
Università di Pisa
Dipartimento di Informatica

Dottorato di Ricerca in Informatica

Ph.D. Thesis: TD-09/03

Dynamic shared data in structured
parallel programming frameworks

Marco Aldinucci

December 2003

Address: Via F. Buonarroti 2, 56127 Pisa – Italy
Tel: +39-050-2212728 — Fax: +39-050-2212726

E-mail: aldinuc@di.unipi.it — Web page: http://www.di.unipi.it/∼aldinuc

Thesis Supervisors:

Prof. Marco Vanneschi, Prof. Marco Danelutto

Abstract

This work originates from the wish to simplify the coding of irregular applications
within structured parallel programming environments. In these environments paral-
lelism is exploited by composing “skeletons”, i.e. parallelism exploitation patterns.
The skeletal approach has been proved to be effective, at least if application algo-
rithms can be somehow expressed in terms of skeleton composition. However, in
some cases our skeletal frameworks fail in providing the application programmer
with convincing solutions both from ease of programming and performance view-
points. Major lacks of expressivity have emerged in dynamic/irregular algorithms
and applications that oddly access to large data sets. The first part of the thesis
moves along this path, and reports all attempts we made to improve the effectiveness
of environments’ compiler, static optimizer, and run-time support.

The main goal of the thesis is to take a step further with respect to the achieved
results. In particular we aim to defeat expressivity lacks emerged in skeletal lan-
guages approaching irregular problems and dealing with dynamic data structures.
The basic idea consists in providing the application designer with a shared address
space and a skeletal framework that enables and enforces the co-design of (shared)
dynamic data structures and (parallel) algorithms.

At this aim, a new skeletal programming environment based on shared address
programming is proposed (i.e. eskimo). The language is as an extension of a “host”
language (i.e. the C language). eskimo is conceived to be a framework to experiment
how to support dynamic data structures in a skeletal framework. Its run-time sup-
port is based on a software distributed shared memory, and allows the programmer
to freely access data items in the shared memory. eskimo is designed to match the
hooks offered by ASSIST, thus to be experimented within. Notably eskimo is not yet
another DSM, rather it relies on DSM already known technologies to experiment the
co-design of dynamic data structures and parallel programming patterns enforcing
locality in the distributed memory access.

eskimo has been designed and developed from scratch. eskimo run-time support
exploits multithreading, dynamic data-driven scheduling, and is very tolerant with
respect to standard POSIX programming framework. It will be released as open
source package.

To Rosalia

Oscuramente, credette di intuire che il passato è
la sostanza di cui è fatto il tempo; perciò questo
diviene subito passato.

Jorge Luis Borges, El Aleph, 1952.

‘You were quite entitled to make any suggestion or protest at the appropriate
time, you known . . . the plans have been available in the local planning office
for the last nine months.’
‘Oh yes, well as soon as I heard I went straight round to see them, yesterday
afternoon. You hadn’t exactly gone out of your way to call attention to them,
had you? I mean like actually telling anybody or anything.’
‘But the plans were on display . . . ’
‘On display? I eventually had to go down to the cellar to find them.’
‘That’s the display department.’
‘With a torch.’
‘Ah, well the lights had probably gone.’
‘So had the stairs.’
‘But look, you found the notice, didn’t you?’
‘Yes, I did. It was on display in the bottom of a locked filing cabinet stuck in
a disused lavatory with a sign on the door saying Beware of the Leopard.’

Douglas Adams, The Hitchhiker’s Guide to the Galaxy, 1979.

Acknowledgments

A huge word of gratitude is owed to my supervisors Marco Vanneschi and Marco
Danelutto. Both of them supported me far beyond I have expected, and actually
they was the deus ex machina of my scientific experience. I hope to acquire their
competence, and in particular their capacity to discern the real core of problems by
throwing away in real time all misleading details.

I also took full advantage from my participation to several projects, which offered
me the opportunity of meeting and discussing with many people. In particular I
would remember Susanna Pelagatti, Sergei Gorlatch and Christian Lengauer.

I would like to acknowledge many of the persons I met in these years. My house-
mate Valentina Von Vivaldi who stayed awake up to improbable hours of the night
trying to improve my English (almost uselessly). My room-mates at the department
Nadia and Valentina who kindly tolerated my loudly arguing against the monitor
while using the debugging tools (gdb, screwdriver, hammer, . . .). Stefano from the
Aguaraja kayak club; he taught me the eskimo technique and the importance of
being self-confident (it may happen to be useful when you are sit upside-down in
the middle of a creek, and sometimes also in research).

I also deserve my gratitude to the many people who shared with me the work,
the spare time and the aperitifs. Amongst them Andrea, with whom I have many
discussion about computer science, life, universe and anything (proudly, we hardly
agree on anything). Emilio and Francesco who are able to drink more aperitfs than
me (not an easy task).

Non posso dimenticare di ringraziare la mia famiglia: babbo Silvano e mamma
Laura che non hanno ancora ben capito – non per loro colpa – che lavoro io faccia
di preciso; mio fratello Piero, che oltre ad essere diventato un brillante informatico,
ha assolto anche ai miei doveri familiari. Non so come, ma siete riusciti a lasciarmi
vivere la mia vita pur essendomi sempre vicini.

Infine un pensiero per Rosalia. La sua naturale empatia ha reso il lavoro meno
pesante; la sua spensieratezza la vita più felice. Un pensiero per i nostri viaggi in
moto con il caldo e con il freddo, per il blu del mare ed il rosso del tramonto di San
Vito . . . un pensiero per tutto quello che ancora deve venire.

Contents

1 Introduction 1
1.1 Contributes and motivations of the thesis 2
1.2 Technical background . 4

1.2.1 Parallel architectures: programming model 8
1.2.2 High-level parallel programming 10

1.3 A deeper look at framework and motivations 15
1.3.1 eskimo motivations . 16
1.3.2 eskimo features . 17

1.4 Plan of the thesis . 18

2 Structured parallel programming 23
2.1 Our skeletons (in the closet) . 28
2.2 The Meta optimization tool . 33

2.2.1 Skeletons and transformations 33
2.2.2 The transformation tool . 38
2.2.3 Tool architecture and implementation 43
2.2.4 A case study: design by transformation 45

2.3 Exploiting efficient skeletons in Java 54
2.3.1 Lithium skeletons . 55
2.3.2 Skeleton optimizations . 59
2.3.3 Lithium API . 60
2.3.4 Lithium implementation . 63
2.3.5 Experiments . 64

2.4 The ASSIST programming environment 73
2.4.1 Motivations and main goals 73
2.4.2 Features of ASSIST . 75
2.4.3 Structure of ASSIST programs 76
2.4.4 Parallel module . 77

3 DSM: the state of the art 81
3.1 Basic concepts . 81

3.1.1 Cache coherence . 83
3.1.2 Memory consistency . 83

3.1.3 Characterizing DSMs . 84

3.2 Implementation level . 85

3.2.1 Hardware . 86

3.2.2 Software . 86

3.2.3 Hybrid . 87

3.3 Memory consistency models . 88

3.3.1 Sequential consistency . 89

3.3.2 Relaxed consistency models 91

3.3.3 Multi-protocol consistency . 104

3.4 Data replication . 105

3.5 Software implementation issues . 108

3.6 Athapascan . 110

4 eskimo: design principles 111

4.1 eskimo: A new skeletal language . 114

4.1.1 Exploiting parallelism in eskimo 116

4.1.2 Concurrency and flows of control 117

4.1.3 Sharing memory among flows of control 119

4.1.4 Reading and Writing Shared Variables 121

4.2 Skeletons and their expected pay-back 122

4.3 Related work and discussion . 124

5 eskimo: language usage 127

5.1 eskimo computation model . 128

5.2 eskimo language . 130

5.2.1 Writing and running eskimo programs 131

5.2.2 Types and variables . 133

5.2.3 Exploiting parallelism . 139

5.3 A running example . 145

6 eskimo: implementation 149

6.1 Abstracting the architecture . 150

6.1.1 A multithreaded support . 152

6.1.2 eskimo Shared Virtual Memory 157

6.2 Shared Data Types . 162

7 eskimo: experiments 167

7.1 Building and visiting a tree . 168

7.2 N-body Barnes-Hut algorithm . 170

7.2.1 Barnes-Hut experiments . 176

8 Discussion and concluding remarks 181
8.1 Assessments . 182
8.2 Discussion . 182
8.3 Future works . 185
8.4 The ASSIST perspective . 186

Bibliography 189

List of Figures

1.1 Fraction of transistors on microprocessor chip devoted to caches. . . . 7
1.2 Typical parallel machine schemes. 9

2.1 Three-tier applications: two correct skeleton calling schemes. 34
2.2 The parse tree, the data flow graph and the dependence tree of poly-

nomial evaluation. Skel-BSP skeletons are in serif font. Special nodes
are in slanted serif font. Sequential functions are in italic font. 39

2.3 Replicating shared trees. Each triangle stands for a tree representing
a TL expression. 41

2.4 Internal representation of rule map fusion, conditions of its applica-
bility and performance of the two sides of the rule. 42

2.5 Global structure of the Meta transformation system. 44
2.6 Transformation of the MSS program using the Meta tool. Skel-BSP

skeletons are in serif font. Special nodes are in slanted serif font.
Sequential functions are in italic font. 46

2.7 Two-phase BSP parallel prefix (TPscanL) using + as global operation. 49
2.8 a) mss c and b) mss e: Comparing predicted performance (solid

lines) with experimental performance (dotted lines). Each experiment
is performed on several array lengths (x-axis). Four different cluster
configurations are experimental (2,4,8,16 processors). 52

2.9 Experimental performance of mss c and mss e programs on several
cluster configurations and several array lengths. 53

2.10 SAR-ARA rule: Predicted and experimental behavior (mss e is faster
than mss c when SAR-ARA is advantageous). 53

2.11 Lithium operational semantic. x, y ∈ Value; σ, τ ∈ Value∗; �, �i, . . . ∈
Label = Strings ∪ {⊥}; O : Label × Value → Label. 56

2.12 Stream label usage examples. 56
2.13 Sample Lithium code: parallel application exploiting task farm paral-

lelism. 61
2.14 Lithium architecture. 62
2.15 Mandelbrot application: ideal vs. measured completion time. 65
2.16 Mandelbrot application: ideal vs. measured speedup. 65
2.17 “Synthetic” task parallel application: Normal vs. non normal form

completion times. 66

2.18 “Synthetic” task+data parallel application: Normal vs. non normal
form completion times. 66

2.19 Effect of grain on efficiency. 67

2.20 Medical image segmentation application: screen snapshot. 68

2.21 Results with the medical image segmentation application. 69

2.22 Efficiency of medical image segmentation application (The efficiency
is figured out with respect to the sequential execution time computed
on the slower processors (PE ∈ [1, 10])). 70

2.23 Load balancing on heterogeneous processing elements (100 tasks). . . 70

2.24 Medical image processing application skeleton. 71

2.25 An ASSIST graph. 77

2.26 Graphical scheme of a Parallel Module. 78

3.1 Shared address space abstraction:two-way request-response protocol. . 82

3.2 DSM implementation level taxonomy. 85

3.3 Abstraction of the memory subsystem under the sequential consis-
tency model . 89

3.4 Relaxation relations among various system specification. 91

3.5 Orders imposed in a program by various consistency models. An
arrow show a mandatory order, arrows’ transitive closure show the
partial order among the instructions. 93

3.6 Performance of straightforward implementation of memory consis-
tency models versus speculative out-of-order implementation. (Per-
formance figures taken from Adve et al. [4]) 96

3.7 Eager Release Consistency (ERC) and Lazy Release Consistency (LRC).
ERC propagate invalidations at release point, while LRC coalesces in-
validation with lock grant at acquire point. 100

3.8 An example highlighting differences between ERC and LRC program-
ming models. 100

3.9 DSM algorithms taxonomy. 105

4.1 An eskimo program execution intuitive view. a) Relationship among
e-calls, e-joins and e-flows (grey boxes). b) A possible execution of
the program. 118

4.2 An eskimo program resulting in different mapping and scheduling in
different runs. 120

5.1 An eskimo computation described by the e-flow graph. Dashed ar-
rows highlight e-calls/e-joins and solid arrows highlight standard C
function calls. 129

5.2 Writing, configuring, compiling and running an eskimo program. . . . 132

5.3 Reading and writing shared variables. 140

5.4 A simple eskimo program. 142

5.5 The main of build and visit eskimo program. 147
5.6 The tree seq build e-function (part of build and visit eskimo pro-

gram). 147
5.7 The tree visit e-function (part of build and visit eskimo program). 148
5.8 The tree par build e-function (part of build and visit eskimo pro-

gram). 148

6.1 a) Virtual architecture in the case of 5 PEs. b) PE internal organization.150
6.2 etier-0 communications performance for a producer-consumer pattern

with respect to MPI communications on the backus cluster (2 Pen-
tiumII@266MHz, switched Ethernet 100MBit/sec). eskimo mimes the
protocol shown in figure 3.1 for the write operation. MPI version uses
MPI Sync/MPI Recv primitives. 152

6.3 etier-0 communications performance for two different multithreaded
organization schemes on the backus cluster (2 PentiumII@266MHz,
switched Ethernet 100MBit/sec). 153

6.4 SkIE farm: multithreading and prefetching implementation. a) Vari-
ance of tasks load versus service time. b) Tasks load versus service
time [36]. 154

6.5 Shared address implementation (eref t): CRC part (in gray) is op-
tional and normally used only during debugging. 157

6.6 Experimenting address translation overhead. 159
6.7 PowerPC Altivec’s Vector Unit. Taken from [130]. 161
6.8 A spread tree stored in two different ways: heap (top) and heap+fist-

fit (bottom). Dashed box are heap segments, solid box are first-fit
segments. Dark grey boxes are completely fulfilled. Light grey boxes
are incomplete. 162

7.1 Overhead in tree building versus #PEs on backus. Balanced binary
tree (depth 22, 4M nodes, 48MBytes). 169

7.2 Overhead in tree visiting versus #PEs on backus. Balanced binary
tree (depth 22, 4M nodes, 48MBytes). 169

7.3 Tree visiting time versus #PEs on backus. Balanced binary tree
(depth 16, 64k nodes, 768 KBytes, 37 µsecs of computational load
per node). 171

7.4 Tree visiting speedup on backus. Balanced binary tree (depth 16,
64k nodes, 768 KBytes, 37 µsecs of computational load per node). . . 171

7.5 Tree visit time versus #PEs on backus. Balanced binary tree (depth
20, 1M nodes, 12MBytes, 37 µsecs of computational load per node). . 172

7.6 Tree visiting speedup on backus. Balanced binary tree (depth 20,
1M nodes, 12MBytes, 37 µsecs of computational load per node). . . . 172

7.7 Tree visit time versus computational load on backus. Balanced bi-
nary tree (depth 20, 1M nodes, 12MBytes). 173

7.8 Tree visiting overhead on a SMP cluster (2-way 550MHz PIII). 173
7.9 Tree visiting time, speedup and efficiency on a SMP cluster (2-way

550MHz PIII). Balanced binary tree (depth 18, 256k nodes, 3MBytes).174
7.10 A n-body system step in two phases (force calculation phase, in two

sub-phases: bottom-up and top-down). 174
7.11 eskimo pesudo-code of the bottom-up phase, see also Figure 7.10 . . . 175
7.12 Cross dataset for the Barnes-Hut application and its hierarchical rep-

resentation. Positive numbers represents leafs while negative numbers
represents the number of leafs dominated by the node. 179

7.13 Ellipse dataset for the Barnes-Hut application and its hierarchical rep-
resentation. Positive numbers represents leafs while negative numbers
represents the number of leafs dominated by the node. 180

List of Tables

1.1 Moore’s Law . 5

1.2 Semiconductor Industry Association (SIA) density forecast for logic
(processor + cache) and DRAM [152]. Logic Cost-Perf. includes a
little L1 cache, Logic High-Perf. includes large L1+L2+L3 caches. . . 5

1.3 Intel Pentium III and AMD Athlon: A lot of instruction level paral-
lelism and large caches. 6

2.1 Concept recap: Owner computes rule. 25

2.2 Building up the dependence tree. 40

2.3 Some of the transformations proposed by Meta for the MSS exam-
ple. The double-arrow path denotes the derivation path followed in
Figure 2.6. 47

3.1 Memory models supported by various processors and systems. 94

3.2 Concepts recap: Dynamic scheduling and speculative execution. . . . 95

3.3 Concepts recap: Manager, owner, copy set, and migration mechanism 106

5.1 Type constructors for spread trees, spread arrays and shared regions. 134

5.2 Static and dynamic initializer for spread trees, spread arrays and
shared regions. T 〈τ, k〉, A〈τ, k〉, R〈τ〉 are type variables in abstract
syntax. 135

5.3 Primitives for spread trees SDTs. 136

5.4 e-call and e-join primitives. In addition the primitive to initialize
eskimo handlers. 141

5.5 e-foreach, e-joinall, e-callit primitives. In addition the primitive to
initialize eskimo iterators. 144

7.1 Barnes-Hut performance (secs) on several ellipse and cross datasets
for Barnes-Hut application (sequential, MPI and eskimo) on a SMP
cluster (2-way 550MHz PIII). 178

7.2 Barnes-Hut speedup on several ellipse and cross datasets for Barnes-
Hut application (sequential, MPI and eskimo) on a SMP cluster (2-
way 550MHz PIII). 178

7.3 Barnes-Hut efficiency on several ellipse and cross datasets for Barnes-
Hut application (sequential, MPI and eskimo) on a SMP cluster (2-
way 550MHz PIII). 178

Chapter 1

Introduction

Information Technology advances in supercomputing, simulation, and networks are
creating a new window into the natural world, making high end computational
experimentation a vital tool for path-breaking scientific discovery.

