
AUTOMATIC PROGRAM TRANSFORMATION: THE META TOOL FOR
SKELETON-BASED LANGUAGES∗

MARCO ALDINUCCI†

Abstract. Academic and commercial experience with skeleton-based systems has demonstrated the
benefits of the approach but also the lack of methods and tools for algorithm design and performance pre-
diction. We propose a (graphical) transformation tool based on a novel internal representation of programs
that enables the user to effectively deal with program transformation. Given a skeleton-based language
and a set of semantic-preserving transformation rules, the tool locates applicable transformations and pro-
vides performance estimates, thereby helping the programmer in navigating through the program refinement
space.

Key words. Algorithmic skeletons, program transformation, parallel programming, performance mod-
els, Bulk-Synchronous Parallelism.

1. Introduction. Structured parallel programming systems allow a parallel applica-
tion to be constructed by composing a set of basic parallel patterns called skeletons. A
skeleton is formally an higher order function taking one or more other skeletons or portions
of sequential code as parameters, and modeling a parallel computation out of them.

Cole introduces the skeleton concept in the late 80’s [10]. Cole’s skeletons represent
parallelism exploitation patterns that can be used (instantiated) to model common parallel
applications. Later, different authors acknowledge that skeletons can be used as constructs
of an explicitly parallel programming language, actually as the only way to express parallel
computations in these languages [11, 6]. Recently, the skeleton concept evolved, and became
the coordination layer of structured parallel programming environments [5, 7, 20].

Usually, the set of skeletons includes both data parallel and task parallel patterns. Data
parallel skeletons model computations in which different processes cooperate to compute a
single data item, whereas task parallel skeletons model computations whose parallel activi-
ties come from the computation of different and independent data items.

In most cases, in order to implement skeletons on parallel architectures efficiently, com-
piling tools based on the concept of implementation template (actually a parametric pro-
cesses network) have been developed [10, 6].

Furthermore, due to the fact that the skeletons have a clear functional and parallel
semantics, different rewriting techniques have been developed that allow skeleton programs
to be transformed/rewritten into equivalent ones achieving different performances when
implemented on the target architecture [8, 13]. These transformations can also be driven by
some kind of analytical performance models, associated with the implementation templates
of the skeletons, in such a way that only those rewritings leading to efficient implementations
of the skeleton code are considered.

The research community has been proposing several development frameworks based on
the refinement of skeletons [11, 12, 21]. In such frameworks, the user starts by writing an
initial skeletal program/specification. Afterwards, the initial specification may be subjected
to a cost-driven transformation process with the aim of improving the performance of the
parallel program. Such transformation is done by means of semantic-preserving rewriting

∗ The preliminary version of this paper appeared in [1]. This work has been partially supported by the
VIGONI German-Italian project and by the MOSAICO Italian project.

†Computer Science Department, University of Pisa, Corso Italia 40, I-56125 Pisa, Italy.
(aldinuc@di.unipi.it).

59



60 Marco Aldinucci

Program

DP skel A

DP skel C DP skel B

seq fun 2seq fun 1seq fun 3

TP skel 1

TP skel 3TP skel 2

Program

DP skel B

DP skel A

DP skel C

seq fun 2seq fun 1

Data Parallel layer

Task Parallel layer

Sequential layer

Fig. 2.1. Three-tier applications: two correct skeleton calling schemes.

rules. A rich set of rewriting rules [2, 3, 4, 13] and cost models [21, 23] for various skeletons
have been developed recently.

In this paper we present Meta, an interactive transformation tool for skeleton-based
programs. The tool basically implements a term rewriting system that may be instantiated
with a broad class of skeleton-based languages and skeleton rewriting rules. Basic features
of the tool include the identification of applicable rules and the transformation of a subject
program by the application of a rule chosen either by the user or accordingly with some
performance-driven heuristics. Meta is based on a novel program representation (called de-
pendence tree) that allows to effectively implement a rewriting system via pattern-matching.

The Meta tool can be used as a building block in general transformational refinement
environments for skeleton languages. Meta has already been used as transformation engine
of the FAN skeleton framework [4, 12], that is a pure data parallel skeleton framework.
Actually, Meta is more general and may be also used in a broad class of mixed task/data
parallel skeleton languages [7, 20, 23].

The paper is organized as follows. Section 2 frames the kind of languages and trans-
formations Meta can deal with. The Skel-BSP language, used as a test-bed for Meta, is
presented. Section 3 describes the Meta transformation tool and its architecture. Then,
Section 4 discusses a case study and the cost models for Skel-BSP, presenting some experi-
mental results. Section 5 assesses some related work and concludes.

2. Skeletons and transformations. We consider a generic structured coordination
language TL (for target language) where parallel programs are constructed by composing
procedures in a conventional base language using a set of high-level pre-defined skeletons.
We also assume that the skeletons set has three kinds of skeletons: data parallel, task
parallel and sequential skeletons. Sequential skeletons encapsulate functions written in any
sequential base language and are not considered for parallel execution. The others provide
typical task and data parallel patterns. Finally, we constrain data parallel skeletons to call
only sequential skeletons. This is usually the case in real applications and it is satisfied by
the existing skeleton languages [11, 5, 7, 4, 23, 20]. Applications written in this way have
the (up to) three-tier structure sketched out in Fig. 2.1.

In order to preserve generality, Meta can be specialized with the TL syntax and its three
skeleton sets. The only requirement we ask is that the above constraint on skeleton calls
holds. This makes our work applicable to a variety of existing languages.

Besides a skeleton-based TL, the other ingredient of program refinement by transforma-



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 61

tion is a set of semantic-preserving rewriting rules. A rule for TL is a pair L → R, where L
and R are fragments of TL programs with variables ν0, ν1 . . . ranging over TL types, acting
as placeholder for any piece of program. We require that every variable occurring in R must
occur also in L and that L is not a variable. Moreover, a variable may be constrained to
assume a specified type or satisfy a specific property (e.g., we may require an operator to
distribute over another operator). The left-hand side L of a rule is called a pattern.

