compositional way of describing program performance may be embedded in the tool by just
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Figure 10: Global structure of the FAN transformation system.

instantiating the performance formulae of every construct. We call a cost calculus compositional
if the performance of a language expression is either described by a function of its components or

by a constant.

The prototype of the FAN transformation tool is currently running under both Linux and
Microsoft Windows. A graphical interface is implemented using the embedded OCaml graphics

library.
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8 Case Studies: Design by Transformation

In this section, we discuss how our transformation tool is used in the program design process for
algorithms mss-alg2 and pol-evall, introduced in Section 4. The transformation for the game of
life is omitted due to its simplicity.

8.1 Polynomial evaluation

Algorithm pol-evall is rather communication-intensive: it broadcasts all copies of ys, and then it
applies two skeletons, scanL and reduce, both communicating m-sized vectors. We can improve the
program using the FAN transformation tool. The transformation process is depicted in Figure 11.
The left part shows the program structure during the two transformation steps. The right part
shows the user dialogues which propose the applicable rules to the programmer; windows (c) and
(f) show how two transformation rules have been applied.

First, the tool displays the internal representation of the program (Figure 11(a)) and proposes
to the user rule CS-CM (Figure 11(b)). According to our cost estimates, every application of
rule CS-CM results in a performance improvement. Let us suppose the user chooses to apply rule
CS-CM (Section 5). The system will transform the program by instantiating the operator Opl
with * (Figure 11(c)). In this case, functions e and o are of the following type:

e,o : (Array m Scalar,Array m Scalar) — (Array m Scalar,Array m Scalar)

and are instantiated by the system as follows: e (t,u) = (t,u * u), and o (t,u) = (t * u, u * u).
The resulting version of polynomial evaluation is (Figure 11(d)):

pol-eval2 (in ys : Array m Scalar, as : Array n Scalar, out zs : Array m Scalar)
ts = mapy (f) (copy n ys);
ds = map (#s5) (as,ts);
zs = reduce (+) ds;
where
fixz= fst(repeati (z,z))

Next, the transformation engine will propose to transform our program using rule My AM-M,
to take advantage of data locality (Figure 11(e)—(f)). In particular, the block distribution of data
implies that, for all ¢, as[i] and the ith rows of ds and ts are located on the same processor, so that
the computation in mapy and map and the data arrangement (as,ts) can be performed without
communication.

The final, transformed program is (Figure 11(g)):

pol-eval3 (in ys : Array m Scalar, as : Array n Scalar, out zs : Array m Scalar)
ds = mapy (h) (as, copy n ys);
zs = reduce (+) ds;
where

hi(2,9) = (*sa) (2, f i y)

Experiments have shown that program pol-eval3 runs indeed faster than pol-evall on different
target platforms [5].
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8.2 Maximum segment sum

Algorithm mss-alg2 has logarithmic complexity in the size of the input array. This follows from
the logarithmic complexity of both scan and reduction with associative operators, and from the
constant parallel complexity of map. Thus, the algorithm is asymptotically optimal. However, its
performance in practice can suffer from the fact that it exploits two collective operations, each of
which involves a considerable amount of interprocessor communication.

Note that the algorithm presented in a popular textbook [1] may have an even higher cost
than mss-alg2, since it exploits three collective operations: two scans and one reduce. The user’s
responsibility is not only to produce an algorithm but also to understand whether it is really usable
in practice and, even more importantly, how it can be transformed and how the possibly different
versions can be compared.

The goal of our transformation is to reduce the number of collective operations in mss-alg?2.
The scan-reduce fusion (SR-ARA) looks like a candidate rule for mss-alg2. However, it is not
directly applicable since there is an extra arrangement skeleton between scan and reduction. The
rule which fits is SAR-ARA: it combines the swap of reduce and pair and SR-ARA.

Rule SAR-ARA can be applied with the following instantiations of the parameter operators
Opl and Op2 with MSS operators:

Opl = op2, Op2 = max

The applicability condition is the forward distributivity of Opl over Op4 which, in the case of
mss-alg2, are the following operations:

(al, bl) Opl (az, bz) = (max ((a1+b2), G,Q) , bi+bo ) (3)
(a1,b1) Op4 (az2,b2) = (max(ay,as), max(by,bs)) (4)

The transformation engine will ask the programmer to check the distributivity required by the
rule. This can be done straight-forwardly, under the obviously correct assumption that operator

max is commutative.