Supercomputing is one of the foremost technologies in computing domain. We
can see the imprint of this technology in many vital areas of scientific concern,
such as forecasting global climate changes, monitoring nuclear reactors, enhancing
automotive efficiency, modeling the evolution of galaxies, forecasting the flow of air
over surface of vehicles and the damage due to impacts, and so forth.

In these areas, computational modeling is used to simulate physical phenomena
that are impossible or very costly to observe through empirical means. Compu-
tational modeling allows in-depth analyses to be performed cheaply on hypothet-
ical designs through computer simulation. In the coming years, computer simula-
tion, spurred by technology changes already underway, can and should play an even
greater rôle in providing solutions to our most challenging problems. However, a
direct correspondence can be drawn between levels of computational performance
and the problems that can be studied through simulation: each science and en-
gineering application has a proper threshold of computing capacity (and cost) at
which it becomes viable. And each era has its own Grand Challenge problems, i.e.
problems that require a computing power threshold that falls far beyond the current
availability.

Commercial and industrial computing has also come to rely on high performance
architectures for its high end. Although for industrial needs the scale of computa-
tional performance is typically not as large as in scientific computing, they require
a very aggressive development and deployment time for both hardware solutions
and applications. In the past decade our group has been particularly active in
transferring results from the research environment to the application marketplace.
The pioneering work on P3L parallel language [27], its industrial deployment SkIE
[29, 167], and lately on the ASSIST [169, 13, 12, 11] programming environment indeed
take care of critical industrial requirements such as: rapid prototyping, performance
portability, software reuse, integration and interoperability of parallel applications

2 CHAPTER 1. INTRODUCTION

with the already developed standard tools.
The widespread diffusion of high performance computing depends also on its abil-

ity to satisfy the needs of industrial users, whose main goal is to exploit potentiality
of parallel machines, in a more modest-scale with respect to scientific computing,
but with a more aggressive requirement in time to development and deployment
both for hardware and applications.

Advancements in several technologies over the past few years have had a major
impact on the computing arena. Today’s application professionals have far more
computing power available to them, thanks to the fast-paced growth in hardware
technology both in “raw technology performance” (e.g. clock cycle, transistor den-
sity) and in “architectural performance” (e.g. pipelining). In spite of this, the
demand for performance, propelled by both challenging scientific and industrial
problems, is still increasing. Even assuming a very optimistic pace of growth in pro-
cessor performance, very large parallel architectures are needed to address current
challenging scientific/industrial problems in a reasonable time-gap. The importance
of parallelism meeting the application demand for ever greater performance can
be brought into sharper focus by looking more closely at the advancements in the
underlying technology and architecture: growth of the instruction level parallelism
and processor level parallelism both in commodity and high-end computing market-
places.

Moreover, the machine peak power is not the only issue. Lots of efforts has been
made in the software side by the research community in order to tame parallel ma-
chine peak power and turn it into application performance. Our direct experience
in the design of parallel compilers and software environments enforces this trend.
Efficiently supporting challenging social/industrial applications, which algorithmic
solutions are often irregular and dynamic (notably massive data mining, computa-
tional chemistry), requires both very high computational power and high flexibility
of the programming model. In turn, this requires a powerful but clean computational
model at the hardware/software boundary.

1.1 Contributes and motivations of the thesis

This work originates from the wish to simplify the coding of irregular applications
within our group programming environments. In these environments parallelism is
exploited by composing “skeletons”, i.e. parallelism exploitation patterns. From
language viewpoint, a skeleton is a higher-order function that behaves as a pure
function (no side-effects). Several real world, complex applications have been devel-
oped using these environments.

The skeletal approach has been proved to be effective, at least if application
algorithms can be somehow expressed in terms of skeleton composition. However,
in some cases our skeletal frameworks fail in providing the application programmer
with convincing solutions both from ease of programming and performance view-

1.1. CONTRIBUTES AND MOTIVATIONS OF THE THESIS 3

points. Major lacks of expressivity have emerged in dynamic/irregular algorithms
and applications that oddly access to large data sets. The first part of the thesis
moves along this path (Section 2), and reports all attempts we made to improve the
effectiveness of environments’ compiler, static optimizer, and run-time support.

Stimulated by application requirements we eventually changed also the program-
ming model, thus the role of skeletons in the language. In order to easily manage
large data sets we designed a new environment (i.e. ASSIST) that explicitly admit
a shared state among processing elements.

These research results as has been already presented in published papers. Some
of those originated from the design, development and experimentation of software
packages. In particular, I participated to the design or development of the following
programming environments:

• SkIE (1998) programming environment and its compiler [7];

• FAN (2000), a functional skeletal parallel programming framework [18];

• Lithium (2001), a pure Java parallel programming environment [15, 16, 17];

• ASSIST (2002) programming environment [11, 12, 13];

also, I designed and developed the following programming platforms:

• Meta (1999) optimization tool and for skeleton-based languages [8, 9];

• Skel-BSP (2000), a skeletal language and its run-time on top of the Padeborn
University BSP-library [9];

• eskimo (2002) language and its run-time support [10] (Chapters 4, 5 and 6).

All software packages except SkIE are available as open source.

The main goal of the thesis is to take a step further with respect to the achieved
results. In particular we aim to defeat expressivity lacks emerged in skeletal lan-
guages approaching irregular problems and dealing with dynamic data structures.
The basic idea consists in providing the application designer with a shared address
space and a skeletal framework that enables and enforces the co-design of (shared)
dynamic data structures and (parallel) algorithms. We shall go further in the dis-
cussion in Section 1.3.

At this aim, in the second part of the thesis (Chapters 4, 5 and 6) a new skeletal
programming environment based on shared address programming is proposed (i.e.
eskimo). The language is as an extension of a “host” language (i.e. the C language).
eskimo is conceived to be a framework to experiment how to support dynamic data

4 CHAPTER 1. INTRODUCTION

structures in a skeletal framework. Its run-time support is based on a software
distributed shared memory, and allows the programmer to freely access data items
in the shared memory. eskimo is designed to match the hooks offered by ASSIST, thus
to be experimented within. Notably eskimo is not yet another DSM, rather it relies
on DSM already known technologies to experiment the co-design of dynamic data
structures and parallel programming patterns enforcing locality in the distributed
memory access.

eskimo has been designed and developed from scratch, and actually is a pretty
young product. eskimo run-time support exploits multithreading, dynamic data-
driven scheduling, and is very tolerant with respect to standard POSIX program-
ming framework (notably, it does not use signal-handlers). It will be released as
open source package.

In the next section we shall recap some technical background of the work. In
Section 1.3 we shall return back on thesis contributes and motivations in the light
of introduced concepts.

1.2 Technical background

Dealing with sequential machines, we generally take programs for granted: the field
is mature, and there is a large base of programs that can be viewed as fixed. We
optimize the machine design against the requirements of these programs. Although
we recognize that programmers might further optimize their code, we usually evalu-
ate new designs without anticipating such software changes. Compilers may evolve
along with architecture, but the source program is still treated as fixed. In par-
allel architecture, there is a much stronger and more dynamic interaction between
the evolution of machine designs and that of parallel software. Since parallel com-
puting is all about performance, programming tends to be oriented towards taking
advantage of what machines provide.

In the next section we shall briefly analyze trends in parallel architectures and
their building blocks, on this basis we shall choose a parallel architecture class,
and we shall highlight what the peculiarities of machines in the class are. Along
the discussion we shall put aside a number of findings, that eventually we shall
elaborate to distill our wish list on the programming model, and on what are the
issues it should cope with.

VLSI evolution. The VLSI technology trends may help us to understand what
architectural directions may be adopted. Historically, Dynamic RAM (DRAM) has
been recognized as the technology drivers for the whole VLSI industry. Prior to
the early 1990s, logic (e.g. processor) technology was developed at slower pace than
DRAM technology. During the last few years, the development rate of new technolo-

1.2. TECHNICAL BACKGROUND 5

Moore’s Law: A historical observation by Intel executive, Gordon Moore, that the market
demand (and semiconductor industry response) for functionality per chip (bits, transistors)
doubles every 1.5 to 2 years. He also observed that MPU performance [clock frequency (MHz)
x instructions per clock = MIPS] also doubles every 1.5 to 2 years. Although viewed by some
as a “self-fulfilling” prophecy, “Moore’s Law” has been a consistent macro trend, and a key
indicator of successful leading-edge semiconductor products and companies for the past 30
years.

Table 1.1: Moore’s Law

gies used to manufacture microprocessors has accelerated, closing the technology gap
with DRAM. Currently, both DRAMs and microprocessors are increasing in func-
tions per chip more than a factor of 30 per decade, accordingly with Moore’s Law
(see Table 1.1). As shown in Table 1.2, the Semiconductor Industry Association
(SIA) foresees the same trend also for the next decade [152].

However, logic and DRAM technology, both under strong market pressure, have
followed different evolutions: DRAM technology has moved towards the reduction
of costs, the increase of storage room and the productivity of assembly lines, which
are dominated by cell density and chip size. Microprocessor technology has also
moved towards the reduction of costs, but with the additional target of maximizing
the performance, which is dominated by the length of the transistor gate and by the
number of interconnected layers.

The large availability of resources have allowed an ever increasing number of
parallel functional units in microprocessor design leading an increasing number of
instruction per clock cycle. This “architectural” improvement coupled with clock
frequency improvement is leading microprocessors performance (ops/second) to in-
crease by more than a factor of 15–30 per decade1. In the same time-gap, DRAM
cycle times is improving much more slowly, roughly a factor of two per decade. Cur-
rently, hundreds to thousands clock cycles are needed to service an off-chip cache

1The factor is 100–200 if considered on the basis of floating point operations.

Year 1999 2001 2003 2005 2008 2011 2014

Logic Gate Length (nm) 180 150 120 100 45 30 20
Logic Cost-Perf. (Mtrans/chip) 24 48 95 190 539 1523 4308
Logic High-Perf. (Mtrans/chip) 110 220 441 882 2494 7053 19949

DRAM (Gbits/chip) 1.07 2.15 4.29 8.59 24.3 68.7 194

Table 1.2: Semiconductor Industry Association (SIA) density forecast for logic (pro-
cessor + cache) and DRAM [152]. Logic Cost-Perf. includes a little L1 cache, Logic
High-Perf. includes large L1+L2+L3 caches.

6 CHAPTER 1. INTRODUCTION

Pentium III (600MHz) Athlon (800MHz)

No. of transistor (L1 cache only) ∼ 9.5M ∼ 21M

Operation per clock cycle 5 9
Integer+Floating pipelines 2+1 3+3

L1 cache size 32KB 128KB
L2 cache size (up to) 2MB 8MB

cache coherence support MESI MOESI/MESI
multiprocessing support shared bus point-to-point

Table 1.3: Intel Pentium III and AMD Athlon: A lot of instruction level parallelism
and large caches.

miss in an uniprocessor box; such gap between processor speed and memory speed
is likely to continue to widen in the coming years.

Together with parallelism, the other way to translate such large volume of tran-
sistor into performance is locality. Caches, through locality, help to maintain data
close to processor, thus reducing the frequency of accesses at deeper levels of the
storage hierarchy. Indeed, as we can see in Figure 1.1, since caches migrated on chip
in the mid-1980s, the fraction of the transistor on commercial processor that are
devoted to caches has risen steadily. As a matter of fact, today’s microprocessors
are mostly memory.

Let us make concrete our arguments with a couple of examples: The Intel Pen-
tium III and the AMD Athlon. These are last generation commodity processors
with a good cost-performance trade-off (not high-performance), Table 1.3 briefly
describes their features [2]:

It is worth pointing out that both processors, in order to issue up to 5–9 in-
struction per clock cycle, internally exploit at least three different paradigms of
parallelism: pipeline, functional units replication and specialization. Both proces-
sors support also up to 2–8 MBytes of L2 cache. In addition, both processors already
contain hooks (such as snoopy buses) to work in a cache-coherent shared memory
multiprocessor framework.

Let us put aside a first finding: Modern microprocessors are complex and exploit
substantial instruction level parallelism. Large caches are used to provide a great
deal of local storage in order to satisfy bandwidth requirement of processor func-
tional units with a reasonable latency. Moreover, in order to stay on the processor
performance growth trend, the increase in the ratio of memory access time to pro-
cessor cycle time will require that the processors employ better latency avoidance
and latency tolerance techniques. In addition, the increase in processor instruction
rates, due to the combination of cycle time and parallelism, will demand that the
bandwidth delivered by the memory increases.

1.2. TECHNICAL BACKGROUND 7

AMD K6

Year

T
ra

ns
is

to
rs

 in
 c

ac
he

 (
%

)

1990 1995 2000

Pentium
M 68060

Alpha 21064

Alpha 21164

PowerPC 601

PowerPC 604e

M 68040

M 68030

Pentium III Xeon
PentiumPro(512KB)

20%

40%

60%

80%

100%
AMD Athlon (8MB)

Figure 1.1: Fraction of transistors on microprocessor chip devoted to caches.

Parallel architectures. Current trends would suggest that, simply riding the
commodity growth curve, we could look towards achieving petaflops-scale peak per-
formance in a decade, or even earlier if the scale of parallelism is increased. It is less
clear what level of communication performance these machines will provide.

As discussed, modern commodity microprocessors already includes hooks for
implementing multiprocessor systems. Nevertheless, a large multiprocessor system
needs a pretty efficient memory sub-system to feed many processors. Currently, the
design and the implementation of memory sub-system is the main cost of large mul-
tiprocessors. As a matter of fact, the better price/performance trade-off is reached in
low-scale multiprocessors. They may be in turn put together using high-speed net-
works, in facts turning every LAN into a potential parallel machine. These machines
(namely Beowulf class clusters or simply clusters) are gaining more and more inter-
est as low-cost parallel architectures, and actually more positions in the TOP500
[164] parallel architecture list. Currently ASCI clusters and SMP clusters occupy
112 positions of the list. Although these parallel machines cannot be classified as
low-cost Beowulf clusters – mainly due to the adoption of high-end interconnection
networks and to the number of nodes used – the architectural trend is clear [70].

In summary, microprocessors in a Beowulf machine may exchange data one each
other using different means: the shared memory (within the single node) and the
network (among the nodes). In general, these means support different data ex-
change protocols in native manner, i.e. a shared address space and message passing.
Nevertheless, as we shall see in the next section, we can simulate one programming
model using the other in order to supply the programmer with an uniform program-
ming model. Therefore, let us assume a Beowulf machine as a big multiprocessor
exploiting an extended (multi-level and distributed) memory hierarchy.

The two key factors in VLSI evolution discussed in previous section (i.e. the
increase of single chip performance as well as on-chip storage capacity), and in
parallel machines evolution (Beowulf) will cause the storage hierarchy to continue

8 CHAPTER 1. INTRODUCTION

becoming deeper and more complex.

The trend towards deeper hierarchies presents a problem for parallel architectures
since communication, by its very nature, involves crossing out the lowest level of the
memory hierarchy on the node, leading a growth of the actual latency on operations
that crosses the processor chip boundary. The problem is further exacerbated in
Beowulf class machines that in general exhibit a heavily unbalanced communication
bandwidth/computing power ratio.

Let us put aside our second finding: memory systems in parallel machines are
constructed as a hierarchy of increasingly larger and slower memories: on an av-
erage, a large hierarchical memory is fast, as long as as the references exhibit good
locality.

1.2.1 Parallel architectures: programming model

Message passing and shared address space represent two clearly distinct program-
ming models, each of them providing a well-defined paradigm for sharing, communi-
cation and synchronization. Historically, parallel architectures have been designed
in such a way to naturally support a specific programming model.

A shared memory system makes a global physical memory equally accessible to
all processors. These systems naturally offer a shared address space, i.e. a convenient
programming model enabling simple data sharing through a uniform mechanism of
reading and writing shared structures in the common memory (see Figure 1.2 a).
However, such systems typically suffer from increased contention and latency in
accessing common shared memory, which in general limits the scalability compared
to other memory organizations.

Multicomputers consist of multiple independent processing nodes with local
memory modules, connected by a general interconnection network. The scalable
nature of the distributed memory makes them scalable and very powerful in com-
puting peak power. The natural programming model is message passing, that is
widely considered exacting from programmer viewpoint because of the explicit data
distribution of data structures in the distributed memory (see Figure 1.2 b).