In the rest of the paper, we consider a simple concrete target language as a test-bed for
the Meta transformation tool: Skel-BSP[23]. Skel-BSP has been defined as a subset of P3L
[6] on top of BSP (Bulk-Synchronous Parallel model [22]) and it can express both data and
task parallelism. The following defines a simplified Skel-BSP syntax which is particularly
suitable for expressing rules and programs in a compact way:

TL prog ::= TP | DP
TP ::= farm “(” TP “)” | pipe “{” TPlist “}” | DP
TPlist ::= TP | TP, TPlist
DP ::= map Seq | map2 Seq | scanL Seq | reduce Seq | Seq |

comp “(” out Var, in Varlist “)” “{” DPlist “}”
DPlist ::= Var “=” DP Varlist | Var “=” DP Varlist, DPlist
Var ::= 〈 a string 〉
Varlist ::= Var | Var, Varlist
Seq ::= 〈 a sequential C function 〉

TL prog can be formed with skeleton applications, constants, variables or function ap-
plications. Each skeleton instance may be further specified by its name just adding a dotted
string after the keywords (e.g. comp.mss). Variables are specified by a name and by a type
ranging over (all or some of) the base language types (e.g. all C types except pointers). The
type of variables may be suppressed where no confusion can arise.

The pipe skeleton denotes functional composition where each function (stage) is executed
in pipeline on a stream of data. Each stage of the pipe runs on different (sets of) processors.
The farm skeleton denotes “stateless” functional replication on a stream of data. The map,
scanL and reduce skeletons denote the namesake data parallel functions [8] and do not need
any further comment. map2 is an extended version of map, which works on two arrays (of
the same lengths) as follows: map2 f [x0, . . . , xn] [y0, . . . , yn] = [f x0 y0, . . . , f xn yn]. The
comp skeleton expresses the sequential composition of data parallel skeletons. The body
of the comp skeleton is a sequence of equations defining variables via expressions. Such
definitions follows the single-assignment rule: there is at most one equation defining each
variable.

comp.name (out outvar, in invars){
outvar1 = dp.1 Op1 invars1

...
outvarn = dp.n Opn invarsn}

where: ∀k = 1..n, invarsk ⊆ (⋃
i<k outvari ∪ invars

)
, outvar ∈ ⋃

i≤n outvari

The skeletons into the comp are executed in sequence on a single set of processors in
a lock-step fashion, possibly with a (all-to-all) data re-distribution among steps. The cost
estimate of Skel-BSP is based on the Valiant’s Bulk-Synchronous Parallel model [22, 23]. The
cost model for Skel-BSP is discussed in Section 4 along with some results on its accuracy.



62 Marco Aldinucci

Results show that close estimate are possible on a fairly common parallel platform like a
cluster of Pentium PCs.

2.1. Examples. In this section, we consider a couple of simple Skel-BSP programs: the
maximum segment sum and the polynomial evaluation. Both programs are the Skel-BSP
presentation of parallel algorithms appeared in [4, 12].

Maximum segment sum. Given a one-dimensional array of integers v, the maxi-
mum segment sum (MSS) is a contiguous array segment whose members have the largest
sum among all segments in v. Suppose we would like to compute the MSS of a stream of
arrays. The following code is a first parallel program for computing MSS following a simple
strategy [4, 12]:

pipe.mss {
map pair,
scanL Op+,
map P1,
reduce max}

/* : int [n] → int [n][2] */
/* : int [n][2] → int [n][2] */
/* : int [n][2] → int [n] */
/* : int [n] → int */

The comments on the right hand side state the type of each skeleton instance; types are
expressed using a C-like notation. The operator Op+ is defined as follows:

[xi,1, xi,2]Op+[xj,1, xj,2] = [max{xi,1 + xj,2, xj,1}, xi,2 + xj,2]

while pair x = [x, x] and P1 [x1, x2] = x1. Intuitively, the purpose of scanL is to produce
an array s whose ith element is the maximum sum of the segments of x ending at position
i. Using a sequential program, this task can be accomplished simply by using scanL with
operator Op1(a, b) = max(a + b, b). Unfortunately, such operator is not associative, thus
this simple scanL cannot be parallelized. Op+ uses an auxiliary variable to preserve the
associativity. This variable is thrown away at the end of the scanL computation by the P1

operator. Finally, reduce sorts out the maximum element of array s yielding to the desired
maximum segment sum r.

Polynomial evaluation. Let us consider the problem of evaluating in parallel a poly-
nomial a1x + a2x

2 + . . . anxn at m points y1, . . . ym. The most intuitive solution consists in
parallelizing each basic step of the straightforward evaluation algorithm, i.e. first compute
the vector of powers ysi = [yi

1, . . . , y
i
m], i = 1 . . . n, then multiply by the coefficients, and,

finally, sum up the intermediate results. The algorithm can be coded in Skel-BSP as follows.

comp.pol eval (out zs, in ys, as) {
ts = scanL ∗ ys, /* ts[i] = ysi : float [n][m] */
ds = map2 (∗sa) as, ts, /* ds[i] = [ai ∗ yi

1, . . . , ai ∗ yi
m] : float [n][m] */

zs = reduce + ds} /* zs[i] =
[∑n

i=1 ai ∗ yi
1, . . . ,

∑n
i=1 ai ∗ yi

m

]
: float [m] */

where ∗sa multiplies each element of a vector by a scalar value, ∗ and + are overloaded
to work both on scalars and (element-wise) on vectors. On the right side (in comments) we
describe the variable values and types.

2.2. Transformation rules. When we design a transformation system a foremost
step is the choice of the rewriting rules to be included and the definition of their costs. The
goal of the system is to derive a skeletal program with the best performance estimate by
successive (semantic-preserving) transformations (rewrites). Each transformation/rewrite



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 63

correspond to the application of a rewriting rule. Here, we only collect the transformations
needed to demonstrate the use of Meta on an example. We refer back to the literature for
the proofs of the soundness of the rules [2, 3, 4, 8, 13]. For the sake of brevity, we use L →← R
to denote the couple of rules L → R and R → L.

In the following, TSki can be any skeleton (task or data parallel, sequential), DSki

can be any data parallel or sequential skeleton. Op1, Op2, . . . denote variables ranging over
sequential functions. pair and P1 are sequential auxiliary functions defined in the previous
section. The labelled elision < · · · >n represents an unspecified chunk of code that appears
(unchanged) in both sides of the rules.

farm insertion/elimination. These rules state that farms can be removed or intro-
duced on top of a TSk skeleton [3]. The rule preserves the constraint on layers since TSk
cannot appear into a data parallel skeleton. A farm replicates TSk without changing the
function it computes. Thus, it just increases task parallelism among different copies during
execution.