After applying rule SAR-ARA to program mss-alg2, we obtain the following result program

for the maximum segment sum problem:

mss-alg3 (in = : Array n Scalar, out r : Scalar)
s = reduce (Op3) pair (pair (z,z), pair (z,z)) ;
r = projl (projl z);

The target program mss-alg3 exploits only one computational skeleton, reduce, with an asso-
ciative base operator. Such a reduction is easily parallelized. Thus, we arrive at a better solution
than both the intuitive and the first parallelizable version. Note that both the data arrangements
and the operator used by the reduction are quite complicated. It is rather unlikely that the
programmer will discover this program without support.
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9 Conclusions

We have discussed the FAN framework for the transformation of high-level specifications to effi-
cient parallel programs. The main novelty of our framework, in comparison with other skeleton
systems available [9, 14, 32], is the intensive use of program transformations in the early stages of
the design process, supported by corresponding cost models and programming tools. The frame-
work is language-independent and should be easy to integrate with existing high-level parallel
programming environments, as our experience with P3L demonstrates [19]. The paper presents a
functional semantics of FAN in Haskell. A consequence of this is that FAN programs can be type
checked and prototyped using the available Haskell implementations.

Our work was inspired by research on combining skeletons and transformations [14,35] and
by the work on BMF [7]. However, our approach allows a more natural expression of parallel
algorithms with respect to BMF, since intermediate results can be named and reused throughout
the program. FAN differs also from SCL [14], since it abstracts from the actual data distribution
which is not programmed explicitly in the notation. This allows for more freedom in the definition
of the model and a more extensive reuse of the early stages of the refinement tree.

Compared to the earlier work on the transformational design of functional programs using
higher-order combinators [22], our approach has two main features: (1) transformation rules are
equipped with a cost model which enables an estimation of the impact of the transformations on
program performance, and (2) the transformation process is supported by a transformation engine
with a user interface.

The design of our transformation engine, especially the choice of its data structures, was
influenced by the PARAMAT system [15,28]. However, our approach differs in many aspects.
First, our goal is the optimization of high-level parallelism, rather than the parallelization of low-
level sequential codes. Second, we do not define an a priori parallel structure as PARAMAT does.
Rather, we search for a sequence of transformations toward the best parallel structure, depending
on the particular instance of the given problem.

Our first case studies and machine experiments have confirmed the feasibility of the proposed
high-level, transformation-based, performance-directed approach to the design of parallel pro-
grams. We plan to assess the framework by applying it in the parallelization of larger applications
and to extend it with task-parallel skeletons which model common patterns of interaction among
data-parallel modules [3, 4, 14, 33].
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Appendix : Haskell Definitions of FAN Skeletons

Here is complete Haskell definition of the FAN skeletons used in the paper, for one- and two-
dimensional arrays.

fanpartl:: (Int,Int) -> Array Int a -> Array Int (Array Int a)

fanpartl (r,s) x = let (1b,ub) = bounds x in array (1b,ub)
[ (i, array (0,r+s) [ (k, x!((i-r+k) ‘mod‘(ub-1b+1))) | k <- [0..(r+s)] 1)
| i <- [1b..ub] ]

fanpart2:: ((Int,Int),(Int,Int)) -> Array (Int,Int) a
-> Array (Int,Int) (Array (Int,Int) a)
fanpart2 ((r,s),(p,q)) x =
let ((1b0,1b1),(ubO,ubl)) = bounds x in
array ((1b0,1b1),(ubO,ub1l)) [ ((i,j), array ((0,0), (r+s,p+q))
[ ((k,1), x!((i-r+k) ‘mod‘ (ub0-1b0+1), (j-p+1) ‘mod‘ (ubi-1bi+1)))
| ¥k <= [0..(r+s)], 1 <= [0..(p+q)1 1)
| i <= [1b0..ub0], j <- [1bl..ubl] ]