The evolution of the hardware and software has blurred the clear boundary
between the multiprocessor and multicomputer machine organizations. The conver-
gence has been driven by many factors. One is clearly that all of the approaches
have common requirements. They require a fast, low latency and robust intercon-
nect. They all benefit from hiding as much of the communication cost as possible:
the goal is often pursed by equipping commodity processors (reducing also devel-
opment cost and time) with specialized communication co-processors (e.g. smart
communication boards like Myrinet and SCI).

On the software side, the convergence of multiprocessor and multicomputer ma-
chine schemes is enforced by the possibility of simulating one programming model
using the other, and vice versa.

1.2. TECHNICAL BACKGROUND 9

$

P1

$

Pn

Interconnection network

MmM1

. . .

. . .

multiprocessor (dance−hall)
a) Centralized memory

PE1

Interconnection network

. . . PEn

P1

$M1

Pn

M1

Interconnection network

. . .

Mn
$

b) Multicomputer

c) Distributed memory
multiprocessor

Figure 1.2: Typical parallel machine schemes.

• Classical message passing operations (send/receive) may be supported on shared
memory machines through shared buffer storage. Send involves writing data
into the buffer, while receive involves reading the data from the shared buffer.
Flags into the buffer are used to enforce mutual exclusion (locks) and to indi-
cate a category of events such as message arrival.

• User processes on a message passing machine may construct a global address
space by carrying along pointers specifying the process and the local virtual
address in that process. A logical read is implemented by sending a request
to the process containing the object and receiving an answer. The read/write
simulation may be hidden from the user by carrying out library or compiler
generated code. As we will see later in Chapter 3, a shared virtual address
space can be established at the page level. Since only local pages are directly
accessible with such machines, pages instead of single words or cache lines
are actually moved/copied among processing elements, in fact coarsening the
granularity of messages.

The 1990s have exhibited the beginning of a convergence among these various
factions. Propelled by both economical and technical issues, shared memory and
multicomputer schemes have converged towards a common organization, represented
by a collection of complete computers, augmented by a communication co-processor
connecting each node to a scalable communication network. Focusing on the memory
organization, we call them distributed memory multiprocessors (see Figure 1.2 c).
Such systems, depending on co-processor functionality, may act as multiprocessor or

10 CHAPTER 1. INTRODUCTION

multicomputer, thus providing a shared address space or a message passing model
at the assembler level [65]. Such co-processor may also be implemented in software.
A software DSM may be used to provide a multicomputer with a shared address
space; therefore it may turn a Beowulf class cluster into a multiprocessor. Since
(Beowulf + software DSM) multiprocessors are both cheap and flexible, they are
quite good platform to experiment solutions at hardware/software boundary like
mapping, scheduling, caching strategies and memory consistency models.

Making the memory hierarchy efficient. As we shall see in Chapter 3, many
methods have been proposed to alleviate latency/bandwidth problems in multipro-
cessor architectures. Almost all approaches rely on the following findings:

1. reduce communication and synchronization cost as seen by the processor;

2. reduce serialization at shared resources, reduce communication volume;

3. reduce non-inherent communication via data locality;

Almost all approaches to face the first issue consist in hiding long latency memory
communications by overlapping them with computation or other communications.
Actually, there are many ways to implement, both in hardware and software, this ba-
sic idea: prefetching, multithreading, non-blocking transactions and so forth. Some
of these methods are currently supported in shipped multiprocessor and parallel
applications with various mileage. However, many of the latency tolerance tech-
niques increase the absolute amount of memory traffic by fetching more data than
are needed, also creating contention in the memory system [46].

Relaxed memory consistency models essentially face up the first and the second
issues by enabling the hiding of remote memory access latency and the reduction of
coherence-oriented handshakes. The research community has proposed a plethora
of relaxed memory consistency in the past decade, which are collected and discussed
in Section 3.

Third issue is probably the foremost from our viewpoint. Memory systems in
modern multiprocessor are constructed as a hierarchy of increasingly larger and
slower memories: on an average, a large hierarchical memory is fast, as long as as
the references exhibit good locality. This is particularly true in (Beowulf + soft-
ware DSM) machines, where at least one layer of virtual memory is implemented
through network transactions. At this end, software DSMs rely on relaxed memory
consistency in order to reduce communication frequency and volume.

1.2.2 High-level parallel programming

Although building parallel computers has become easier, programming parallel com-
puters can still be quite difficult. Most application programs are currently being
written at the low level of C or Fortran, combined with a communication library

1.2. TECHNICAL BACKGROUND 11

like MPI; moreover, they are often tuned towards one specific machine configuration.
Since parallel computers are typically replaced within five years, parallel programs
which live longer have to be re-tuned or redesigned. In addition, programming at
this low level of abstraction is cumbersome and error-prone.

In sequential programming, coding for a specific machine also prevailed three
decades ago. The software engineering solution to overcome it was to introduce
levels of abstraction, effectively yielding a tree of refinements, from the problem
specification to alternative target programs [137]. The derivation of a target program
then follows a path down this tree. The transition from one node to the next
can be described formally by a semantics-preserving program transformation or
refinement. Conceptually, porting a program to a different machine configuration
means backtracking to a previous node on the path and then following another path
to a different target program.

In the parallel setting, high-level programming constructs and a refinement
framework for them are necessary due to the inherent difficulties in maintaining
the portability of low-level parallelism [61]. In the 1990s, the “skeletons” research
community [59] has been working on high-level languages and methods for parallel
programming [27, 29, 17, 18, 45, 77, 98]. Skeletons are higher-order functions which
can be evaluated efficiently in parallel. They specify abstractly common patterns of
parallelism which can be used as program building blocks. Typical skeletons model
data and task parallel paradigms (see Chapter 2) as for example the pipeline, task
farm, reduction, scan and “sequential”. Sequential skeleton is a final skeleton em-
bodying sequential chunks of user code. Such code is guaranteed to be executed in a
sequential fashion. Sequential skeleton enables the reuse of already developed (and
tested) application source code and libraries.

In the past decade our research group has been active in experimenting new
technologies for high-level parallel programming. These are mainly targeted to sim-
plify programming by raising the level of abstraction; to enhance portability by
absolving the programmer of responsibility for detailed realization of the underlying
parallel paradigms; to improve performance by providing access to carefully opti-
mized implementations of the paradigms. These technologies have been used to
design programming environments and languages and to implement their compilers.
Skeletons have been present all along in programming environments, even if their
role has been permanently changing (see Section 2.1). Cole’s skeletons represent
parallelism exploitation patterns that can be used (instantiated) to model common
parallel applications. Later, different authors acknowledge that skeletons can be
used as constructs of an explicitly parallel programming language, actually as the
only way to express parallel computations in these languages [76, 27]. Recently, the
skeleton concept evolved, and became the coordination layer of structured parallel
programming environments [26, 29, 147, 169].

Current skeleton-based systems typically provide the user with a collection of
high-level skeletal constructs and with a compiler for translating skeleton programs
into low-level target code [27, 56, 138, 153]. Alternatively, high-level skeletal con-

12 CHAPTER 1. INTRODUCTION

structs are used to equip a sequential or already parallel language, in facts extending
it; in this case skeletons’ implementation code is collected in libraries [17, 72, 75, 120].
Typically, skeletons carry a large amount of information on program interaction
structure, which can be used by the compiler/run-time support to exploit efficient
code on different target machines. Compiler approaches mostly rely on static opti-
mization of the generated code, while libraries follow a more dynamical way.

Static versus dynamic run-time support. It is an old story, and clearly we
have nothing to add up to the general question. Let us restrict the context to
skeleton-based languages.

Early approaches to skeletons implementation has followed the static way. Such
approaches were based on the concept of implementation template, i.e. a parametric
processes network. Given a program, i.e. a particular nesting of skeletons, the
compiler turns it into a processes network. Together with processes network a
mapping plan is generated. At the run time a program loader places processes
on parallel machine nodes according to the mapping plan. Each process of the
network has a fixed role, that is established by the compiler.

The basic idea under the approach is that the compiler may “compositionally”
build the final processes network by associating a processes network (taken from a
library) to each skeleton. In case a skeleton is nested into another the implementa-
tion template of the inner skeleton is somehow merged with the outer one. During
the merge process several optimizations on the process network may be performed,
basically by merging some of adjacent processes in a single one. Moreover, the pro-
cesses network may be targeted to a given physical network topology. Eventually,
a (flat) processes network is generated. This network is still parametric and may
be instanced with typical architectural constants as for example computation and
communication grain.

However, high performance is only reached if a composition of skeletons is found
which matches both the application and the target machine requirements. One
possible way to address the problem is to integrate skeletons with refinement frame-
work. The basic idea follows the mainstream of code optimization for sequential
languages: the skeleton-based program is optimized by means of source-to-source
semantic-preserving refinements targeted to obtain a “better” source code. Further-
more, due to the fact that the skeletons have a clear functional and parallel seman-
tics, different rewriting techniques have been developed that allow skeleton programs
to be transformed/rewritten into equivalent ones achieving different performances
when implemented on the target architecture [38, 94]. One further concept, not as
crucial in sequential programming, has to be added: the program refinements must
be adorned with a cost model, since “efficiency” is the main – often the single – rea-
son for using parallelism. A cost model actually formalizes the comparison between
two (semantically-equivalent) source codes. In the past decade this “efficiency” was
primarily interpreted as “speedup”. Nowadays – particularly in a distributed par-

1.2. TECHNICAL BACKGROUND 13

allelism scenario – it assumes a larger meaning involving efficient use memory room
and network bandwidth, etc.

Several cost models have been developed [158, 159, 14, 172] and have confirmed
that porting a parallel program from one machine configuration to another may
dramatically alter its performance [94]. Therefore, program design tools must apply
transformations based on performance predictions made in a cost model.

At this end we designed and developed the Meta tool, i.e. an optimization tool
for skeleton-based programs. Given a skeleton-based language and a set of semantic-
preserving transformation rules, the tool locates applicable transformations and pro-
vides performance estimates, thereby helping the programmer in navigating through
the program refinement space. Meta is described is Section 2.2. It has been used
as optimization engine of several skeleton-based programming frameworks [18, 8, 9].
Meta has proved to be an effective optimization tool, provided that a rich set of
rewriting rules exists and is equipped with a careful cost model. The cost model is
crucial in order to make correct decision both during the compiling and optimization
process.

Unfortunately, these assumptions have been proved hardly satisfied in practice.
It is worth highlighting two major problems in that:

• It is pretty difficult to make assumptions about the computational cost of
sequential parts of the application (i.e. parts within sequential skeletons).
They may call functions that are not available in the source form; and even in
case all sequential source code is available, its correct cost profiling is possible
in limited cases only, i.e. cases in which sequential code behaves in a very
predictable manner and its cost does not (heavily) depend on input data.

• Defining a compositional cost model for a generic target platform is almost
impossible. One possible way to avoid the problem consists in constraining
how the target platform behaves in respect of synchronizations. For example,
fairly good predictions can be figured out assuming a BSP model [165] (see
also Section 2.2.4 [9, 172]). However such constraints prevent the both run-
time support designer and application programmer to exploit all performance
capabilities of current technology.

Indeed, recently more dynamical ways to support skeletons have been explored.
These are aimed at defeating the disadvantages relative to the need of a cost model
both in compiling and optimizing a skeleton program. It has been observed that
skeletons naturally impose a data flow relationship among the computations per-
formed by the different processes in the process graph implementing the skeleton
program on the target machine. Therefore it is possible to derive a graph of macro
data flow instructions from the skeleton code in such a way that:

• each sequential portion of code in the skeleton program denotes a macro data
flow instruction;

14 CHAPTER 1. INTRODUCTION

• and the parameter passing mechanism used in the skeleton program defines
the arcs between such instructions.

That graph can be used to execute the parallel application by making each processing
element in the target machine to behave as a data flow interpreter of the instructions
of the graph [70]. The mechanism exploits some ideas from previous work on macro
data flow developed in rather different contexts [114, 135].

The macro data flow implementation technique has been adopted in the run-time
support of the Lithium parallel programming environment (described in Section 2.3
[17]) and in the SKIPPER project [153]. Macro data flow has demonstrated to
be effective in design of the run-time support. The universality of macro data
flow interpreter greatly simplifies the mapping and scheduling problems in respect
of static approach. In addition, we demonstrated that some of the optimization
techniques developed for the static case are still applicable and useful in the new
approach (as for example the “normal form reduction” [15]). Overall, the macro
data flow run-time support has demonstrated to overcome many of the problems of
fully static skeletons’ run-time support (introducing a limited overhead).

Lack of expressivity in classical skeleton approaches. In spite of the good
results achieved in the run-time support design, the classical skeletal approach still
has a major problem. Many parallel applications are not obviously expressible as in-
stances of skeletons, whether existing or imagined. Some have phases which require
the use of less structured interaction primitives. Some have conceptually layered
parallelism, in which skeletal behavior at one layer controls the invocation of op-
erations involving such ad-hoc parallelism within. Recently, Cole has written that
“It is clearly unrealistic to assume that skeletons can provide all the parallelism we
need” [60].

We believe the point a bit subtler. Programming with classical skeletons has
strong affinities with functional programming. Really, we are convinced that some
problems have not a straightforward solution in terms of skeleton nesting. The
problem is further exacerbated by the fact we pretend to put ready-made code
inside the sequential skeleton: C/C++ code relying on side-effects included. As a
matter of fact, the problem has been emerged while developing several real world,
complex applications using our group skeletal framework (SkIE [29]), especially in the
parallel data-mining area [35, 24, 63]. During the development of such applications,
the skeletal approach has been proved to be effective, at least whether application
algorithms can be somehow expressed in terms of skeleton composition. However,
in some cases we have been forced to adopt “bizarre” solutions to overcome the
following problems:

• The parallel paradigm is not directly expressible as skeletons composition.

• The parallel paradigm is expressible as skeletons composition, but is not effi-
cient. These cases regard mainly the irregular access to big data structures.

1.3. A DEEPER LOOK AT FRAMEWORK AND MOTIVATIONS 15

• The application requires a pro-active/reactive behavior in respect of the op-
erating system or devices. Sequential parts of the application require a strong
interaction with operating system mechanisms (threads management, GUI and
devices management, etc.).

We pragmatically decided to change strategy. We moved to a different (probably
lazier) interpretation of “what a skeleton is”. Actually, such change of perspective
has been involving the whole skeleton community. A complete discussion on this
point can be found in Section 2.1 and Chapter 4, and we report here only the ending
findings.

Structured parallel programming should build bridges to the programming stan-
dards of the day, refining or constraining only where strictly necessary. It should
respect the conceptual models of these standards, offering skeletons as enhancements
rather than as competition. We should construct our systems to allow the integration
of skeletal and ad-hoc parallelism in a well defined way.

1.3 A deeper look at framework and motivations

In the light of previous section findings we can precisely frame the work. Our
research group has been working for a long time in high-level parallel programming.
We developed several tools and programming environment for structured parallel
programming2, yielding several good results. Such frameworks discipline parallelism
within the application thus offering a high-performance implementation but seriously
limiting the expressive power. The development of complex real world applications
has been proved sometimes difficult due to expressivity constraints of our skeletal
frameworks. The impossibility of accessing to very large data bases in a possibly odd
and unpredictable way has been one of the foremost limitations of these frameworks.

Current and future high performance computing will be able to deal with very
complex applications that exploit both dynamic and irregular communication pat-
terns. The programming of such applications will involve thousands of interrelated
threads, and possibly many odd interactions among them. Large and complex par-
allel applications will require to solve parallelization problems as well as efficiently
integrate heterogeneous objects, such as existing software modules, application li-
braries and packages. These targets are viable only by means of software-engineering
methodologies as well as high-level languages equipped with effective developing
tools. In turn, such tools require a clean interface of the system implementation
(hardware, operating system).

We eventually decided to design and develop a new programming environment
(i.e. ASSIST, see Section 2.4). ASSIST accommodate a external object space, that
may include objects/data structures in a (distributed) shared memory.

2among the others P3L, SkIE, Lithium, ASSIST parallel programming frameworks and Meta
optimization tool, see Section 2.1.

16 CHAPTER 1. INTRODUCTION

The shared memory abstraction well suited a for future systems for many reasons:

• It agrees the hardware evolution towards ever deeper memory hierarchies.

• It seems well-suited for the solution of highly irregular problems.

• It enables the development of latency tolerant techniques at the level of hard-
ware/software interface, thus it supplies a clean and uniform view of the ma-
chine to software tools.

• It has been deeply discussed in the literature, we can take advantage of the
already developed work in the field.

We imagined eskimo, Easy SKeleton Interface (Memory Oriented), as an exper-
imenting platform for shared memory abstraction within the ASSIST environment.