TSk
→
← farm (TSk)

pipe → comp. The pipe skeleton represents the functional composition for both task
and data parallel skeletons. The comp models a (possibly) more complex interaction among
data parallel skeletons. If all the stages DSk1, DSk2. . . of the pipe are data parallel (or se-
quential) skeletons, then the pipe can be rewritten as a comp in which each DSki gets its
input from DSki−1 and outputs towards DSki+1 only. Also in this case the two formula-
tions differ primarily in the parallel execution model. When arranged in a pipe, the DSk1,
DSk2. . . are supposed to run on different sets of processors, while arranged in a comp, they
are supposed to run (in sequence) on a single set of processors.

pipe {
DSk1 Op1,
DSk2 Op2,
< · · · >1
DSkn Opn}

→
comp (out z, in a) {

b = DSk1 Op1 a,
c = DSk2 Op2 b,
< · · · >1
z = DSkn Opn y}

map fusion/fission. This rule denotes the map (backwards) distribution through func-
tional composition [8]. Notice that when we apply form left-to-right we do not require the
two maps in the left hand side to be adjacent in the program code. We just require that the
input to the second one (q) is the output from the first one.

comp (out outvar, in invars) {
< · · · >1

q = map Op1 p,
< · · · >2
r = map Op2 q,
< · · · >3 }

→
←

comp (out outvar, in invars) {
< · · · >1

q = map Op1 p ,

r = map (Op2 ◦ Op1) p,
< · · · >2
< · · · >3 }

It is important to notice that, while rules are required to be locally correct, Meta ensures
the global correctness of programs. For instance, using the rule from left-to-right (map
fusion) the assignment in the grey box is not required to appear. Meta provides the program
with the additional assignment (in the grey box) only if the intermediate result q is referenced
in some expressions into < · · · >2 or < · · · >3.

SAR-ARA. This rule (applied from left-to-right) aims to reduce the number of com-
munications using the very complex operator Op3. In general, the left-hand side is more



64 Marco Aldinucci

communication intensive and less computation intensive than the right-hand side. The exact
tradeoff for an advantageous application heavily depends on the cost calculus chosen (see
[4, 12]).

comp (out outvar, in invars){
< · · · >1
q = scanL Op1 p,
r = map P1 q,
s = reduce Op2 r,
< · · · >2 }

→
←

comp (out outvar, in invars){
< · · · >1
t = map pair p,
u = reduce Op3 t,
v = map P1 u,
x = map P1 v,
< · · · >2 }

Op1 must distribute forward over Opaux. Op3 is defined as follows:

[xi,1, xi,2]Op3[xj,1, xj,2] = [xi,1Opaux(xi,2Op1xj,1), xi,2Op1xj,2]

[xi,1, xi,2]Opaux[xj,1, xj,2] = [xi,1Op2xj,1, xi,2Op2xj,2]

Notice that, whereas operator Op2 works on single elements, operators Op1 and Opaux

are defined for pairs (arrays of length 2), and Op3 works on pairs of pairs.

3. The transformation tool. In this section, we describe a transformation tool which
allows the user to write, evaluate and transform TL programs, preserving their functional
semantics, and possibly improving their performance. The tool is interactive. Given an
initial TL algorithm, it proposes a set of transformation rules along with their expected per-
formance impact. The programmer chooses a rule to be applied and successively (after the
application) the tool looks for new matches. This process is iterated until the programmer
deems the resulting program satisfactory, or there are no more applicable rules.

The strategy of program transformation is in charge of the programmer since, in general,
the rewriting calculus of TL is not confluent: applying the same rules in a different order
may lead to programs with different performance. The best transformation sequence may
require a (potentially exponential) exhaustive search.

In the following, we define an abstract representation of TL programs and transformation
rules, we describe the algorithm used for rule matching, and finally we sketch the structure
of the tool.

3.1. Representing programs and rules. The Meta transformation system is basi-
cally a term-rewriting system. Both TL programs and transformation rules are represented
by means of a novel data structure, so-called dependence tree. Dependence trees are ba-
sically labelled trees, thus the search for applicable rules reduces to the well established
theory of subtree matching [16]. The tool attempts to annotate as many nodes of the tree
representation as possible with a matching rule instance, i.e., a structure describing which
rule can be used to transform the subtree rooted at the node, together with the informa-
tion describing how the rule has been instantiated, the performance improvement expected
and the applicability conditions to be checked (e.g., the distributivity of one operator over
another).

The dependence tree is essentially an abstract syntax tree in which each non-leaf node
represents a skeleton, with sons representing the skeleton parameters that may in turn be
skeletons or sequential functions. The leaves must be sequential functions, constants or the
special node Arg( ). Unlike a parse tree, a dependence tree directly represents the data



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 65

Table 3.1

Building up the dependence tree.

Input: PT and DFG for a correct TL program. The starting node x is the root of PT.
No nested DPblock are allowed (which can be easily flattened).

Output: The dependence tree DT.

Method:

1. Let x denote the current node, starting from the root of PT;
2. Copy x from PT on DT along with the arc joining it with its parent (if any),

the arc is undirected as it comes from PT;
3. if not(x = DPblock)
4. then Recursively apply the algorithm to all sons of x in PT (in any order);
5. else Apply Procedure dpb(DPblock).

Procedure dpb(Node):
a. From Node follow backward the incoming edges in DFG;
b. for each node Ci reached in this way, do
c. Copy Ci from DFG to DT along with its out-coming edges;
d. Recursively apply dpb(Ci) until the starting node DPblock or a sink is reached;

In the former case add a node Arg to represent the formal parameter name.

dependence among skeletons: if the skeleton Sk1 directly uses data produced by another
skeleton Sk2, then they will appear as adjacent nodes in the dependence tree, irrespectively of
their position in the parse tree. Each edge in the dependence tree represents the dependence
of the head node from the data produced by the tail node. The dependence tree of a program
is defined constructively, combining information held in the parse tree (PT) and in the data
flow graph (DFG) of the program. The algorithm to build dependence trees is shown in
Table 3.1. The algorithm is illustrated in Fig. 3.1, which shows the parse tree, the data
flow graph and the correspondent dependence tree of the polynomial evaluation example
(see § 2.1). The nodes labelled with DPblock mark the minimum subtrees containing at
least one data parallel skeleton, nodes Arg(as) and Arg(ys) represent the input data of a
DPblock. In other words, DPblock nodes delimit the border between the task parallel and
the data parallel layers.

It is important to understand why we need to introduce a new data structure instead
of using the parse tree directly. The main reason lies in the nature of the class of languages
we aim to deal with, i.e. mixed task/data parallel languages. Nested skeleton calls find
a very natural representation as trees. On the contrary, data parallel blocks based on the
single-assignment rule (e.g. Skel-BSP comp) need a richer representation in order to catch
the dependences among the skeletons (for example a data flow graph). The dependence tree
enables us to compact all the information we need in a single tree, i.e. in a data structure
on which we can do pattern-matching very efficiently.