fansplitl:: Int -> Array Int a -> Array Int (Array Int a)
fansplitl p x = let (1b,ub) = bounds x
chsize = if (nelems(x) ‘mod‘ p) == O then (nelems(x) ‘div‘ p)
else (nelems(x) ‘div‘ p) +1
in array (1b,lb+(p-1))
[ (i, array (0,chsize-1) [ (k, x!(((i*chsize)+k) ‘mod‘ (ub-1b+1)))
| k¥ <= [0..(chsize-1)] 1)
| 1 <= [1b..(@b+(p-1)] 1

fansplit2 :: (Integral a, Ix a) => (a,a) -> Array (a,a) b
-> Array (a,a) (Array (a,a) b)
fansplit2 (p,q) x = let
((1v0,1b1), (ubO,ubl)) = bounds x
nrow = ub0-1b0 +1 ncol = ubl-1bl +1
rowsize = if (nrow ‘mod‘ p) == O then (nrow ‘div‘ p) else (nrow ‘div‘ p) +1
colsize = if (ncol ‘mod‘ q) == 0 then (ncol ‘div‘ q) else (ncol ‘div‘ q) +1
in array ((1b0,1b1), (1b0+(p-1),1bi+(q-1)))
[ ((i,j), array ((0,0), (rowsize-1,colsize-1))
[ (k,1), x!(((i*rowsize)+k) ‘mod‘nrow, ((j*colsize)+1l) ‘mod‘ncol))
| k <- [0..(rowsize-1)], 1 <- [0..(colsize-1)] 1)
| i <= [1b0..(1b0+(p-1))1, j <- [1bl..(1b1+(q-1))1 1

fanrearrange :: Ix a => (a -> a) -> Array a b -> Array a b

fanrearrange f x = ixmap (bounds x) f x
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fantranspose2:: (Ix a) => Array (a,a) b -> Array (a,a) b

fantranspose2 x = fanrearrange (\(i,j) -> (j,1)) x

fancopyl:: Int -> a -> Array Int a
fancopyl n x = array (O,n-1) [ (i , %) | i <= [0..(m-D] 1]

fancopy2:: (Int,Int) -> a -> Array (Int,Int) a
fancopy2 (n,m) x = array ((0,0),(n-1,m-1))
[ (i,7), = | 1 <= [0..(-1], j <= [0..(@m-1] ]

fanpair :: Ix a => (Array a b,Array a c) -> Array a (b,c)
fanpair(x,y) = if (bounds x) == (bounds y)
then array (bounds x) [ (i,(x!(i),y!(i))) | i <- range (bounds(x)) ]

else error "Pairing two non-conformant arrays!"

fanprojl:: (Ix a) => Array a (b,c) -> Array a b

fanprojl x = fanmap fst x

fanmap:: (Ix ¢) => (a -> b) -> Array c a -> Array c b

fanmap f x = array (bounds x) [ (i,f (x!'i)) | i <- (range (bounds x)) 1]

fanmapsh:: (Ix ¢c) => (¢ -> a => b) -> Array c a -> Array c b
fanmapsh f x = array (bounds x) [ (i,f i (x!1)) | i <~ (range (bounds x)) ]

fanred:: (Ix c¢) => (a-> a -> a) -> (Array c a) -> a
fanred f x = foldll f (elems x)

fanscan:: (Ix c) => ((a -> a -> a) -> [a] -> [a]) -> (a -=> a -> a)
-> (Array c a) -> Array c a
fanscan s f x = listArray (bounds x) (s f (elems x))

fanscanl:: (Ix c) => (a -> a -> a) -> (Array c a) -> Array c a
fanscanl = fanscan scanll

fanlooprepeat :: (a -> Bool) -> (a -> a) -> a -> a
fanlooprepeat ¢ £ x = let t = £ x in if ¢ t then t else fanlooprepeat ¢ f t

fanloopwhile :: (a -> Bool) -> (a -> a) -> a -> a
fanloopwhile ¢ f x = if c x then fanloopwhile ¢ f (f x) else x

fanloopfor :: (Num a, Ord a) => (a,a,a) -> (b -> b) -=>b -> b

fanloopfor (nl1,n2,st) f x =
if n1 <= n2 then fanloopfor (nl+st) n2 st f (f x) else x
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