1.3.1 eskimo motivations

eskimo is an extensions of the C language. eskimo run-time support implements a
software DSM and presents it within an original skeletal framework. The motivation
under eskimo is not to build yet another DSM or to propose yet another relaxed
memory consistency model. eskimo takes advantage of already developed work in
the field, possibly using it in an original manner. As far the main design philosophy
concern, we would like to draw an analogy with DSM-PM2 system; we report here
some of sentences motivating DSM-PM2 [19]:

Most approaches to DSM programming assume that the DSM library and the un-
derlying architecture are fixed, and that it is up to the programmer to fit his program
with them. We think that such a static vision fails to appreciate the possibilities of
this area of programming. We believe that a better approach is to provide the appli-
cation programmer with an implementation platform where both the application and
the multithreaded DSM consistency protocol can possibly be co-designed and tuned
for performance. This aspect is crucial if the platform is used as target for a com-
piler: the implementation of the consistency model through a specific protocol can
then directly benefit from the specific properties of the code, enforced by the compiler
in the code generation process.

During the design of eskimo we rely on a similar philosophy. We would like to
build a implementation platform primarily targeted to exploit dynamic data struc-
tures in a software DSM framework. Such data structures, their allocation strategy,
the consistency model they obey, the operations needed to tackle with them are not
fixed. They have to be co-designed with them. eskimo is built on top of a hierarchy
of two run-time layers, each of them providing mechanisms and policies to solve some
of parallel programming run-time support issues. The lowest-level tier is designed to
fall in the “high-level programming environment designer’s hands”, not in the casual
parallel programmer’s hands. The highest-level is thought to experiment what are

1.3. A DEEPER LOOK AT FRAMEWORK AND MOTIVATIONS 17

the typical parallel paradigms (or skeletons) we need to tackle with dynamic data
structures and irregular applications.

eskimo language is an extension of the C language. The basic idea behind eskimo
is that a programmer should concentrate on structuring his data structures and
his algorithms. An eskimo program is not parallel ab initio. Just as in a serial
program, a program starts as a single flow. The programmer may split the flow
of control in potentially concurrent flows by means of language primitives. The
run-time may turn concurrency into parallelism. Moreover, in order to obtain a
high-performance application, the programmer ought to structure its application
properly, and eventually suggest to run-time important information about algorithm
data access patterns. eskimo run-time takes care of all other details like process
scheduling and load balancing. In this setting, skeletons are not objects of the
language, but rather “suggested” programming patterns (see Section 2.1). The
programmers may decide to structure their applications according to them, but
they are not forced to do it.

1.3.2 eskimo features

eskimo is conceived as a framework to experiment and prototype dynamic data struc-
tures (and their support) in a structured parallel programming environment. We
mainly expect it to gain expertise from the work in order to apply it to more general
and complete programming frameworks (as for example the ASSIST environment
[169, 13, 12, 11]). In addition, we would take in account a loosely coupled parallel
architecture in the perspective to port the experience in a GRID framework. For
this reason we focused on a Beowulf architecture as target parallel architecture.

As previously mentioned such architectures, especially whether used as multi-
processors, have to be carefully programmed to be efficient. In particular we would
like to exploit parallelism in a hierarchical fashion. We can recognize (at least)
three different levels of parallelism in a typical architecture: parallelism among PEs,
parallelism among processors within a PE, instruction-level parallelism within a pro-
cessor both at the level of execution pipelines and processors SIMD extensions (e.g.
Pentium MMX/SSE, PowerPC Velocity Engine, etc.). These levels have different
peculiarities and become efficient at different computation grains. We should ex-
ploit all parallelism levels but we should provide the programmer with an uniform
abstract view of the architecture.

In addition, since the architecture class exploits a complex memory hierarchy
exposing a NUMA behavior, both spatial and temporal locality assume a key role.
Despite of research efforts pushed in shared virtual memory technology, the perfor-
mance gap between local and remote accesses is still pretty large both in latency
and bandwidth. In this setting, even a gradual escape from a “local working set”
towards a remote one leads to an abrupt slowdown in application performance. We
expect the problem to exacerbate with ever increasing speed of computer boxes. In
the large, we expect the problem will affect not only the DSM layer of the virtual

18 CHAPTER 1. INTRODUCTION

memory but all levels of it.

Trivially, the most effective “tool” to exploit locality is the programmer skill.
Indeed, the primary aim of eskimo is to enable the programmer to enforce locality
by raising the level of abstraction of programming language without confusing his
insight of the algorithm. At this end, we need a high-level parallel language that
would not hide completely the underlying architecture but rather gently abstract
it. In the same way the support would provide the programmer with appropriate
hooks in order to control its behavior. Let us take spatial locality as an example.
Normally software DSMs cannot control the shared memory at the granularity of
the machine word. Almost all of them3 group data in blocks (typically in pages) in
order to reach an acceptable working grain for the architecture. We should be sure
that such process does not destroy space locality, on the contrary we would turn
data blocking into group-locality exploitation.

Moreover, dynamic data structures are dynamically allocated and managed. In
the general case the programmer is not able to bound neither the size nor the shape of
data structure independently of input data. We should provide the programmer with
dynamic allocation primitives for its dynamic data structures. We should consider
the peculiarities of dynamic data structures. Let us take trees as an example. Trees
are rarely accessed in random way (as we can expect for arrays). Trees are often
used to describe a hierarchically organized data set. In many cases the programmer
will follow the tree structure, from the root down to leaves and vice-versa. We can
spread tree nodes among processing elements, let us say, using a hash function, but
is this a good organization for a tree? We believe we should respect the nature of
tree. More ambitiously, we would like the programmer to express his insight of the
algorithm by co-allocating data exposing a good temporal/spatial locality.

eskimo provides the programmer with some ready-made global data types (trees,
arrays, regions) and a method to build his global data structures. In both cases,
the programmer can express spatial locality by means of language mechanisms. In
addition, eskimo run-time implements a data-driven scheduling, thus it enhances
application temporal locality.

1.4 Plan of the thesis

The thesis deals with two facets of parallel programming that at first glance seem
pretty distant one each other: Structured programming (in particular in skeleton-
based languages) and shared address programming (in particular in DSMs).

Our research started from the “classical” approach to skeleton-based languages.
In this setting, a skeleton is seen basically as an higher-order function. The exe-
cutable code is sorted out by compiling the high-level language into a lower-level
language (e.g. C + MPI), thus it can be considered a static approach. Therefore, we

3Except object-based ones.

1.4. PLAN OF THE THESIS 19

attacked the code optimization problem by means of (performance-driven) succes-
sive refinement of the initial specification [14, 15, 8, 9]. Later, we moved to a more
dynamical run-time support for the same kind of skeletons in order to defeat prob-
lems related to the availability of faithful cost models for skeleton nesting [15, 17, 16].
Recently, we moved again toward a different interpretation of the skeleton concept
in high-level parallel programming. The main motivation resides in the lack of
expressivity of the previous approaches, especially in case of irregular/dynamic ap-
plications. The new approach relies on the shared address programming paradigm
(onto DSMs). In particular we try to explore the pay-back of using a structured
approach in the programming of irregular/dynamic problem using (distributed) dy-
namic data structures. The thesis is organized as follows:

Chapter 2: Structured parallel programming. In this chapter we take in ac-
count structured parallel programming, and in particular skeletal parallelism. After
a general introduction, the topic is developed mainly along Pisa University group’s
goals in the research area, others groups’ goals are reported as well as references to
the literature. Section 2.1 presents a self-critical history of research activity along
last decade; the section would provide the needed insights to cope with the rest
of the chapter. Sections 2.2 and 2.3 present (in details) the Meta optimization tool
and the Lithium parallel programming environment. Eventually, Section 2.4 presents
ASSIST, i.e. the youngest programming environment designed by the group. The
last three sections are quite self-contained and might be read in any order.

The author participates in the design of all programming environments pre-
sented (except P3L). Meta [8, 9] has been designed and developed by the author
himself and used as optimization tool of the FAN language (not presented here [18]).
Lithium formal semantics (Section 2.3) has been designed by the author himself and
prof. M. Danelutto (later on, it has been proposed as general technique to de-
scribe both functional and parallel semantics of skeleton-based languages [16]), the
Lithium framework has been mainly developed by P. Teti during his Master’s thesis
[17, 161, 62, 15]. ASSIST [169, 12, 13] has been developed at computer architecture
lab. of Pisa University leaded by Prof. M. Vanneschi. A further evolution of AS-
SIST is already underway [11]. Since ASSIST in not the main topic of this thesis we
just sketch here the current status only, referring forward to Chapter 8 for a brief
discussion about future work.

Chapter 3: DSM: the state of the art. In this chapter we present a survey
of distributed shared memory architectures, that are part of the framework of the
thesis. The core of the discussion is reached through a brief review of DSM basic con-
cepts, namely cache coherence and memory consistency. In Section 3.1.3 DSMs are
characterized accordingly several functional aspects: implementation level, consis-
tency model, and behavior with respect data replication. Those aspect are discussed
in Sections 3.2, 3.3 and 3.4 respectively. Cilk main features are also sketched within

20 CHAPTER 1. INTRODUCTION

consistency models section. In Section 3.5 some technical issues related to software
implemented DSMs are presented. Eventually, the Athapascan language is presented
in Section 3.6.

Chapter 4: eskimo: design principles In this chapter we introduce “eskimo”
language, i.e. a skeletal extension of C language for parallel programming based
on the shared address model. We introduce the topic by briefly analyzing the lacks
of previous skeletal programming frameworks (in particular our group’s ones), thus
motivating (yet) another evolution of skeletal frameworks. In Section 4.1 we present
eskimo basic design principles. These are developed along parallelism exploitation
(Sections 4.1.1 and 4.1.2), and memory sharing (Sections 4.1.3 and 4.1.4). The
expected pay-back of the skeletal approach is discussed in Section 4.2. Eventually,
we conclude sketching the differences between eskimo and some related works (Cilk
and Athapascan).

eskimo C language extension has been fully designed by the author himself. Part
of this chapter will appear in [10].

Chapter 5: eskimo: language usage. In this chapter we take again eskimo
concepts intuitively presented in Chapter 4. In particular, we describe and exemplify
eskimo primitives syntax and pragmatics. In Section 5.1 we present the eskimo
computational model. Then in Section 5.2 we present eskimo details: How to write
a eskimo program; eskimo primitives dealing with data type abstraction; eskimo
primitives dealing with parallelism exploitation. eskimo pragmatics is developed in
Section 5.3 by means of a running example. eskimo is pretty young programming
platform and it is explicitly targeted to dynamic data structure experimentation
in a skeletal framework. Therefore it is subjected to continuous modifications and
improvements. We present here the current assessed status only, avoiding to mention
possible improvements (that are already underway).

eskimo languages have been designed and developed by the author himself. Part
of this chapter will appear in [10].

Chapter 6: eskimo: implementation. In this chapter we present eskimo run-
time support design principles. Section 6.1 describes how eskimo abstracts the par-
allel architecture (consistency model, cache). Section 6.2 briefly introduces the im-
plementation of Shared Data Types. Some experimental results are presented in
order to support design choices.

Chapter 7: eskimo: experiments. This chapter reports experimental result
obtained by using eskimo on a small test-suite. The test-suite includes some micro-
benchmarks in order to test efficiency of some significant features of the run-time
support, as for example address translation overhead. Test-suite also includes a

1.4. PLAN OF THE THESIS 21

significant application (a n-body simulation) in order to experiment both expres-
siveness and performance of the language on a dynamic application.

Chapter 8: Discussion and concluding remarks. The chapter summarizes
the materials contained in the previous chapters and discusses the conclusions of
the thesis. The extent to which the goals of the thesis have been met is discussed.
Finally the future work related to the thesis is introduced.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Structured parallel programming

Readers’ road-map. In this chapter we take in account structured parallel programming, and
in particular skeletal parallelism. After a general introduction, the topic is developed mainly
along Pisa University group’s goals in the research area, others groups’ goals are reported
as well as references to the literature. Section 2.1 presents a self-critical history of research
activity along last decade; the section would provide the needed insights to cope with the rest
of the chapter. Sections 2.2 and 2.3 present (in details) the Meta optimization tool and the
Lithium parallel programming environment. Eventually, Section 2.4 presents ASSIST, i.e. the
youngest programming environment designed by the group. The last three sections are quite
self-contained and might be read in any order.
The author participates in the design of all programming environments presented (except P3L).
Meta [8, 9] has been designed and developed by the author himself and used as optimization
tool of the FAN language (not presented here [18]). Lithium formal semantics (Section 2.3)
has been designed by the author himself and prof. M. Danelutto (later on, it has been proposed
as general technique to describe both functional and parallel semantics of skeleton-based lan-
guages [16]), the Lithium framework has been mainly developed by P. Teti during his Master’s
thesis [17, 161, 62, 15]. ASSIST [169, 12, 13] has been developed at computer architecture
lab. of Pisa University leaded by Prof. M. Vanneschi. A further evolution of ASSIST is
already underway [11]. Since ASSIST in not the main topic of this thesis we just sketch here
the current status only, referring forward to Chapter 8 for a brief discussion about future work.

Researchers have been working for a long time to bring parallel hardware and
software into widespread use. Recently there has been progress on the hardware
front. Serial microprocessors have been used as cost-effective building blocks for
medium and large scale parallel machines. Now many high-volume serial proces-
sors contain hooks, such as snoopy buses, for implementing multiprocessor systems.
These hooks make it quite simple and cheap for commercial computer manufactur-
ers to build inexpensive, entry-level, multiprocessor machines. This trend towards
including multiprocessor support in standard microprocessors occurred first with
processors used in workstations (e.g. Sparc, PowerPC 601) and more recently with
processors for PCs (e.g. Intel’s PentiumPro). As with any other commodity, as

24 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

parallel machines drop in price, they become cost-effective in new areas, leading
to parallel machines being installed at more and more sites. If this trend wasn’t
enough, high-speed networks and lower-overhead software are threatening to turn
every LAN into a potential parallel machine. These machines (namely Beowulf class
clusters or simply clusters) are gaining more and more interest as low cost parallel
architectures, and actually more positions in the Top500 [164] parallel architecture
list. Currently ASCI clusters and SMP clusters occupy 112 positions of the list.
Although these parallel machines cannot be classified as low-cost Beowulf clusters –
mainly due to the adoption of high-end interconnection networks and to the number
of nodes used – the architectural trend is clear [70]. We may finally be witnessing
the move of parallel machines into the mainstream.

Although building parallel computers has become easier, programming parallel
computers can still be quite difficult. Besides coding all the algorithm details, the
programmer must also take care of the details involved in parallelism exploitation,
among the others concurrent activity set up (either processes or threads), mapping
and scheduling, communication/synchronization handling and data allocation. In
unstructured, low level parallel programming approaches these activities are usually
fully in charge of the programmer and constitute a difficult, error prone program-
ming effort. The effort required to the programmer varies from moderate to high,
depending on the programming language/environment chosen to develop parallel
applications.

Structured parallel programming systems allow a parallel application to be con-
structed by composing a set of basic parallel patterns called algorithmical skeletons.

Skeletons have been originally conceived by Cole [59] and then used by different
research groups to design high performance structured parallel programming envi-
ronments [26, 29, 154, 153]. A skeleton (in its original formulation) is formally an
higher order function taking one or more other skeletons or portions of sequential
code as parameters, and modeling a parallel computation out of them.

Cole’s skeletons represent parallelism exploitation patterns that can be used
(instanced) to model common parallel applications. Later, different authors ac-
knowledge that skeletons can be used as constructs of an explicitly parallel pro-
gramming language, actually as the only way to express parallel computations in
these languages [76, 27]. Recently, the skeleton concept evolved, and became the
coordination layer of structured parallel programming environments (see Section 2.1
[169, 29, 26, 147]). In any case, we can consider a skeleton as an abstraction modeling
a common, reusable parallelism exploitation pattern.

Skeletons can be provided to the programmer either as language constructs [27,
26, 29] or as libraries [17, 72, 75, 120]. Usually, the set of skeletons includes both
data-parallel and task parallel patterns.

25

Owner computes rule: the processor that owns the left-hand side element of an expression,
will perform the calculation. For example, in the HPF program
DO i = 1,n

a(i-1) = b(i*7)/c(i+j)-a(i**i)
END DO

the processor that owns a(i-1) will perform the assignment. The components of the rhs
expression may have to be communicated to this processor before the assignment is made.
As this is a rule of thumb it is not always followed; for example, if all the rhs objects are
co-distributed then, instead of all the rhs elements being sent to the owner of the lhs for
computation, the computation of the result may take place on the home processor of the rhs
elements and then be sent to the owner of the lhs for assignment. This would reduce the
number of communications required [104].

Table 2.1: Concept recap: Owner computes rule.