There is one more point to address. The dependences shown in Fig. 3.1 are rather
simple. In general, as shown in Fig. 3.2, a data structure produced by a single TL statement
may be used by more than one statement in the rest of the program. We have two choices:
(1) to keep a shared reference to the expression (tree), or (2) to replicate it. In option (1),
the data flow can no longer be fully described by a tree. In addition, sharing the subtrees
rules out the possibility of applying different transformations at the shared expression (tree)
for different contexts. The Meta transformational engine adopts the second option, allowing
us to map the data flow graph into a tree-shaped dependence structure. The drawback of
replicating expressions is a possible explosion of the code size when we rebuild a TL program
from the internal representation. To avoid this, the engine keeps track of all the replications
made. This ensures a single copy of all replicated subtrees that have not been subject to an



66 Marco Aldinucci

= = =

*sa*

reducescanL ds zs

as ys zs

ds+

+

reduce

Parse Tree (PT) Dependence Tree

DPblock

DPblock OutIn 
Node attributes

ts

ys

Data Flow Graph (DFG)

map2

tsas

Arg(ys)*

* +

zsys
as

reducescanL

DPblock

In parameters Out parameters

*sa

map2

map2

scanLArg(as)*sa

Fig. 3.1. The parse tree, the data flow graph and the dependence tree of polynomial evaluation.
Skel-BSP skeletons are in serif font. Special nodes are in slanted serif font. Sequential functions are in italic
font.

independent transformation.
Figure 3.3 depicts the internal representation of rule map fusion from § 2.2. We repre-

sent the two sides of the rule as dependence trees, some leaves of which are variables repre-
sented by circled numbers. During the rule application, the instantiations of the left-hand
side variables are substituted against their counterparts on the right-hand side. Figure 3.3
demonstrates how the conditions of applicability and the performance of the two sides of a
rule are reported to the programmer. Notice in Fig. 3.3 the “functional” fcomp, i.e. a special
node used to specify rules in which two (or more) variables of the pattern are rewritten in
the functional composition of them. Since variables have no sons, Meta first rewrites vari-
ables as sons of fcomp, then it makes the contractum {ν0 = f0, . . . νn = fn} and, afterwards
the result is equated using fcomp(f0, . . . fn) = fn ◦ · · · ◦ f0.

3.2. Rule matching. Since programs and rules are represented by trees, we can state
the problem of finding a candidate rule for transforming an expression as the well-known
subtree matching problem [17, 19, 16]. In the most general case, given a pattern tree P and a
subject tree T , all occurrences of P as a subtree of T can be determined in time O(|P |+ |T |)
by applying a fast string matching algorithm to a proper string representation [19]. Our
problem is a bit more specific: the same patterns are matched against many subjects and
the subject may be modified incrementally by the sequence of rule applications. Therefore,
we distinguish a preprocessing phase, involving operations on patterns independent of any
subject tree, and a matching phase, involving all operations dependent on some subject tree.
Minimizing the matching time is our first priority.

The Hoffmann-O’Donnell bottom-up algorithm [16] fits our problem better than the
string matching algorithm. With it, we can find all occurrences of a forest of patterns F as



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 67

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a b c d

b d

c
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a

x y

y

x

y

DPblockDPblock
In parameters

Dependence TreeData Flow Graph (DFG)

Replicated subtree

Arg

Arg

Arg

Fig. 3.2. Replicating shared trees. Each triangle stands for a tree representing a TL expression.

subtrees of T in time O(|T |), after suitable preprocessing of the pattern set. Moreover, the
algorithm is efficient in practice: after the preprocessing, all the occurrences of elements in
F can be found with a single traversal of T . The algorithm works in two steps: it constructs
a driving table, which contains the patterns and their interrelations; then, the table is used
to drive the matching algorithm.

The bottom-up matching algorithm. We textually represent labelled trees as Σ-
terms over a given alphabet Σ. Formally, all symbols in Σ are Σ-terms and if a is a q-ary
symbol in Σ then a(t1, . . . , tq) is a Σ-term provided each of ti is. Nothing else is a Σ-term.
Let Sν denote the set of (Σ ∪ {ν})-terms.

In addition, let F = {P1, P2, . . .} be a pattern set, where each pattern Pi is a tree. The
set of all subtrees of the Pi is called a pattern forest (PF). A subset M of PF is a match
set for F if there exists a tree t ∈ Sν such that every pattern in M matches t at the root
and every pattern in PF \ M does not match t at the root.

The key idea of the Hoffmann-O’Donnell bottom-up matching algorithm is to find, at
each point (node) n in the subject tree, the set of all patterns and all parts of patterns
which match at this point. Suppose n is a node labelled with the symbol b, and suppose
also we have already computed such sets for each of the sons of n. Call these sets, from
left to right M1, . . . , Mq. Then the set M of all pattern subtrees that match at n contains
ν (that match anywhere), plus those patterns subtrees b(t1, . . . , tq) such that ti is in Mi,
1 ≤ i ≤ q. Therefore, we could compute M by forming b(t1, . . . , tq) for all combinations
(t1, . . . , tq), ti ∈ Mi. Once we have assigned these sets to each node, we have essentially
solved the matching problem, since each match is triggered by the presence of a complete
pattern in some set.

Notice that there can be only finitely many such sets M , because both Σ and the set
of sub-patterns are finite. Thus we could precompute these sets, and code them by some
enumeration to build driving tables. Given such tables, the matching algorithm becomes
straightforward: traverse the subject tree in postorder and assign to each node n the code
of the set of partial matches as n. However, for certain pattern forest the number of such
sets M (thus the complexity of the generation of driving tables) grows exponentially with
the cardinality of the pattern set.



68 Marco Aldinucci

Fig. 3.3. Internal representation of rule map fusion, conditions of its applicability and performance of
the two sides of the rule.

Nevertheless, there is a broad class of pattern sets which can be preprocessed in poly-
nomial time/space in the size of the set: all sets yielding simple pattern forests. For an
extensive treatment we refer back to Hoffmann-O’Donnell paper [16] and provide only a
brief explanation here.

Let a, b, c . . . ∈ Σ. Now, let P and P ′ be pattern trees. P subsumes P ′ if, for all subject
trees T , P has a match in T implies that P ′ has a match in T . Then P is inconsistent with
P ′ if there is no subject tree T matched by both P and P ′. P and P ′ are independent if there
exist T1, T2, and T3 such that T1 is matched by P but not by P ′, T2 is matched by P ′ but
not by P , and T3 is matched by both P and P ′. Given distinct patterns P and P ′, exactly
one of the three previous relations must hold between them. A pattern forest is called
simple if it contains no independent subtrees. For instance, the pattern forest including the
pattern trees P = a(b, ν) and P ′ = a(ν, c) is not simple, since P and P ′ are independent
with respect to T1 = a(b, b), T2 = a(c, c), T3 = a(b, c). On the contrary, the pattern set
Fs = {a(a(ν, ν), b), a(b, ν)} lead to a simple pattern forest. The current set of Skel-BSP
rules [2, 3, 23] and FAN rules [4] can be fully described by simple pattern forests. Simple
pattern forests suffice even for producing interpreters of much more complex languages like
LISP and the combinator calculus [15]. In addition, since the driving table depends only on
the language and on the list of rules, it can be generated once and for all for a given set of
rules and permanently stored for several subsequent match searches.

3.3. Tool architecture and implementation. The transformation engine applies
the matching algorithm in an interactive cycle as follows:

1. Use the matching algorithm to annotate the dependence tree with the matching
rules.

2. Check whether the rules found satisfy the type constraints and whether the side
conditions hold (possibly interacting with the user).

3. Apply the performance estimates to establish the effect of each rule.
4. Ask the programmer to select one rule for application. In case no rule is applied,

terminate; otherwise start again from Step 1.
We envision the Meta tool as a part of a general tool implementing a transformational

refinement framework for a given target language TL. The global tool structure is depicted
in Fig. 3.4 (the part already implemented is highlighted with a dotted box). The whole
system has two main capabilities: the conversion between TL programs and their internal



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 69

(by subsumption)
pattern sorting

pattern forest
generation

driving table
generation

subsumption graph

program
PT & DFG

rule list
PTs & DFGs

scanner / parser data dependence analyzerdata dependence analyzer

matches presentation
and user dialog

list of matched rules

the rule to apply

(4
) 

T
ra

nf
or

m
at

io
n 

E
ng

in
e

tree tranformation

dependence tree generation

pattern matching

Al
re

ad
y 

Im
pl

em
en

te
d 

!

list of dependence pattern trees
(lhs of rules representation)

(2
) 

N
or

m
al

iz
at

io
n

driving table

(1
) 

F
ro

nt
 E

nd

dependence tree
(program representation)

pattern library file

TL program

T
L

sp
ec

if
ic

T
L

sp
ec

.

cu
st

om
iz

ab
le

 v
ia

 in
st

an
ti

at
io

n 
of

 th
e 

A
D

T

in
de

pe
nd

en
t f

ro
m

T
L

TL program TL rules

bu
il

t b
y 

L
E

X
 &

 Y
A

C
C

scanner / parser

(3
) 

R
ul

e 
M

an
ag

er

rebuild TL program from internal representation

(5
) 

B
ac

k 
E

nd

User Interaction

Fig. 3.4. Global structure of the Meta transformation system.

representation (dependence tree) and the transformation engine working on dependence
trees.

The system architecture is divided into five basic blocks:
1. The Front End converts a TL program into a parse tree and a data flow graph.
2. The Normalization uses the PT and DFG to build the dependence tree both for the

TL program and for the set of transformation rules.
3. The Rule Manager implements the preprocessing of rules (preprocessing phase, see

§3.2); it delivers a matching table to drive the transformation engine. The driving
table may be stored in a file.

4. The Transformation Engine interacts with the user and governs the transformation
cycle.

5. The Back End generates a new TL program from the internal representation.
A prototype of the system kernel (highlighted in Fig. 3.4 with a dotted box) has been

implemented in Objective Caml 2.02. Our implementation is based on an abstract data type
(ADT) which describes the internal representation (dependence tree) and the functions
working on it. The implementation is very general and can handle, via instantiation of
the ADT, different languages with the requirement that rules and programs are written



70 Marco Aldinucci

in the same language. Moreover, since several execution models and many cost calculi
may be associated with the same language, any compositional way of describing program
performance may be embedded in the tool by just instantiating the performance formulae
of every construct. We call a cost calculus compositional if the performance of a language
expression is either described by a function of its components or by a constant.

The Meta transformation tool prototype is currently working under both Linux and
Microsoft Windows. A graphical interface is implemented using the embedded OCaml
graphics library.

4. A case study: design by transformation. We discuss how Meta can be used in
the program design process for the MSS algorithm, introduced in §2.1 and reported in the
top-left corner of Table 4.1.

First, the tool displays the internal representation of the program (Fig. 4.1 (a)) and
proposes 5 rules (Fig. 4.1 (b)). The first one is pipe→comp rule, the others are instances of
the farm introduction rule. The four stages of the pipe use exactly the same data distribution,
but since each stage use a different set of processors each stage has to scatter and gather
each data item. Transforming the pipe in a comp (that uses just one set of processors)
would get rid of many unnecessary data re-distributions. Let us suppose the user chooses
to apply the pipe→comp rule achieving the program version shown in Fig. 4.1 (c). Next,
Meta proposes a couple of rules (Fig. 4.1 (d)): SAR-ARA to further reduce the number
of communications into the comp, thus to optimize the program behavior on a single data
item, and farm introduction to enhance the parallelism among different data items of the
stream. Both rules may improve the performance of the program, let us suppose to choose
the SAR-ARA (Fig. 4.1 (e)).

Then, the transformation process continues choosing (in sequence) map fusion rule (2
times) and farm introduction rule. The resulting program is only one of the more than
twenty different formulations Meta is able to find applying the transformation rules to the
initial program. Table 4.1 shows some of the semantic-equivalent formulations derivable.

In the rest of this section, we discuss a cost prediction model for Skel-BSP and we give
some results of its accuracy on a concrete parallel architecture.

It is worth reminding that choosing in every step the transformation with the best
performance gain does not guarantee to find the fastest program (optimum). Nevertheless,
the knowledge of the performance gain/loss of each transformation is quite important to the
programmer, since he can make decisions or build transformation strategies (e.g. greedy,
tabu search, etc.) using such kind of informations. An accurate prediction of transformations
cost is quite important to this end.

In the case of Skel-BSP equipped with BSP costs, such prediction is pretty accurate.
In the following section, we give evidence of this accuracy through the following steps. We
first describe how Skel-BSP is implemented on a BSP abstract machine running on our
concrete parallel architecture. Then we describe how programs and rules can be costed in
this implementation. Finally, we compare the predicted and measured performance figures
of two versions of our MSS example and compare the performance gain predicted by one
transformation rule used by Meta with the real measured figures.

4.1. Prototyping Skel-BSP. Our Skel-BSP prototype is implemented using the C lan-
guage and the PUB library (Padeborn University BSP-library [9]). The PUB library is a
C-library of communication routines. These routines allow straightforward implementation
of BSP algorithms.