Data parallelism

One of the most successful paradigm for parallelism exploitation is the data-parallel
programming paradigm [103]. This paradigm is useful for taking advantage of the
large amounts of data parallelism that is available in many scientific/numeric ap-
plications. The data parallelism is exploited by performing the same operation on
a large amount of data, distributed across the processors of the machine. From the
programmer viewpoint languages based on data-parallel paradigm (such as HPF
[102] and CM Fortran [162]) are pretty similar to sequential languages. The main
difference is that certain data types are defined to be parallel. Parallel data values
consist of a collection of standard, scalar data values. These languages contain pre-
defined operations on parallel variables that either operate on the parallel variable
element-wise (e.g. multiplying every element by a scalar value), or operate on the
parallel value as a whole (e.g. summing all elements of the parallel variable).

The data-parallel paradigm has three main virtues that have led to its success.
The first virtue of this model is that data-parallel codes are fairly easy to write and
debug. Just as in a serial program, the programmer sees a sequential flow of control
The values making up a parallel value are automatically spread across the machine,
although typically the programmer does have the option of influencing how data is
placed. Parallel data types are typically static in size (e.g. arrays), their distribution
across the machine is usually done at compile time. Any synchronization or commu-
nication that is needed to perform an operation on a parallel value is automatically
added by the compiler/run-time system. Operations on parallel data values are col-
lectively computed by the processors; computation load usually distributed directly
linking (left) data values and computations through the owner computes rule (see
Table 2.1). As data values, computation load is statically distributed across the
processors of the system.

26 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

The second virtue of this model is that it is easy for a programmer to understand
the performance of a program. Given the size of a parallel value to be operated on,
the execution time for an operation is likely to be predictable. Since the execution
of each operation is independent of the others, and there are is overhead due to
the dynamic management of data values and computations, the execution time for
the program as a whole is predictable as well. Faithful performance models can
therefore been developed for this kind of languages.

The third major advantage of data parallelism derives from its scalability. Be-
cause operations may be applied identically to many data items in parallel, the
amount of parallelism is dictated by the problem size. Higher amounts of paral-
lelism may be exploited by simply solving larger problems with greater amounts of
computation. Data parallelism is also simple and easy to exploit. Because data par-
allelism is highly uniform, it can usually be automatically detected by an advanced
compiler, without forcing the user to manage explicitly processes, communication,
or synchronization.

Many scientific applications may be naturally specified in a data-parallel manner.
In this settings, program’s data layout is often fixed; the most used data structures
are large arrays. Operations on whole data structures, such as adding two arrays
or taking the inner product of two vectors, are common, as are grid-based meth-
ods for solving partial differential equations (PDEs). Since data-parallel programs
are relatively close to sequential programs, many compiler analysis and optimiza-
tion techniques can be adapted to produce parallel programs automatically. The
mapping of data and computation can affect performance significantly. With data-
parallel programs, relatively simple data decomposition annotations are sufficient
to achieve high performance on advanced parallel architectures. If communication
and parallelism are implicit (as in HPF), the user may tune the program by small
modifications to its data decomposition annotations.

In spite of this, data parallelism has a significant drawbacks: the limited range of
applications for which data-parallel is well suited. Applications with data parallelism
tend to be static in nature, the control flow of a data-parallel program is mostly
data independent. Many applications are more dynamic in nature and do not have
these characteristics. To run in parallel, these dynamic applications need to exploit
control parallelism by performing independent operations at the same time. These
applications, which may be as simple as recursively computing Fibonacci numbers
or as complex as computer chess and n-body simulations, are nearly impossible to
express in data-parallel languages. In addition, quite often recursive application
needs dynamic data structures. Such data structures (e.g. trees and linked lists)
cannot be always embedded in static arrays, and even when possible such embedding
burdens the programmer with additional tasks such for example the even mapping of
a dynamic structure in a static one. At this end, recent evolutions of data-parallel
based languages (such as HPF version 2) provide to the programmer additional
directives like DYNAMIC, REALIGN and REDISTRIBUTE [102].

27

Task Parallelism

In a task-parallel programming paradigm the program consists of a set of (poten-
tially dissimilar) parallel tasks that interact through explicit communication and
synchronization. Task parallelism may be both synchronous and asynchronous.

A major advantage of task parallelism is its flexibility. Because of its emphasis
on explicit coordination of individual tasks (or processes, as they are often called),
task parallelism can be used to exploit both structured and unstructured forms of
parallelism. Many scientific applications contain task parallelism. For example, in a
climate model application the atmospheric and ocean circulation may be computed
in parallel as two separate tasks in a pipeline fashion. A task-parallel language
can express this relationship easily, even if different methods are used for the two
circulation models. Another natural application of task-parallel languages is reactive
systems in which tasks must produce output in response to changing inputs, in
a time-dependent manner. Tasks may also be organized as a pipeline to exploit
pipeline parallelism [54, 55, 53].

Another common structured paradigm exploits parallelism on different data
items through task/function replication. For example, the elaboration of a video
stream may involve the filtering on each single frame. In a task-parallel language
the filter may be farmed out by spreading different frames on different worker pro-
cesses, each of them computing the same function [28].

In unstructured task parallelism interactions between tasks are explicit, thus
the programmer can write programs that exploit parallelism not detectable auto-
matically by compiler techniques. The programmer may also carefully tune the
application so that it includes only the communication and synchronization that is
actually necessary or efficient, hence reducing reliance on compiler optimization. In
general, unstructured task parallelism is less dependent on advanced compiler tech-
nology than is data parallelism; in many cases, all that is strictly necessary is the
translation of task interactions into appropriate low-level primitives on the target
architecture. However, compiler technology is still important as a means of guar-
anteeing correct execution and permitting representations of communication and
synchronization that are convenient for the programmer.

A disadvantage of the unstructured task-parallel programming model is that
it requires extra effort from the programmer to create explicit parallel tasks and
manage their communication and synchronization. It is also often convenient to
consider data owned by different tasks as being part of a single data structure; many
task-parallel languages do not support this view directly. Because communication
and synchronization are explicit, changing the manner a program is parallelized may
require extensive modifications to the program text.

Structured version of task parallelism relieves the programmer effort by providing
a set of predefined templates for processes relationship. Such templates model com-
mon organization schemes for processes and their communications/synchronizations.

28 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

2.1 Our skeletons (in the closet)

For more than a decade our research group has been active in experimenting new
technologies in order to “simplify” parallel programming. These are mainly targeted
to simplify programming by raising the level of abstraction; to enhance portability
by absolving the programmer of responsibility for detailed realization of the under-
lying parallel paradigms; to improve performance by providing access to carefully
optimized implementations of the paradigms. These technologies have been used
to design programming environments and languages and implement their compilers.
Skeletons have been present all along in programming environments, even if their
role has been permanently changing (and maturing).

The P3L (Pisa Parallel Programming Language, 1990) was the seminal project on
structured parallel programming of the group. It was (initially) designed in collabo-
ration with Hewlett Packard Laboratories. The language core includes programming
paradigms like pipelines, task farms, iterative and data parallel skeletons. Skeletons
in P3L can be used as constructs of an explicitly parallel programming language,
actually as the only way to express parallel computations [74, 139, 73, 140]. Sev-
eral evolutions of the P3L (shareware) compilers has been developed using C and
OCaml as “host” languages [56, 72]. These compilers are based on the concept of
implementation template, i.e. a parametric process network [27].

Later on all experiences assessed with P3L have met into the SkIE language and
its compiler. The SkIE (Skeleton Interface Environment, 1998) was designed and
developed in collaboration with QSW ltd. [167] It improves P3L features in many
different ways [29, 166, 168], among others:

• enforces P3L reuse feature. Existing sequential codes can be used to instance
skeletons with with little or no amendment to the sources;

• it supports several guest sequential and parallel languages languages (C, C++,
Fortran, Java, HPF) within the same application;

• a brand new design of implementation templates provides SkIE with a sat-
isfactory absolute performance and performance portability for homogeneous
platforms (Ethernet-connected clusters and QSW proprietary platforms run-
ning Linux/Solaris) [7].

Also, the skeleton concept has been enforced in SkIE : skeletons have been still
the only way to express parallel computations, but they have been equipped with
a compositional functional semantics, they become actually higher-order functions
which can be evaluated efficiently in parallel. A SkIE program is basically a compo-
sition of skeletons.

Furthermore, due to the fact that the skeletons have a clear functional and
parallel semantics, different rewriting techniques have been developed that allow
skeleton programs to be transformed/rewritten into equivalent ones achieving dif-
ferent performances when implemented on the target architecture [14, 38, 94]. These

2.1. OUR SKELETONS (IN THE CLOSET) 29

transformations can also be driven by some kind of analytical performance models,
associated with the implementation templates of the skeletons, in such a way that
only those rewritings leading to efficient implementations of the skeleton code are
considered [14, 15].

The research community has been proposing several development frameworks
based on the refinement of skeletons [18, 76, 158]. In such frameworks, the user
starts by writing an initial skeletal program/specification. Afterwards, the initial
specification may be subjected to a cost-driven transformation process with the
aim of improving the performance of the parallel program. Such a transformation
is done by means of semantic-preserving rewriting rules. A rich set of rewriting
rules [14, 18, 95, 94] and cost models [18, 158, 172] for various skeletons have been
developed recently. Conceptually, skeleton-based programs and semantic-preserving
rewriting rules may be thought as terms and term-rewriting rules within a Term
Rewriting System respectively. In this setting, the recursive application of all rules
to a given term yields the set of all terms reachable through rules, i.e. the set of all
(reachable) semantic-equivalent alternative programs to a given one. In particular
for P3L/SkIE programs (equipped with a standard set of rules) we define a program
normal form (see also Chapter 4) representing the provably optimum1 among all
alternative programs reachable from the initial specification by means of rewriting
rules in the standard set. Moreover, normal form can be algorithmically constructed
from any given P3L/SkIE program [15, 17].

Moreover, I designed and developed Meta, an interactive transformation tool for
skeleton-based programs. The tool basically implements a term rewriting system
that may be instantiated with a broad class of skeleton-based languages and skeleton
rewriting rules. Given a language and a set of semantic-preserving transformations,
the Meta tool assists the user in the transformation process. The transformation pro-
cess may be also performance driven, provided each rewriting rule is equipped with
a performance formula, which depends on the particular skeleton implementations
for the target language. Alternatively, the tool may follow a global optimization
strategy, as for example normal form reduction for SkIE programs. Overall Meta
completes our path towards (structured) parallel programming by refinement. Meta
is extensively described in Section 2.2 [8, 9].

Several real world, complex applications has been prototyped using SkIE , es-
pecially in the parallel data-mining area [35, 24, 63]. During the development of
such applications, the skeletal approach has been proved to be effective, at least if
application algorithms can be somehow expressed in terms of skeleton composition.
Actually a lack of expressivity emerged, at least for complex applications. Cole
effectively (but lately) expresses the problem as follows [60]:

Many parallel applications are not obviously expressible as instances of
skeletons, whether existing or imagined. Some have phases which require

1Both in terms of absolute performance and efficiency and provided some mild additional re-
quirements.

30 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

the use of less structured interaction primitives. Some have conceptually
layered parallelism, in which skeletal behavior at one layer controls the
invocation of operations involving such ad-hoc parallelism within. It is
clearly unrealistic to assume that skeletons can provide all the parallelism
we need. We must construct our systems to allow the integration of
skeletal and ad-hoc parallelism in a well defined way . . .
Skeletal programming is not functional programming, even though it may
be concisely explained and expressed as such. Skeletal programming is
not object oriented programming, even though this may be a similarly
attractive vehicle. Instead, we should build bridges to the standards of the
day, refining or constraining only where strictly necessary. We should
respect the conceptual models of these standards, offering skeletons as
enhancements rather than as competition. This need not be too difficult.
For example, it is arguable that MPI already embodies simple skeletons
in its collective operations.

Eventually, another evolution of skeleton concept has been underway, both in
our group and other research groups. As our group concern, we have taken a step
back in respect of skeletons’ role in parallel programming. In particular skeleton
loose their “exclusiveness” on parallelism exploitation. The new skeletons’ role has
led to the exploration of several scenarios:

Skeletons as design patterns. A design pattern per se is not a programming
construct, as happened for the skeletons. Rather, it can be viewed as “recipe” that
can be used to achieve different solutions to common programming problems. The
skeleton set may include (for example) usual pipeline, farm, data parallel and di-
vide&conquer skeletons, plus a generic “parallel module” skeleton aimed at abstract-
ing common, non-trivial data parallel patterns . The parallel skeleton support may
be implemented using a layered, OO design [131]. Parallel skeletons can be declared
as members of proper skeletons/patterns. Object code generation can be requested,
leading to the automatic generation of a set of implementation classes, globally
making up an implementation framework. Exploiting standard OO visibility mech-
anisms, part of the implementation framework classes may be made visible to the
programmer in such a way he can perform different tasks: fine performance tuning
(sub-classing existing implementation classes methods), introduction of new, more
efficient implementation schemes (sub-classing existing implementation classes) or
either introduction of new skeletons/patterns (introducing new skeleton classes, pos-
sibly sub-classes of existing ones, and using either existing or new implementation
classes) [71, 144].

The new approach promises more flexibility in application programming by mak-
ing skeletons objects that can be refined, both in the semantics and the implemen-
tation.

2.1. OUR SKELETONS (IN THE CLOSET) 31

Skeletons as extension. Skeletons may be used to extend existing programming
languages or programming frameworks (e.g. C + MPI) that are already able to ex-
ploit parallelism. Several recent programming frameworks may be numbered among
this category, among the others:

SKElib extends C language with SkIE-like skeletons. Programs are written in SMPD
style and skeletons behave as collective operations; the library allows the pro-
grammer to structure parallel computations whose patterns do not correspond
to a skeleton by using standard Unix mechanisms [75].

Lithium is a pure Java structured parallel programming environment based on skele-
tons. Lithium is implemented as a Java package and represents both the first
skeleton based programming environment in Java and the first complete skele-
ton based Java environment exploiting macro data flow implementation tech-
niques [70]. Lithium supports a set of user code optimizations which are based
on skeleton rewriting techniques. These optimizations improve both absolute
performance and resource usage with respect to original user code. Parallel
programs developed using the library run on any network of workstations pro-
vided the workstations support plain JRE. Lithium is extensively described in
Section 2.3 [17].

eSkel is a library which adds skeletal programming features to the C/MPI parallel
programming framework. It is a library of C functions and type definitions
which extend the standard C binding to MPI with skeletal operations. Its un-
derlying conceptual model is that of SPMD distributed memory parallelism,
inherited from MPI, and its operations must be invoked from within a pro-
gram which has already initialized an MPI environment. It is most readily
understood as an extension to MPI’s set of collective operations [60, 58].

Kuchen’s skeleton library extends C++ language providing the programmer with
task and data parallel skeletons, which can be combined on the two-tier model
(see Section 2.2.1) taken from P3L. Programs are written in SMPD style and
skeletons behave as collective operations. Data parallelism is based on dis-
tributed data structures (arrays, actually) that can be manipulated by col-
lective operations (like map and fold). Task parallelism is exploited through
P3L-like pipeline and farm skeletons [120, 45].

Skeletons as “good programming discipline”. The approach consists in pro-
viding the programmer with “proto-skeletons” or constructs. Constructs extend an
host language and represent skeletons’ building blocks. Therefore, skeletons does
not really exist in the program as language elements, rather they are particular
programming idioms. In sequential programming setting we can recognize many of
them: divide&conquer, exhaustive search in an array or in a linked data structure,
etc. Actually, the approach have strong analogies with both previous approaches. In

32 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

one hand, the approach may be considered as a “low-level” extension of a language
or better an extension of the programming model of a language. In the other hand,
both OO and design patterns may be probably considered “an engineered” version
of the approach.

Nevertheless, we would like maintain the approaches distinct (for a while). The
idea beneath first two approaches is that general or important patterns have been
already recognized. The programmer may refine them, but he cannot radically
change their behavior. Constructs rely on another idea, these allows the program-
mer to build his own set of skeletons. We put eskimo language in this category (see
Chapter 5).

Indeed, eskimo language is thought as programming layers of more abstract and
complete environment designed by our group, i.e. the ASSIST environment. The
ASSIST (A Software development System based upon Integrated Skeleton Technol-
ogy, 2002) has been designed and developed at University of Pisa with the support of
the Italian Space Agency and National Research Council2. [169, 66] We shall briefly
present the ASSIST environment is Section 2.4, we anticipate here that ASSIST
adopts two new concepts with respect to our group’s previous environments:

• A new paradigm, called “parallel module” (parmod), is defined which, in addi-
tion to expressing the semantics of several skeletons as particular cases, is able
to express more general parallel and distributed program structures, including
both data-flow and nondeterministic reactive computations.

• parmods are able to utilize external objects, including shared data structures
and abstract objects, with standard interfacing mechanisms (e.g. IDL). The
introduction of shared data structures aims to efficiently manipulate very large
data sets, to simplify the programming of irregular and/or dynamic problems.

The eskimo language is designed to experiment how such shared objects may be
defined and used in a high-level structured programming environment.

2With “ASI-PQE2000 project” and “Agenzia 2000 CNR project” respectively.