The PUB library offers the implementation of a superset of the BSP Worldwide Standard



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 71

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 13 (SAR−ARA)

Would you like to apply any rule [0=Exit] 2

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

3) rule n. 10 (map fusion)

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Would you like to apply any rule [0=Exit] 0

2) rule n. 18 (farm introduction)
1) rule n. 17 (farm elimination)

Matches Found:

(a)

(c)

(e)

(g)

(i)

Matches Found:

1) rule n. 1 (pipe −> comp)
2) rule n. 18 (farm introduction)
3) rule n. 18 (farm introduction)
4) rule n. 18 (farm introduction)
5) rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found:

1) rule n. 17 (farm introduction)

Would you like to apply any rule [0=Exit] 1

(b)

(d)

(f)

(h)

(j)

(l)

pipe−>comp

SAR−ARA

map fusion

map fusion

farm intro

(k)

Fig. 4.1. Transformation of the MSS program using the Meta tool. Skel-BSP skeletons are in serif font.
Special nodes are in slanted serif font. Sequential functions are in italic font.



72 Marco Aldinucci

Table 4.1

Some of the transformations proposed by Meta for the MSS example. The double-arrow path denotes
the derivation path followed in Fig. 4.1.

�������� �
��� �����
���	
 ����
��� ���
���
�� ��� � ��

���� ���
���

��

�����
��������	��

��

�� ���� ��� ��

�������� �
��� �����
��������	
 �����
��� ���
���
�� ��� �

�� ���� ��� ��

�������� �
��� �����
��������	
 �����
�������� ����
���
�� ��� �

�������� ��
� �� �	 �� �
����� ���� ��
	����	
 ��� ��

���� �� 	�
�����
�� ��� 
���

�������

��

�������� �
��� �����
���	
 ����
�������� ����
���
�� ��� �

��

���� ���������

		������

�� ���� ��� ��

�������� �
��� �����
���	
 ����
�������� ����
��������
�� ���� �

�������� ��
� �� �	 �� �
����� ���� ��
����� ���� ��
�����
��
�������
���� ��
����� �� ��
����� �� � �



 ��� ������ ��
�������� ��
� �� �	 �� �
����� ����� Æ ����� ��
�����
��
�������
���� ��
����� ��� Æ ��� � ���

��� ������







 ���� ��� ��

�������� �
���� ��
� �� �	 �� �
����� ����� Æ ����� ��
�����
��
�������
���� ��
����� ��� Æ ��� � ��

Interface [14]. In addition, PUB offers some collective operations (scan and reduce), and
it allows creating independent BSP objects each representing a virtual BSP computer. The
last two features make PUB particularly suitable for prototyping Skel-BSP programs:

(i) PUB collective operations may be used to implement Skel-BSP collective opera-
tions in a straightforward way. Unfortunately, PUB requires all operations used in scan
and reduce to be commutative. Thus, the direct mapping from PUB to Skel-BSP collective
operations may be done only if operations involved are commutative.

(ii) Independent (virtual) BSP computer may be used to implement effectively task
parallel skeletons in Skel-BSP. Task parallel activities are often asynchronous on different
pool of processors, and do not require all processing elements to synchronize at each su-
perstep. PUB offers the possibility to divide a BSP computer in several subgroups each
representing a virtual BSP computer. In this way, computations among processors belong-
ing to different subgroups may proceed asynchronously since superstep barriers involve only
processors belonging to the same subgroup.

Since global operations Op+ and Op3 we used in MSS programs are associative but
not commutative, we extended PUB with a new parallel prefix operation (TPscanL) that
requires global operations only to be associative. TPscanL is implemented using message
passing primitives of PUB (send, receive, broadcast) following the two-phase BSP algorithm:

1. Each processor performs a (local) reduce on the local portion of the structure and
broadcasts the result to all the processors with greater index.



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 73

7 8 9

4 5 61 2 3 7 8 9

scan scan scan

1 2 3 4 5 6

reduce reduce

6 6 15

1 3 6 10 21 28 4515 36

Phase 2

Phase 1

Barrier
T

im
e

Processors

6 15
P 0

P 0 P 1

P 2

P 2

P 1

Fig. 4.2. Two-phase BSP parallel prefix (TPscanL) using + as global operation.

2. Processor i > 0 computes the ith segment of the prefix performing a local scan of
the prefix array extended (on the left) with the i results received from all processors with
index lower than i.

The two-phase parallel prefix algorithm is sketched in Fig. 4.2 using + as global opera-
tion. Let p be the number of processors, n the length of prefix array (assumed multiple of
p), tOp the cost of the global operation, msg the size of a prefix array element and {g, l}
the usual BSP cost parameters. The BSP cost of TPscanL is:

T (TPscanL Op) =
(

n

p
− 1

)
tOp︸ ︷︷ ︸

Phase1

+ g (p − 1) msg + l︸ ︷︷ ︸
barrier

+
(

n

p
+ p − 2

)
tOp︸ ︷︷ ︸

Phase2

The two-phase algorithm is just one of the possible choices for the parallel prefix prob-
lem. We use the two-phase parallel prefix TPscanL to implement both Skel-BSP scanL and
reduce. Notice that, to check the effectiveness of the transformation process, we only need
to have an implementation with known cost, we do not need a particularly good imple-
mentation. For a comparison between two-phase algorithm and others BSP parallel prefix
algorithms we refer back to [23].

4.2. Running and costing MSS programs. We focus on two different MSS Skel-BSP
programs found using Meta and the proposed set of rules. Let us call mss c and mss e the
programs in Fig. 4.1 (c) and (e), respectively. mss e is obtained from mss c using the
SAR-ARA rule, as follows:

�������� � ���� �� 	
 �� �
���
� ���� ��
����

� ��� ��
	��
� �� ��
�������� 
�� 	�

���������

�������� � ���� �� 	
 �� �
���
� ���� ��
���
� ���� ��
��������
�������

��� ��
���
� �� ��
���
� �� � �

We describe the expected BSP cost of the two programs. Afterwards, we run a prototype
of the two programs on a concrete parallel architecture, consisting in a cluster of Pentium
II PCs (@266MHz) interconnected by a 100Mbit switched Ethernet. We instantiate cost
formulae with BSP parameters collected during the experiments, miming the behavior of



74 Marco Aldinucci

Meta. Finally, we discuss the accurateness of expected performance predicted by Meta using
cost formulae with respect to experimental performance.