2.2. THE META OPTIMIZATION TOOL 33

2.2 The Meta optimization tool

In this section we present Meta, an interactive transformation tool for skeleton-
based programs. The tool basically implements a term rewriting system that may
be instantiated with a broad class of skeleton-based languages and skeleton rewriting
rules.

Given a skeleton-based language and a set of semantic-preserving transforma-
tion rules, the tool locates applicable transformations and provides performance
estimates, thereby helping the programmer in navigating through the program re-
finement space. Meta is based on a novel program representation (called dependence
tree) that allows to effectively implement a rewriting system via pattern-matching.

The Meta tool can be used as a building block in general transformational refine-
ment environments for skeleton languages. Meta has already been used as transfor-
mation engine of the FAN skeleton framework [18, 95], that is a pure data parallel
skeleton framework. Actually, Meta is more general and may be also used in a broad
class of mixed task/data parallel skeleton languages [29, 147, 172].

The remaining of the section is organized as follows: Section 2.2.1 frames the kind
of languages and transformations Meta can deal with. The Skel-BSP language, used
as a test-bed for Meta, is presented. Section 2.2.2 describes the Meta transformation
tool and its architecture. Then, Section 2.2.4 discusses a case study and the cost
models for Skel-BSP, presenting some experimental results. An extended version of
the results appearing in this section can be found in [8, 9, 18].

2.2.1 Skeletons and transformations

We consider a generic structured coordination language TL (for target language)
where parallel programs are constructed by composing procedures in a conventional
base language using a set of high-level pre-defined skeletons. We also assume that the
skeletons set has three kinds of skeletons: data parallel, task parallel and sequential
skeletons. Sequential skeletons encapsulate functions written in any sequential base
language and are not considered for parallel execution. The others provide typical
task and data parallel patterns. Finally, we constrain data parallel skeletons to
call only sequential skeletons. This is usually the case in real applications and it is
satisfied by the existing skeleton languages [76, 26, 29, 18, 172, 147]. Applications
written in this way have the (up to) three-tier structure sketched out in Figure 2.1.

In order to preserve generality, Meta can be specialized with the TL syntax and its
three skeleton sets. The only requirement we demand is that the above constraints
on skeleton calls holds. This makes our work applicable to a variety of existing
languages.

Besides a skeleton-based TL, the other ingredient of program refinement by trans-
formation is a set of semantic-preserving rewriting rules. A rule for TL is a pair
L → R, where L and R are fragments of TL programs with variables ν0, ν1 . . . rang-
ing over TL types, acting as place-holder for any piece of program. We require that

34 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Program

DP skel A

DP skel C DP skel B

seq fun 2seq fun 1seq fun 3

TP skel 1

TP skel 3TP skel 2

Program

DP skel B

DP skel A

DP skel C

seq fun 2seq fun 1

Data Parallel layer

Task Parallel layer

Sequential layer

Figure 2.1: Three-tier applications: two correct skeleton calling schemes.

every variable occurring in R must occur also in L and that L is not a variable.
Moreover, a variable may be constrained to assume a specified type or satisfy a spe-
cific property (e.g., we may require an operator to distribute over another operator).
The left-hand side L of a rule is called a pattern.

In the rest of the section, we consider a simple concrete target language as a
test-bed for the Meta transformation tool: Skel-BSP[172]. Skel-BSP has been de-
fined as a subset of P3L [27] on top of BSP (Bulk-Synchronous Parallel model [165])
and it can express both data and task parallelism. The following defines a simplified
Skel-BSP syntax which is particularly suitable for expressing rules and programs in
a compact way:

TL prog ::= TP | DP
TP ::= farm “(” TP “)” | pipe “{” TPlist “}” | DP
TPlist ::= TP | TP, TPlist
DP ::= map Seq | map2 Seq | scanL Seq | reduce Seq | Seq |

comp “(” out Var, in Varlist “)” “{” DPlist “}”
DPlist ::= Var “=” DP Varlist | Var “=” DP Varlist, DPlist
Var ::= 〈 a string 〉
Varlist ::= Var | Var, Varlist
Seq ::= 〈 a sequential C function 〉

TL prog can be formed with skeleton applications, constants, variables or func-
tion applications. Each skeleton instance may be further specified by its name just
adding a dotted string after the keywords (e.g. comp.mss). Variables are specified
by a name and by a type ranging over (all or some of) the base language types (e.g.
all C types except pointers). The type of variables may be suppressed where no
confusion can arise.

2.2. THE META OPTIMIZATION TOOL 35

The pipe skeleton denotes functional composition where each function (stage) is
executed in pipeline on a stream of data. Each stage of the pipe runs on different
(sets of) processors. The farm skeleton denotes “stateless” functional replication
on a stream of data. The map, scanL and reduce skeletons denote the namesake
data parallel functions [38] and do not need any further comment. map2 is an
extended version of map, which works on two arrays (of the same lengths) as fol-
lows: map2 f [x0, . . . , xn] [y0, . . . , yn] = [f x0 y0, . . . , f xn yn]. The comp skeleton
expresses the sequential composition of data parallel skeletons. The body of the
comp skeleton is a sequence of equations defining variables via expressions. Such
definitions follows the single-assignment rule: there is at most one equation defining
each variable.

comp.name (out outvar, in invars){
outvar1 = dp.1 Op1 invars1...
outvarn = dp.n Opn invarsn}

where: ∀k = 1..n, invarsk ⊆
(⋃

i<k outvari ∪ invars
)
, outvar ∈

⋃
i≤n outvari

The skeletons within the comp are executed in sequence on a single set of pro-
cessors in a lock-step fashion, possibly with a (all-to-all) data re-distribution among
steps. The cost estimate of Skel-BSP is based on the Valiant’s Bulk-Synchronous
Parallel model [165, 172]. The cost model for Skel-BSP is discussed in Section 2.2.4
along with some results on its accuracy. Results show that close estimate are possible
on a fairly common parallel platform like a cluster of Pentium PCs.

Examples

In this section, we consider a pair of simple Skel-BSP programs: the maximum
segment sum and the polynomial evaluation. Both programs are the Skel-BSP pre-
sentation of parallel algorithms appeared in [18, 95].

Maximum segment sum. Given a one-dimensional array of integers v, the max-
imum segment sum (MSS) is a contiguous array segment whose members have the
largest sum among all segments in v. Suppose we would like to compute the MSS
of a stream of arrays. The following code is a first parallel program for computing
MSS following a simple strategy [18, 95]:

pipe.mss {
map pair,
scanL Op+,
map P1,
reduce max}

/* : int [n] → int [n][2] */
/* : int [n][2] → int [n][2] */
/* : int [n][2] → int [n] */
/* : int [n] → int */

36 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

The comments on the right hand side state the type of each skeleton instance;
types are expressed using a C-like notation. The operator Op+ is defined as follows:

[xi,1, xi,2]Op+[xj,1, xj,2] = [max{xi,1 + xj,2, xj,1}, xi,2 + xj,2]

while pair x = [x, x] and P1 [x1, x2] = x1. Intuitively, the purpose of scanL is to
produce an array s whose ith element is the maximum sum of the segments of x
ending at position i. Using a sequential program, this task can be accomplished
simply by using scanL with operator Op1(a, b) = max(a + b, b). Unfortunately, such
operator is not associative, thus this simple scanL cannot be parallelized. Op+ uses
an auxiliary variable to preserve the associativity. This variable is thrown away at
the end of the scanL computation by the P1 operator. Finally, reduce sorts out the
maximum element of array s yielding to the desired maximum segment sum r.

Polynomial evaluation. Let us consider the problem of evaluating in parallel a
polynomial a1x + a2x

2 + . . . anxn at m points y1, . . . ym. The most intuitive solution
consists in parallelizing each basic step of the straightforward evaluation algorithm,
i.e. first compute the vector of powers ysi = [yi

1, . . . , y
i
m], i = 1 . . . n, then multiply

by the coefficients, and, finally, sum up the intermediate results. The algorithm can
be coded in Skel-BSP as follows.

comp.pol eval (out zs, in ys, as) {
ts = scanL ∗ ys, /* ts[i] = ysi : float [n][m] */
ds = map2 (∗sa) as, ts, /* ds[i] = [ai ∗ yi

1, . . . , ai ∗ yi
m] : float [n][m] */

zs = reduce + ds} /* zs[i] = [
∑n

i=1 ai ∗ yi
1, . . . ,

∑n
i=1 ai ∗ yi

m] : float [m] */

where ∗sa multiplies each element of a vector by a scalar value, ∗ and + are
overloaded to work both on scalars and (element-wise) on vectors. On the right side
(in comments) we describe the variable values and types.

Transformation rules

When we design a transformation system a foremost step is the choice of the rewrit-
ing rules to be included and the definition of their costs. The goal of the system
is to derive a skeletal program with the best performance estimate by successive
(semantic-preserving) transformations (rewrites). Each transformation/rewrite cor-
respond to the application of a rewriting rule. Here, we only collect the transforma-
tions needed to demonstrate the use of Meta on an example. We refer back to the
literature for the proofs of the soundness of the rules [14, 15, 18, 38, 94]. For the
sake of brevity, we use L →← R to denote the pair of rules L → R and R → L.

In the following, TSki can be any skeleton (task or data parallel, sequential),
DSki can be any data parallel or sequential skeleton. Op1, Op2, . . . denote variables
ranging over sequential functions. pair and P1 are sequential auxiliary functions de-
fined in the previous section. The labeled elision < · · · >n represents an unspecified
chunk of code that appears (unchanged) in both sides of the rules.

2.2. THE META OPTIMIZATION TOOL 37

farm insertion/elimination. These rules state that farms can be removed or in-
troduced on top of a TSk skeleton [15]. The rule preserves the constraint on layers
since TSk cannot appear into a data parallel skeleton. A farm replicates TSk without
changing the function it computes. Thus, it just increases task parallelism among
different copies during execution.

TSk
→
← farm (TSk)

pipe → comp. The pipe skeleton represents the functional composition for both
task and data parallel skeletons. The comp models a (possibly) more complex inter-
action among data parallel skeletons. If all the stages DSk1, DSk2. . . of the pipe are
data parallel (or sequential) skeletons, then the pipe can be rewritten as a comp in
which each DSki gets its input from DSki−1 and outputs towards DSki+1 only. Also
in this case the two formulations differ primarily in the parallel execution model.
When arranged in a pipe, the DSk1, DSk2. . . are supposed to run on different sets
of processors, while arranged in a comp, they are supposed to run (in sequence) on
a single set of processors.

pipe {
DSk1 Op1,
DSk2 Op2,
< · · · >1
DSkn Opn}

→

comp (out z, in a) {
b = DSk1 Op1 a,
c = DSk2 Op2 b,
< · · · >1
z = DSkn Opn y}

map fusion/fission. This rule denotes the map (backwards) distribution through
functional composition [38]. Notice that when we apply form left-to-right we do not
require the two maps in the left hand side to be adjacent in the program code. We
just require that the input to the second one (q) is the output from the first one.

comp (out outvar, in invars) {
< · · · >1

q = map Op1 p,
< · · · >2
r = map Op2 q,
< · · · >3 }

→
←

comp (out outvar, in invars) {
< · · · >1

q = map Op1 p ,
r = map (Op2 ◦ Op1) p,
< · · · >2
< · · · >3 }

It is important to notice that, while rules are required to be locally correct, Meta
ensures the global correctness of programs. For instance, using the rule from left-to-
right (map fusion) the assignment in the grey box is not required to appear. Meta
provides the program with the additional assignment (in the grey box) only if the
intermediate result q is referenced in some expressions into < · · · >2 or < · · · >3.

SAR-ARA (Scan Arrange Reduce – Arrange Reduce Arrange). This rule (ap-
plied from left-to-right) aims to reduce the number of communications using the
very complex operator Op3. In general, the left-hand side is more communication

38 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

intensive and less computation intensive than the right-hand side. The exact trade-
off for an advantageous application heavily depends on the cost calculus chosen (see
[18, 95]).

comp (out outvar, in invars){
< · · · >1
q = scanL Op1 p,
r = map P1 q,
s = reduce Op2 r,
< · · · >2 }

→
←

comp (out outvar, in invars){
< · · · >1
t = map pair p,
u = reduce Op3 t,
v = map P1 u,
x = map P1 v,
< · · · >2 }

Op1 must distribute forward over Opaux . Opaux and Op3 are defined as follows:

[xi,1, xi,2]Op3[xj,1, xj,2] = [xi,1Opaux(xi,2Op1xj,1), xi,2Op1xj,2]

[xi,1, xi,2]Opaux[xj,1, xj,2] = [xi,1Op2xj,1, xi,2Op2xj,2]

Notice that, whereas operator Op2 works on single elements, operators Op1 and
Opaux are defined for pairs (arrays of length 2), and Op3 works on pairs of pairs.

2.2.2 The transformation tool

In this section, we describe a transformation tool which allows the user to write,
evaluate and transform TL programs, preserving their functional semantics, and
possibly improving their performance. The tool is interactive. Given an initial
TL algorithm, it proposes a set of transformation rules along with their expected
performance impact. The programmer chooses a rule to be applied and successively
(after the application) the tool looks for new matches. This process is iterated until
the programmer deems the resulting program satisfactory, or there are no more
applicable rules.

The strategy of program transformation is in charge of the programmer since,
in general, the rewriting calculus of TL is not confluent: applying the same rules
in a different order may lead to programs with different performance. The best
transformation sequence may require a (potentially exponential) exhaustive search.

In the following, we define an abstract representation of TL programs and trans-
formation rules, we describe the algorithm used for rule matching, and finally we
sketch the structure of the tool.

Representing programs and rules

The Meta transformation system is basically a term-rewriting system. Both TL pro-
grams and transformation rules are represented by means of a novel data structure,
so-called dependence tree. Dependence trees are basically labeled trees, thus the
search for applicable rules reduces to the well established theory of subtree match-
ing [106]. The tool attempts to annotate as many nodes of the tree representation

2.2. THE META OPTIMIZATION TOOL 39

= = =

sa

reducescanL ds zs

as ys zs

ds+

+

reduce

Parse Tree (PT) Dependence Tree

DPblock

DPblock OutIn
Node attributes

ts

ys

Data Flow Graph (DFG)

map2

tsas

Arg(ys)*

* +

zsys
as

reducescanL

DPblock

In parameters Out parameters

*sa

map2

map2

scanLArg(as)*sa

Figure 2.2: The parse tree, the data flow graph and the dependence tree of poly-
nomial evaluation. Skel-BSP skeletons are in serif font. Special nodes are in slanted
serif font. Sequential functions are in italic font.

40 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Input: PT and DFG for a correct TL program. The starting node x is the root of PT. No
nested DPblock are allowed (which can be easily flattened).

Output: The dependence tree DT.

Method:

1. Let x denote the current node, starting from the root of PT;
2. Copy x from PT on DT along with the arc joining it with its parent (if any),

the arc is undirected as it comes from PT;
3. if not(x = DPblock)
4. then Recursively apply the algorithm to all sons of x in PT (in any order);
5. else Apply Procedure dpb(DPblock).

Procedure dpb(Node):
a. From Node follow backward the incoming edges in DFG;
b. for each node Ci reached in this way, do
c. Copy Ci from DFG to DT along with its out-coming edges;
d. Recursively apply dpb(Ci) until the starting node DPblock or a sink is reached;

In the former case add a node Arg to represent the formal parameter name.

Table 2.2: Building up the dependence tree.

as possible with a matching rule instance, i.e., a structure describing which rule can
be used to transform the subtree rooted at the node, together with the informa-
tion describing how the rule has been instantiated, the performance improvement
expected and the applicability conditions to be checked (e.g., the distributivity of
one operator over another).

The dependence tree is essentially an abstract syntax tree in which each non-leaf
node represents a skeleton, with sons representing the skeleton parameters that may
in turn be skeletons or sequential functions. The leaves must be sequential functions,
constants or the special node Arg(). Unlike a parse tree, a dependence tree directly
represents the data dependence among skeletons: if the skeleton Sk1 directly uses
data produced by another skeleton Sk2, then they will appear as adjacent nodes
in the dependence tree, irrespectively of their position in the parse tree. Each
edge in the dependence tree represents the dependence of the head node from the
data produced by the tail node. The dependence tree of a program is defined
constructively, combining information held in the parse tree (PT) and in the data
flow graph (DFG) of the program. The algorithm to build dependence trees is
shown in table 2.2. The algorithm is illustrated in Figure 2.2, which shows the parse
tree, the data flow graph and the correspondent dependence tree of the polynomial
evaluation example (see Section 2.2.1). The nodes labeled with DPblock mark the
minimum subtrees containing at least one data parallel skeleton, nodes Arg(as) and
Arg(ys) represent the input data of a DPblock . In other words, DPblock nodes
delimit the border between the task parallel and the data parallel layers.