Let us assume each processor holds n/p elements of the input array. Since the comp
skeleton executes its components in sequence, the cost of the mss c program is figured out
summing up the costs of each skeleton appearing into the comp. Notice we use the same
primitive (TPscanL) to implement both scanL and reduce, thus the reduce will cost as much
as scanL. All operations work on integers (4 bytes long). The pair operation consists in
copying an integer, thus costs one BSP basic operation (1 · s); the cost of the projection P1

is zero. Messages sizes are two integers for the first TPscanL and one integer for the second
one. The cost of Op+ operation is assessed in 3 · s, while max costs just 1 · s. In total, we
assess for the mss c program:

T (mss c) = T (map pair int) + T (TPscanL Op+) + T (TPscanL max)
= s · (9 n/p + 4p − 12) + 12g(p− 1) + 2l

In the same way we evaluate the cost of the mss e program. The first pair operation consists
in copying one integer while the second pair in copying two integers, the total cost is 3 · s.
The message size for TPscanL is four integers. The cost of Op3(Op+, max) is 7 · s. In total
we assess for the mss e program:

T (mss e) = T (map pair int) + T (map pair int[2]) + T (TPscanL Op3(Op+, max))
= s · (17 n/p + 7p − 21) + 16g(p− 1) + l

Each run consists on evaluating the MSS for 300 input arrays on several cluster configu-
rations (2, 4, 8, 16 PCs). The length of input arrays ranges from 213 to 218 integers. All
standard BSP parameters are profiled directly by the PUB library:

s = 5.7 · 10−8 (17.54 M BSPOps/sec)
g = 0.2 · 10−6 (500 K Bytes/sec)(4.1)
l = 3.2 · 10−4 · p (640 – 5120 μsecs, with p = 2 – 16)

Predicted performance and experimental performance of mss c and mss e programs are
compared in Fig. 4.3 a) and b), respectively. Considering all experiments, the average
relative error of predicted performance with respect to experimental performance is 13%
with 7% of standard deviation. Notice that the error in predicted performance grows with
the number of processors, thus it grows with the number of communications. This suggests
us that communications patterns used by TPscanL and by PUB profiling algorithms are not
totally aligned in performance.

4.3. Performance driven transformations. Given a language and a set of semantic-
preserving transformations, the Meta tool assists the user in the transformation process.
The transformation process may be also performance driven, provided each rewriting rule
is equipped with a performance formula, which depends on the particular skeleton imple-
mentations for the target language. In such case, proposing a transformation to the user,
Meta suggests in which cases the transformation is advantageous, and what is the predicted
performance for the transformed program. The prediction is figured out instantiating per-
formance formulae with architecture parameters (e.g. BSP parameters) and basic operations
cost (e.g. tOp+ , tOp3).

Let us consider the application of SAR-ARA rule. Prototyping Skel-BSP as described
in §4.1, thus supposing both scanL and reduce Skel-BSP skeletons are implemented using



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 75

a) mss c program ( predicted performance, experimental performance)

213 214 215 216 217 218
Length

3

4

5

6

7
Time 8 Processors

213 214 215 216 217 218
Length

3.5

4

4.5

5

5.5

Time 16 Processors

213 214 215 216 217 218
Length

5

10

15

20

25

30

Time 2 Processors

213 214 215 216 217 218
Length

2

4

6

8

10

12

14

Time 4 Processors

b) mss e program ( predicted performance, experimental performance)

213 214 215 216 217 218
Length

2

4

6

8

10

Time 8 Processors

213 214 215 216 217 218
Length

3

4

5

6

Time 16 Processors

213 214 215 216 217 218
Length

10

20

30

40

Time 2 Processors

213 214 215 216 217 218
Length

5

10

15

20

Time 4 Processors

Fig. 4.3. a) mss c and b) mss e: Comparing predicted performance (solid lines) with experimental
performance (dotted lines). Each experiment is performed on several array lengths (x-axis). Four different
cluster configurations are experimental (2,4,8,16 processors).

TPscanL, and BSP parameters are assigned as (4.1), the SAR-ARA rule is advantageous
when:

n <
p2

s

(
−3 s

8
− g

2

)
+

p

s

(
9 s

8
+

g

2
+ l

)
= 1.6p + 654.9p2(4.2)



76 Marco Aldinucci

Hidden surface

mss_c faster

fastermss_e

1

10

4
8

16 2^13
2^14

2^15
2^16

2^17
2^18

2

mss_c

Processing Time (secs)

Processing Elements (p) Array Length (n)

mss_e

Fig. 4.4. Experimental performance of mss c and mss e programs on several cluster configurations
and several array lengths.

Instantiating this formula with n and p, the Meta user may decide for each instance of
the problem if the SAR-ARA application is advantageous, i.e. if mss e perform better than
mss c. The same decision may be made on real data using Fig. 4.4, which offers another view
of data collected running mss c and mss e programs on several cluster configurations and
array lengths. In the picture, given a point (p, n) in the (x, y)-grid, the best MSS program
for that point is the one that belongs to the lower surface in the point. The (interpolated)
intersection of the two surfaces is projected on the (x, y)-plane.

Finally, to give the flavor of accurateness in performance gain/loss prediction for rules,
we compare the predicted and experimental behavior of Skel-BSP SAR-ARA rule. In Fig. 4.5
the (p, n)-plane is partitioned by equation (4.2) and by the experimental performance of both
mss c and mss e. The picture shows that (4.2) strikingly models the real behavior of the
two programs in this case.

Notice that a more effective implementation of reduce would move the border in Fig 4.5
making greater the area where mss e is faster.

5. Related work and conclusions. In this paper, we have discussed the design
and the implementation of an interactive, graphical transformation tool for skeleton-based
languages. The Meta tool is (indeed) language-independent and is easily customizable with
a broad class of languages, rewriting rules and cost calculi.

The design of our transformation engine Meta was influenced by the PARAMAT system
[18]. However, our approach differs in many aspects. First, our goal is the optimization of
high-level parallelism, rather than the parallelization of low-level sequential codes. Second,
we do not define (as PARAMAT does) any a priori “good” parallel structure, we rather try
to facilitate the exploration of the solution space toward the best parallel structure.

In addition to the described features, Meta may be instantiated with a set pre-defined
heuristics to work as semi-automatic optimization tool. As an example Meta recognizes



Automatic Program Transformation: The Meta Tool for Skeleton-Based Languages 77

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

fastermss_c

mss_e

mss_e

2^13

2^14

2^15

2^16

2^17

2^18

2 4 6 8 10 12 14 16

A
rr

ay
 L

en
gt

h 
(n

)

Processing Elements (p)

fastermss_e

predicted faster

experimental faster

Fig. 4.5. SAR-ARA rule: Predicted and experimental behavior (mss e is faster than mss c when
SAR-ARA is advantageous).