It is important to understand why we need to introduce a new data structure
instead of using the parse tree directly. The main reason lies in the nature of the
class of languages we aim to deal with, i.e. mixed task/data parallel languages.
Nested skeleton calls find a very natural representation as trees. On the contrary,
data parallel blocks based on the single-assignment rule (e.g. Skel-BSP comp) need

2.2. THE META OPTIMIZATION TOOL 41

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a b c d

b d

c
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

a

x y

y

x

y

DPblockDPblock
In parameters

Dependence TreeData Flow Graph (DFG)

Replicated subtree

Arg

Arg

Arg

Figure 2.3: Replicating shared trees. Each triangle stands for a tree representing a
TL expression.

a richer representation in order to catch the dependences among the skeletons (for
example a data flow graph). The dependence tree enables us to compact all the
information we need in a single tree, i.e. in a data structure on which we can do
pattern-matching very efficiently.

There is one more point to address. The dependences shown in Figure 2.2 are
rather simple. In general, as shown in Figure 2.3, a data structure produced by a
single TL statement may be used by more than one statement in the rest of the
program. We have two choices: (1) to keep a shared reference to the expression
(tree), or (2) to replicate it. In option (1), the data flow can no longer be fully
described by a tree. In addition, sharing the subtrees rules out the possibility
of applying different transformations at the shared expression (tree) for different
contexts. The Meta transformational engine adopts the second option, allowing us
to map the data flow graph into a tree-shaped dependence structure. The drawback
of replicating expressions is a possible explosion of the code size when we rebuild a
TL program from the internal representation. To avoid this, the engine keeps track
of all the replications made. This ensures a single copy of all replicated subtrees
that have not been subject to an independent transformation.

Figure 2.4 depicts the internal representation of rule map fusion from Section 2.2.1.
We represent the two sides of the rule as dependence trees, some leaves of which are
variables represented by circled numbers. During the rule application, the instanti-
ations of the left-hand side variables are substituted against their counterparts on
the right-hand side. Figure 2.4 demonstrates how the conditions of applicability and
the performance of the two sides of a rule are reported to the programmer. Notice in
Figure 2.4 the “functional” fcomp, i.e. a special node used to specify rules in which

42 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Figure 2.4: Internal representation of rule map fusion, conditions of its applicability
and performance of the two sides of the rule.

two (or more) variables of the pattern are rewritten in the functional composition
of them. Since variables have no sons, Meta first rewrites variables as sons of fcomp,
then it makes the contractum {ν0 = f0, . . . νn = fn} and, afterwards the result is
equated using fcomp(f0, . . . fn) = fn ◦ · · · ◦ f0.

Rule matching

Since programs and rules are represented by trees, we can state the problem of
finding a candidate rule for transforming an expression as the well-known subtree
matching problem [115, 133, 106]. In the most general case, given a pattern tree P
and a subject tree T , all occurrences of P as a subtree of T can be determined in
time O(|P | + |T |) by applying a fast string matching algorithm to a proper string
representation [133]. Our problem is a bit more specific: the same patterns are
matched against many subjects and the subject may be modified incrementally by
the sequence of rule applications. Therefore, we distinguish a preprocessing phase,
involving operations on patterns independent of any subject tree, and a matching
phase, involving all operations dependent on some subject tree. Minimizing the
matching time is our first priority.

The Hoffmann-O’Donnell bottom-up algorithm [106] fits our problem better than
the string matching algorithm. With it, we can find all occurrences of a forest of
patterns F as subtrees of T in time O(|T |), after suitable preprocessing of the pattern
set. Moreover, the algorithm is efficient in practice: after the preprocessing, all the
occurrences of elements in F can be found with a single traversal of T . The algorithm
works in two steps: it constructs a driving table, which contains the patterns and
their interrelations; then, the table is used to drive the matching algorithm.

2.2. THE META OPTIMIZATION TOOL 43

The key idea of the Hoffmann-O’Donnell bottom-up matching algorithm is to
find, at each point (node) in the subject tree, the set of all patterns and all parts of
patterns which match at this point. Once we have assigned these sets to each node,
we have essentially solved the matching problem, since each match is triggered by
the presence of a complete pattern in some set. Notice that there can be only finitely
many such sets, because both the kinds of nodes and the set of sub-patterns are finite.
Thus we could precompute these sets, and code them by some enumeration to build
driving tables. Given such tables, the matching algorithm becomes straightforward:
traverse the subject tree in postorder and assign to each node the code of the set
of partial matches. However, for certain pattern forest the number of such sets
(thus the complexity of the generation of driving tables) grows exponentially with
the cardinality of the pattern set. For an extensive description of the bottom-up
matching we refer back to Hoffmann-O’Donnell paper [106] and Meta papers [8, 9].

Nevertheless, there is a broad class of pattern sets which can be preprocessed
in polynomial time/space in the size of the set. The current set of Skel-BSP rules
[14, 15, 172] and FAN rules [18] can be fully described by patterns that can be
preprocessed in polynomial time/space. In addition, since the driving table depends
only on the language and on the list of rules, it can be generated once and for all for
a given set of rules and permanently stored for several subsequent match searches.

2.2.3 Tool architecture and implementation

The transformation engine applies the matching algorithm in an interactive cycle as
follows:

1. Use the matching algorithm to annotate the dependence tree with the match-
ing rules.

2. Check whether the rules found satisfy the type constraints and whether the
side conditions hold (possibly interacting with the user).

3. Apply the performance estimates to establish the effect of each rule.

4. Ask the programmer to select one rule for application. In case no rule is
applied, terminate; otherwise start again from Step 1.

We envision the Meta tool as a part of a general tool implementing a trans-
formational refinement framework for a given target language TL. The global tool
structure is depicted in Figure 2.5 (the part already implemented is highlighted
with a dotted box). The whole system has two main capabilities: the conversion
between TL programs and their internal representation (dependence tree) and the
transformation engine working on dependence trees.

The system architecture is divided into five basic blocks:

1. The Front End converts a TL program into a parse tree and a data flow graph.

44 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

(by subsumption)
pattern sorting

pattern forest
generation

driving table
generation

subsumption graph

program
PT & DFG

rule list
PTs & DFGs

scanner / parser data dependence analyzerdata dependence analyzer

matches presentation
and user dialog

list of matched rules

the rule to apply

(4
)

T
ra

nf
or

m
at

io
n

E
ng

in
e

tree tranformation

dependence tree generation

pattern matching

Al
re

ad
y

Im
pl

em
en

te
d

!

list of dependence pattern trees
(lhs of rules representation)

(2
)

N
or

m
al

iz
at

io
n

driving table

(1
)

F
ro

nt
 E

nd

dependence tree
(program representation)

pattern library file

TL program
T

L
sp

ec
if

ic
T

L
sp

ec
.

cu
st

om
iz

ab
le

 v
ia

 in
st

an
ti

at
io

n
of

 th
e

A
D

T

in
de

pe
nd

en
t f

ro
m

T
L

TL program TL rules

bu
il

t b
y

L
E

X
 &

 Y
A

C
C

scanner / parser

(3
)

R
ul

e
M

an
ag

er

rebuild TL program from internal representation

(5
)

B
ac

k
E

nd

User Interaction

Figure 2.5: Global structure of the Meta transformation system.

2. The Normalization uses the PT and DFG to build the dependence tree both
for the TL program and for the set of transformation rules.

3. The Rule Manager implements the preprocessing of rules (preprocessing phase,
see Section 2.2.2); it delivers a matching table to drive the transformation
engine. The driving table may be stored in a file.

4. The Transformation Engine interacts with the user and governs the transfor-
mation cycle.

5. The Back End generates a new TL program from the internal representation.

A prototype of the system kernel (highlighted in Figure 2.5 with a dotted box)
has been implemented in Objective Caml 2.02. Our implementation is based on an

2.2. THE META OPTIMIZATION TOOL 45

abstract data type (ADT) which describes the internal representation (dependence
tree) and the functions working on it. The implementation is very general and
can handle, via instantiation of the ADT, different languages with the requirement
that rules and programs are written in the same language. Moreover, since several
execution models and many cost calculi may be associated with the same language,
any compositional way of describing program performance may be embedded in the
tool by just instantiating the performance formulae of every construct. We call a
cost calculus compositional if the performance of a language expression is either
described by a function of its components or by a constant.

The Meta transformation tool prototype is currently working under both Linux
and Microsoft Windows. A graphical interface is implemented using the embedded
OCaml graphics library.

2.2.4 A case study: design by transformation

We discuss how Meta can be used in the program design process for the MSS algo-
rithm, introduced in Section 2.2.1 and reported in the top-left corner of table 2.3.

First, the tool displays the internal representation of the program (Figure 2.6 (a))
and proposes 5 rules (Figure 2.6 (b)). The first one is pipe→comp rule, the others
are instances of the farm introduction rule. The four stages of the pipe use exactly
the same data distribution, but since each stage use a different set of processors
each stage has to scatter and gather each data item. Transforming the pipe in
a comp (that uses just one set of processors) would get rid of many unnecessary
data re-distributions. Let us suppose the user chooses to apply the pipe→comp rule
achieving the program version shown in Figure 2.6 (c). Next, Meta proposes a pair of
rules (Figure 2.6 (d)): SAR-ARA to further reduce the number of communications
into the comp, thus to optimize the program behavior on a single data item, and farm
introduction to enhance the parallelism among different data items of the stream.
Both rules may improve the performance of the program, let us suppose to choose
the SAR-ARA (Figure 2.6 (e)).

Then, the transformation process continues choosing (in sequence) map fusion
rule (2 times) and farm introduction rule. The resulting program is only one of the
more than twenty different formulations Meta is able to find applying the transfor-
mation rules to the initial program. table 2.3 shows some of the semantic-equivalent
formulations derivable.

In the rest of this section, we discuss a cost prediction model for Skel-BSP and
we give some results of its accuracy on a concrete parallel architecture.

It is worth reminding that choosing in every step the transformation with the
best performance gain does not guarantee to find the fastest program (optimum).
Nevertheless, the knowledge of the performance gain/loss of each transformation is
quite important to the programmer, since they can make decisions or build trans-
formation strategies (e.g. greedy, tabu search, etc.) using such kind of information.
An accurate prediction of transformations cost is quite important to this end.

46 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 13 (SAR−ARA)

Would you like to apply any rule [0=Exit] 2

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

3) rule n. 10 (map fusion)

Matches Found:

1) rule n. 18 (farm introduction)
2) rule n. 10 (map fusion)

Would you like to apply any rule [0=Exit] 2

Would you like to apply any rule [0=Exit] 0

2) rule n. 18 (farm introduction)
1) rule n. 17 (farm elimination)

Matches Found:

(a)

(c)

(e)

(g)

(i)

Matches Found:

1) rule n. 1 (pipe −> comp)
2) rule n. 18 (farm introduction)
3) rule n. 18 (farm introduction)
4) rule n. 18 (farm introduction)
5) rule n. 18 (farm introduction)

Would you like to apply any rule [0=Exit] 1

Matches Found:

1) rule n. 17 (farm introduction)

Would you like to apply any rule [0=Exit] 1

(b)

(d)

(f)

(h)

(j)

(l)

pipe−>comp

SAR−ARA

map fusion

map fusion

farm intro

(k)

Figure 2.6: Transformation of the MSS program using the Meta tool. Skel-BSP
skeletons are in serif font. Special nodes are in slanted serif font. Sequential functions
are in italic font.

2.2. THE META OPTIMIZATION TOOL 47

�������� �
��� �����
����	 ����
��� ���

����� ��� � ��

���� ���
���

��

�����
�����������

��

�� ���� ��� ��

�������� �
��� �����
�
������	 �����
��� ���

����� ��� �

�� ���� ��� ��

�������� �
��� �����
�
������	 �����
�
����� ����

����� ��� �

�������� ���� �� �� �� �
����� ���� ��
������	 ��� ��
	���� �� ��
��
����� ��� 	���

�������

��

�������� �
��� �����
����	 ����
�
����� ����

����� ��� �

��

���� ���������

��������

�� ���� ��� ��

�������� �
��� �����
����	 ����
�
����� ����
�
��
����� ���� �

�������� ���� �� �� �� �
����� ���� ��

���� ���� ��
��
�����
������������
�
���� �� ��
����� �� �

		 ��� ������

�������� ���� �� �� �� �
����� ����� Æ ����� ��

�
�����
������������ ��
����� ��� Æ ���
 �

��� ������

		

		 ���� ���

�
����� �
���� ���� �� �� �� �
����� ����� Æ ����� ��

�
�����
������������ ��
����� ��� Æ ���
 ��

Table 2.3: Some of the transformations proposed by Meta for the MSS example.
The double-arrow path denotes the derivation path followed in Figure 2.6.

In the case of Skel-BSP equipped with BSP costs, such prediction is pretty accu-
rate. In the following section, we give evidence of this accuracy through the following
steps. We first describe how Skel-BSP is implemented on a BSP abstract machine
running on our concrete parallel architecture. Then we describe how programs and
rules can be costed in this implementation. Finally, we compare the predicted and
measured performance figures of two versions of our MSS example and compare the
performance gain predicted by one transformation rule used by Meta with the real
measured figures.

Prototyping Skel-BSP. Our Skel-BSP prototype is implemented using the C lan-
guage and the PUB library (Padeborn University BSP-library [44]). The PUB li-
brary is a C-library of communication routines. These routines allow straightforward
implementation of BSP algorithms.

The PUB library offers the implementation of a superset of the BSP Worldwide
Standard Interface [96]. In addition, PUB offers some collective operations (scan
and reduce), and it allows creating independent BSP objects each representing a
virtual BSP computer. The last two features make PUB particularly suitable for
prototyping Skel-BSP programs:

48 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

1. PUB collective operations may be used to implement Skel-BSP collective op-
erations in a straightforward way. Unfortunately, PUB requires all operations
used in scan and reduce to be commutative. Thus, the direct mapping from
PUB to Skel-BSP collective operations may be done only if operations involved
are commutative.

2. Independent (virtual) BSP computer may be used to implement effectively task
parallel skeletons in Skel-BSP. Task parallel activities are often asynchronous
on different pool of processors, and do not require all processing elements to
synchronize at each superstep. PUB offers the possibility to divide a BSP
computer in several subgroups each representing a virtual BSP computer. In
this way, computations among processors belonging to different subgroups
may proceed asynchronously since superstep barriers involve only processors
belonging to the same subgroup.

Since global operations Op+ and Op3 we used in MSS programs are associa-
tive but not commutative, we extended PUB with a new parallel prefix operation
(TPscanL) that requires global operations only to be associative. TPscanL is imple-
mented using message passing primitives of PUB (send, receive, broadcast) following
the two-phase BSP algorithm:

1. Each processor performs a (local) reduce on the local portion of the structure
and broadcasts the result to all the processors with greater index.

2. Processor i > 0 computes the ith segment of the prefix performing a local scan
of the prefix array extended (on the left) with the i results received from all
processors with index lower than i.

The two-phase parallel prefix algorithm is sketched in Figure 2.7 using + as
global operation. Let p be the number of processors, n the length of prefix array
(assumed multiple of p), tOp the cost of the global operation, msg the size of a prefix
array element and {g, l} the usual BSP cost parameters. The BSP cost of TPscanL
is:

T (TPscanL Op) =

(
n

p
− 1

)
tOp︸ ︷︷ ︸

Phase1

+ g (p − 1) msg + l︸ ︷︷ ︸
barrier

+

(
n

p
+ p − 2

)
tOp︸ ︷︷ ︸

Phase2

The two-phase algorithm is just one of the possible choices for the parallel prefix
problem. We use the two-phase parallel prefix TPscanL to implement both Skel-BSP
scanL and reduce. Notice that, to check the effectiveness of the transformation
process, we only need to have an implementation with known cost, we do not need a
particularly good implementation. For a comparison between two-phase algorithm
and others BSP parallel prefix algorithms we refer back to [172].

2.2. THE META OPTIMIZATION TOOL 49

7 8 9

4 5 61 2 3 7 8 9

scan scan scan

1 2 3 4 5 6

reduce reduce

6 6 15

1 3 6 10 21 28 4515 36

Phase 2

Phase 1

Barrier

T
im

e

Processors

6 15
P 0

P 0 P 1

P 2

P 2

P 1

Figure 2.7: Two-phase BSP parallel prefix (TPscanL) using + as global operation.

Running and costing MSS programs. We focus on two different MSS Skel-BSP
programs found using Meta and the proposed set of rules. Let us call mss c and
mss e the programs in Figure 2.6 (c) and (e), respectively. mss e is obtained from
mss c using the SAR-ARA rule, as follows:

�������� � ���� �� �	 �
 �
����� ���� ��
����	� ��� ��
����� �� ��
�������� 	�� ��

�������

�������� � ���� �� �	 �
 �
����� ���� ��

���� ���� ��
��������
��������	���
�
���� �� ��
����� �� �

We describe the expected BSP cost of the two programs. Afterwards, we run
a prototype of the two programs on a concrete parallel architecture, consisting in
a cluster of Pentium II PCs (@266MHz) interconnected by a 100Mbit switched
Ethernet. We instantiate cost formulae with BSP parameters collected during the
experiments, miming the behavior of Meta. Finally, we discuss the accurateness
of expected performance predicted by Meta using cost formulae with respect to
experimental performance.