Skel-BSP data-parallel-free programs and optimizes them with a standard sequence of rewrit-
ing rules. Such program formulation (called normal form) is proved to be, under mild re-
quirements, the fastest among the semantic-equivalent formulations that can be obtained
using the rewriting rules [3].

Meta assists the user in the transformation process also driving it with performance
predictions, even if, it is clear that the accurateness of prediction made by Meta primarily
depends on the accurateness of the target language cost calculus. The use of Meta with FAN
has proved that in many cases good parallel programs can be obtained via transformations
[4]. Described experiments (§4.3) on Skel-BSP enforce the accurateness in the prediction of
performance gain/loss due to a rule.

We are currently completing the integration of Meta with FAN and we plan to experiment
it in the transformation of large real world application structures.

Acknowledgements. I am very grateful to Sergei Gorlatch, Christian Lengauer and
Susanna Pelagatti for many fruitful discussions.

REFERENCES

[1] M. Aldinucci, The Meta Transformation Tool for Skeleton-Based Languages, in CMPP2000: Second
International Workshop on Constructive Methods for Parallel Programming, S. Gorlatch and
C. Lengauer, eds., no. MIP-0007 in University of Passau technical report, July 2000.

[2] M. Aldinucci, M. Coppola, and M. Danelutto, Rewriting skeleton programs: How to evaluate the
data-parallel stream-parallel tradeoff, in CMPP’98: First International Workshop on Construc-
tive Methods for Parallel Programming., S. Gorlatch, ed., no. MIP-9805 in University of Passau
technical report, May 1998.

[3] M. Aldinucci and M. Danelutto, Stream parallel skeleton optimization, in proceedings of the 11th
IASTED International Conference on Parallel and Distributed Computing and Systems, MIT,
Boston, USA, Nov. 1999, IASTED/ACTA press.



78 Marco Aldinucci

[4] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti, Towards parallel programming by
transformation: The FAN skeleton framework, Parallel Algorithms & Applications, Gordon &
Breach (Taylor & Francys group), 16(2–3):87–122, 2001.

[5] P. Au, J. Darlington, M. Ghanem, Y. Guo, H. To, and J. Yang, Co-ordinating heterogeneous
parallel computation, in Europar ’96, L. Bouge, P. Fraigniaud, A. Mignotte, and Y. Robert, eds.,
Springer-Verlag, 1996, pp. 601–614.

[6] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi, P3L: A Structured High
level programming language and its structured support, Concurrency Practice and Experience, 7
(1995), pp. 225–255.

[7] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi, SkIE: an heterogeneous HPC environ-
ment, Parallel Computing, 25 (1999), pp. 1827–1852.

[8] R. S. Bird, Lectures on constructive functional programming, in Constructive Methods in Comput-
ing Science, M. Broy, ed., NATO ASI Series, 1988. International Summer School directed by
F. L. Bauer, M. Broy, E. W. Dijkstra and C. A. R. Hoare.

[9] O. Bonorden, N. Hüppelshäuser, B. Juurlink, and I. Rieping, PUB Library. User Guide and
Function Reference (release 7.0), University of Paderborn, Fürstenallee 11, 33102 Padeborn, Ger-
many, Dec. 1999. http://www.uni-paderborn.de/∼pub.

[10] M. Cole, Algorithmic Skeletons: Structured Management of Parallel Computations, Research Mono-
graphs in Parallel and Distributed Computing, Pitman, 1989.

[11] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, Q. Wu, and R. L.

While, Parallel Programming Using Skeleton Functions, in PARLE’93 Parallel Architectures and
Langauges Europe, A. Bode, M. Reeve, and G. Wolf, eds., vol. 694 of LNCS, Springer-Verlag,
June 1993.

[12] S. Gorlatch and S. Pelagatti, A transformational framework for skeletal programs: Overview and
case study, in proceedings of Parallel and Distributed Processing. Workshop held in conjunction
with IPPS/SPDP’99, J. Rohlim, ed., vol. 1586 of LNCS, Berlin, 1999, Springer-Verlag, pp. 123–
137.

[13] S. Gorlatch, C. Wedler, and C. Lengauer, Optimization rules for programming with collective
operations, in proceedings of 13th International Parallel Processing Symposium & 10th Symposium
on Parallel and Distributed Processing (IPPS/SPDP’99), IEEE Computer Society Press, 1999,
pp. 492–499.

[14] M. W. Goudreau, J. M. D. Hill, K. Lang, B. McColl, S. B. Rao, D. C. Stefanescu, T. Suel, and

T. Tsantilas, A proposal for the BSP worldwide standard library, tech. report, Oxford University
Computing Laboratory, Apr. 1996.

[15] C. M. Hoffmann and M. J. O’Donnell, Interpreter generation using tree pattern matching, in
Conference Record of the Sixth Annual ACM Symposium on Principles of Programming Languages
(POPL’79), New York, USA, Jan. 1979, ACM Press, pp. 169–179.

[16] C. M. Hoffmann and M. J. O’Donnell, Pattern matching in trees, Journal of the ACM, 29 (1982),
pp. 68–95.

[17] S. R. Kasaraju, Efficient tree pattern matching, in Proceedings of the 30th IEEE Annual Sympo-
sium on Foundations of Computer Science, Research Triangle Park, North Carolina, 1989, IEEE
Computer Society Press, pp. 178–183.

[18] C. W. Kessler, Pattern-driven automatic program transformation and parallelization, in proceedings
of 3rd EUROMICRO Workshop on Parallel and Distributed Processing, IEEE Computer Society
Press, January 1995.

[19] E. Mäkinen, On the subtree isomorphism problem for ordered trees, Information Processing Letters,
32 (1989), pp. 271–273.

[20] T. Rauber and G. Rünger, A coordination language for mixed task and data parallel programs., in
proceedings of 3rd Annual ACM Symposium on Applied Computing (SAC’99), ACM Press, 1999,
pp. 146–155.

[21] D. B. Skillicorn and W. Cai, A cost calculus for parallel functional programming, Journal of Parallel
and Distributed Computing, 28 (1995), pp. 65–83.

[22] L. G. Valiant, A bridging model for parallel computation, Communications of the ACM, 33 (1990),
pp. 103–11.

[23] A. Zavanella, Skeletons and BSP: Performance portability for parallel programming, PhD thesis,
Computer Science Department, University of Pisa, Italy, Mar. 2000.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