Let us assume each processor holds n/p elements of the input array. Since the
comp skeleton executes its components in sequence, the cost of the mss c program is
figured out summing up the costs of each skeleton appearing into the comp. Notice
we use the same primitive (TPscanL) to implement both scanL and reduce, thus
the reduce will cost as much as scanL. All operations work on integers (4 bytes
long). The pair operation consists in copying an integer, thus costs one BSP basic
operation (1 ·s); the cost of the projection P1 is zero. Messages sizes are two integers
for the first TPscanL and one integer for the second one. The cost of Op+ operation
is assessed in 3 · s, while max costs just 1 · s. In total, we assess for the mss c

50 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

program:

T (mss c) = T (map pair int) + T (TPscanL Op+) + T (TPscanL max)

= s · (9 n/p + 4p − 12) + 12g(p − 1) + 2l

In the same way we evaluate the cost of the mss e program. The first pair operation
consists in copying one integer while the second pair in copying two integers, the
total cost is 3 · s. The message size for TPscanL is four integers. The cost of
Op3(Op+,max) is 7 · s. In total we assess for the mss e program:

T (mss e) = T (map pair int) + T (map pair int[2]) + T (TPscanL Op3(Op+,max))

= s · (17 n/p + 7p − 21) + 16g(p − 1) + l

Each run consists in evaluating the MSS for 300 input arrays on several cluster
configurations (2, 4, 8, 16 PCs). The length of input arrays ranges from 213 to 218

integers. All standard BSP parameters are profiled directly by the PUB library:

s = 5.7 · 10−8 (17.54 M BSPOps/sec)

g = 0.2 · 10−6 (500 K Bytes/sec) (2.1)

l = 3.2 · 10−4 · p (640 – 5120 µsecs, with p = 2 – 16)

Predicted performance and experimental performance of mss c and mss e programs
are compared in Figure 2.8 a) and b), respectively. Considering all experiments,
the average relative error of predicted performance with respect to experimental
performance is 13% with 7% of standard deviation.

Performance driven transformations

Given a language and a set of semantic-preserving transformations, the Meta tool
assists the user in the transformation process. The transformation process may be
also performance driven, provided each rewriting rule is equipped with a perfor-
mance formula, which depends on the particular skeleton implementations for the
target language. In such case, proposing a transformation to the user, Meta sug-
gests in which cases the transformation is advantageous, and what is the predicted
performance for the transformed program. The prediction is figured out instantiat-
ing performance formulae with architecture parameters (e.g. BSP parameters) and
basic operations cost (e.g. tOp+ , tOp3).

Let us consider the application of SAR-ARA rule. Prototyping Skel-BSP as
described in Section 2.2.4, thus supposing both scanL and reduce Skel-BSP skeletons
are implemented using TPscanL, and BSP parameters are assigned as (2.1), the
SAR-ARA rule is advantageous when:

n <
p2

s

(
−3 s

8
− g

2

)
+

p

s

(
9 s

8
+

g

2
+ l

)
= 1.6p + 654.9p2 (2.2)

2.2. THE META OPTIMIZATION TOOL 51

Instantiating this formula with n and p, the Meta user may decide for each instance
of the problem if the SAR-ARA application is advantageous, i.e. if mss e perform
better than mss c. The same decision may be made on real data using Figure 2.9,
which offers another view of data collected running mss c and mss e programs on
several cluster configurations and array lengths. In the picture, given a point (p, n)
in the (x, y)-grid, the best MSS program for that point is the one that belongs to
the lower surface in the point. The (interpolated) intersection of the two surfaces is
projected on the (x, y)-plane.

Finally, to give the flavor of accurateness in performance gain/loss prediction for
rules, we compare the predicted and experimental behavior of Skel-BSP SAR-ARA
rule. In Figure 2.10 the (p, n)-plane is partitioned by equation (2.2) and by the
experimental performance of both mss c and mss e. The picture shows that (2.2)
strikingly models the real behavior of the two programs in this case.

Notice that a more effective implementation of reduce would move the border in
Fig 2.10 making greater the area where mss e is faster.

Conclusions

We have discussed the design and the implementation of an interactive, graphi-
cal transformation tool for skeleton-based languages. The Meta tool is (indeed)
language-independent and is easily customizable with a broad class of languages,
rewriting rules and cost calculi.

The design of our transformation engine Meta was influenced by the PARAMAT
system [119]. However, our approach differs in many aspects. First, our goal is
the optimization of high-level parallelism, rather than the parallelization of low-
level sequential codes. Second, we do not define (as PARAMAT does) any a priori
“good” parallel structure, we rather try to facilitate the exploration of the solution
space towards the best parallel structure.

In addition to the described features, Meta may be instantiated with a set pre-
defined heuristics to work as semi-automatic optimization tool. As an example
Meta recognizes Skel-BSP data-parallel-free programs and optimizes them with a
standard sequence of rewriting rules. Such program formulation (called normal
form) is proved to be, under mild requirements, the fastest among the semantic-
equivalent formulations that can be obtained using the rewriting rules [15].

Meta assists the user in the transformation process also driving it with perfor-
mance predictions, even if, it is clear that the accurateness of prediction made by
Meta primarily depends on the accurateness of the target language cost calculus.
The use of Meta with FAN has proved that in many cases good parallel programs
can be obtained via transformations [18]. Described experiments (Section 2.2.4) on
Skel-BSP enforce the accurateness in the prediction of performance gain/loss due to
a rule.

52 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

a) mss c program (predicted performance, experimental performance)

213 214 215 216 217 218
Length

3

4

5

6

7
Time 8 Processors

213 214 215 216 217 218
Length

3.5

4

4.5

5

5.5

Time 16 Processors

213 214 215 216 217 218
Length

5

10

15

20

25

30

Time 2 Processors

213 214 215 216 217 218
Length

2

4

6

8

10

12

14

Time 4 Processors

b) mss e program (predicted performance, experimental performance)

213 214 215 216 217 218
Length

2

4

6

8

10

Time 8 Processors

213 214 215 216 217 218
Length

3

4

5

6

Time 16 Processors

213 214 215 216 217 218
Length

10

20

30

40

Time 2 Processors

213 214 215 216 217 218
Length

5

10

15

20

Time 4 Processors

Figure 2.8: a) mss c and b) mss e: Comparing predicted performance (solid lines)
with experimental performance (dotted lines). Each experiment is performed on
several array lengths (x-axis). Four different cluster configurations are experimental
(2,4,8,16 processors).

2.2. THE META OPTIMIZATION TOOL 53

Hidden surface

mss_c faster

fastermss_e

1

10

4
8

16 2^13
2^14

2^15
2^16

2^17
2^18

2

mss_c

Processing Time (secs)

Processing Elements (p) Array Length (n)

mss_e

Figure 2.9: Experimental performance of mss c and mss e programs on several
cluster configurations and several array lengths.

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

fastermss_c

mss_e

mss_e

2^13

2^14

2^15

2^16

2^17

2^18

2 4 6 8 10 12 14 16

A
rr

ay
 L

en
gt

h
(n

)

Processing Elements (p)

fastermss_e

predicted faster

experimental faster

Figure 2.10: SAR-ARA rule: Predicted and experimental behavior (mss e is faster
than mss c when SAR-ARA is advantageous).

54 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

2.3 Exploiting efficient skeletons in Java

The Java programming environment includes features that can be naturally used to
address network and distributed computing: JVM and bytecode, multi-threading,
remote method invocation, socket and security handling and, more recently, JINI,
Java Spaces, Servlets, etc. [160]. Many parallel/distributed applications have been
developed using these features [111]. Also, many efforts have been performed to
make Java a more suitable programming environment for parallel computing. In
particular, several projects have been started that aim at providing features that can
be used to develop efficient parallel Java applications on a range of different parallel
architectures [108, 155]. Such features are either provided as extensions to the base
language or as class libraries. In the former case, ad hoc compilers and/or run-time
environments have been developed and implemented. As an example extensions of
the JVM have been designed that allow plain Java threads to be run in a seamless
way on the different processors of a single SMP machine [20, 23]. In the latter,
libraries are supplied to the programmer that simply uses them within his parallel
code [134, 113].

In this section we discuss a new Java parallel programming environment, Lithium,
which differs from the environments cited above and which is meant to be a further
step in the direction of the design of user friendly, efficient, parallel programming en-
vironments based on Java. Lithium is a Java library that supports structured parallel
programming. It is based on the algorithmical skeleton concept. Skeletons have been
originally conceived by Cole [59] and then used by different research groups to de-
sign high performance structured parallel programming environments [26, 29, 154].
A skeleton is basically an abstraction modeling a common, reusable parallelism ex-
ploitation pattern. Skeletons can be provided to the programmer either as language
constructs [26, 29] or as libraries [72, 75, 120]. They can be nested to build complex
parallel applications. The compiling tools of the skeleton language or the skeleton
libraries take care of automatically deriving/executing actual, efficient parallel code
out of the skeleton application without any direct programmer intervention [140, 75].

In order to write a working parallel application using a skeleton based paral-
lel programming environment, the programmer must usually perform the following
steps:

� first, the programmer must express the parallel structure of the application by
using a proper skeleton nesting;

� then, the programmer must write the application specific sequential portions
of code used as skeleton parameters;

� eventually the programmer must simply compile and link the resulting code
to obtain running, parallel object code.

Lithium provides the programmer with a full Java, skeleton based parallel pro-
gramming environment. The library supports common skeletons, including pipelines,

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 55

task farms, iterative and data parallel skeletons. Using Lithium, the programmer can
set up a parallel application instantiating the skeletons provided, nesting them, pro-
viding tasks to be computed (input data), asking the parallel computation of the
resulting program on a set of interconnected workstations and eventually get (and
use) the results of such parallel computation.

As an example, the programmers can express their parallel application as a
pipeline having stages that are either sequential or exploit data parallelism. Then,
they can prepare the sequential portions of code implementing sequential stages
and those implementing data decomposition, processing and recomposition relative
to the data parallel stages. They can denote such portions of code as the proper
pipeline, data parallel stages. Eventually they can compile and run the resulting
program. When a working instance of the application has been obtained and tested,
the programmer can start a performance refinement step. During this activity they
can tune either the skeleton structure or the skeleton parameters in such a way that
performance bottlenecks are removed/mitigated [140].

The implementation of Lithium fully exploits Java RMI to distribute computa-
tions across different processing elements of the target architecture. Java reflection
features are also exploited to make the Lithium API simpler. Last but not least,
the clean OO structure of Lithium code also allows the sequential execution (emu-
lation, actually) of a parallel program onto a single machine. This is a very useful
feature during functional application code debugging. Actually, Lithium represents
a consistent refinement and development of a former work [69]. Main differences
lay in the larger skeleton set implemented ([69] only handles embarrassingly parallel
computations, while Lithium provides a complete skeleton set) and in the implemen-
tation of a set of optimization rules that may significantly enhance skeleton program
performances. The optimization rules implemented in Lithium extend the ones dis-
cussed in [15] and [9]. They have not yet been used in any other skeleton based
programming environment.

The Lithium library is presented as follows: in Section 2.3.1 we describe the
skeletons provided by Lithium; in Section 2.3.2 we describe the optimization strate-
gies implemented by Lithium (and available on user request); in Section 2.3.3 we
outline the Lithium API. Eventually, in Section 2.3.4 we describe how the library is
implemented exploiting macro data flow, and in Section 2.3.5 we report achieved
experimental results.

2.3.1 Lithium skeletons

Lithium provides both task parallel and data parallel skeletons. All the skeletons
work on streams, i.e. process a stream of input tasks to produce a stream of results.
We denote streams3 by angled braces (e.g. 〈x1, x2, . . . , τ〉) and we use a non strict
stream constructor denoted by :: having type (Stream × Stream → Stream). Empty

3Both finite and infinite streams, i.e. lists and non-strict lists, respectively.

56 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

1. seq f 〈x, τ〉� → 〈f x〉� :: seq f 〈τ〉�

2. farm ∆ 〈x, τ〉� → ∆ 〈x〉O(�,x) :: farm ∆ 〈τ〉O(�,x)

3. pipe ∆1 ∆2 〈x, τ〉� → ∆2 [∆1 〈x〉�]O(�,x) :: pipe ∆1 ∆2 〈τ〉�

4. comp ∆1 ∆2 〈x, τ〉� → ∆2 [∆1 〈x〉�]� :: comp ∆1 ∆2 〈τ〉�

5. map fc ∆ fd 〈x, τ〉� → fc (α ∆) fd 〈x〉� :: map fc ∆ fd 〈τ〉�

6. d&c ftc fc ∆ fd 〈x, τ〉� → d&c ftc fc ∆ fd 〈x〉� :: d&c ftc fc ∆ fd 〈τ〉�

d&c ftc fc ∆ fd 〈y〉� =
{

∆ 〈y〉� iff (ftc y)
fc (α (d&c ftc fc ∆ fd)) fd 〈y〉� otherwise

7. for i ∆ 〈x, τ〉� → ∆(∆(· · · (∆︸ ︷︷ ︸
i times

〈x〉�) · · ·)) :: for i ∆ 〈τ〉�

8. while ftc ∆ 〈x, τ〉� →
{

while ftc ∆ (∆ 〈x〉� :: 〈τ〉�) iff (ftc x)
〈x〉� :: while ftc ∆ 〈τ〉� otherwise

9. if ftc ∆1 ∆2 〈x, τ〉� →
{

∆1〈x〉� :: if ftc ∆1 ∆2 〈τ〉� iff (ftc x)
∆2〈x〉� :: if ftc ∆1 ∆2 〈τ〉� otherwise

Figure 2.11: Lithium operational semantic. x, y ∈ Value; σ, τ ∈ Value∗; �, �i, . . . ∈
Label = Strings ∪ {⊥}; O : Label × Value → Label.

farm (seq f) 〈x1, x2, x3, x4, x5, x6〉⊥ →∗

seq f 〈x1〉1 :: seq f 〈x2〉2 :: seq f 〈x3〉3 :: farm (seq f) 〈x4, x5, x6〉⊥ →∗

seq f 〈x1〉1 :: seq f 〈x2〉2 :: seq f 〈x3〉3 :: seq f 〈x4〉4 :: seq f 〈x5〉5 :: seq f 〈x6〉6 →∗

〈f x1〉1 :: 〈f x2〉2 :: 〈f x3〉3 :: 〈f x4〉4 :: 〈f x5〉5 :: 〈f x6〉6 →∗

〈f x1, f x2, f x3, f x4, f x5, f x6〉⊥

pipe (seq f) (seq g)〈x1, x2, x3, x4〉⊥ →∗

(seq g) [seq f 〈x1〉⊥]1 :: (seq g) [seq f 〈x2〉⊥]1 :: pipe (seq f) (seq g)〈x3, x4〉⊥ →∗

(seq g)[seqf〈x1〉⊥]1 :: (seq g)[seqf〈x2〉⊥]1 :: (seq g)[seqf〈x3〉⊥]1 :: (seq g)[seqf〈x4〉⊥]1 →∗

seq g 〈f x1〉1 :: (seq g) [seq f 〈x2〉⊥]1 :: (seq g) [seq f 〈x3〉⊥]1 :: (seq g) [seq f 〈x4〉⊥]1 →∗

〈g ◦ f x1〉1 :: seq g 〈f x2〉1 :: (seq g) [seq f 〈x3〉⊥]1 :: (seq g) [seq f 〈x4〉⊥]1 →∗

〈g ◦ f x1〉1 :: 〈g ◦ f x2〉1 :: seq g 〈f x3〉1 :: (seq g) [seq f 〈x4〉⊥]1 →∗

〈g ◦ f x1〉1 :: 〈g ◦ f x2〉1 :: 〈g ◦ f x3〉1 :: 〈g ◦ f x4〉1 →∗

〈g ◦ f x1, g ◦ f x2, g ◦ f x3, g ◦ f x4〉⊥

Figure 2.12: Stream label usage examples.

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 57

streams are denoted by 〈〉.
All the skeletons are assumed to be stateless. No concept of “global state” is

supported by the implementation, but the ones explicitly programmed by the user,
possibly exploiting plain Java mechanisms (e.g. RMI servers encapsulating shared
data structures, whose services/methods are invoked by code used to express compu-
tations within skeletons). In particular, static (class) variables cannot be used in the
definition of Lithium code to share information across different concurrent/parallel
entities.

The Lithium skeletons are fully nestable. Each skeleton has skeleton type param-
eters that model the computations encapsulated in the related parallelism exploita-
tion pattern.

The skeletons (∆) provided by Lithium are defined as follows:

∆ ::= seq f |
farm ∆ | pipe ∆1 ∆2 | comp ∆1 ∆2 |
map fd ∆ fc | d&c ftc fd ∆ fc |
for i ∆ | whileftc ∆ | ifftc ∆1 ∆2

f, fc, fd, ftc ::= Sequential Java functions4.

and a Lithium program is a skeleton expression:

Lithium prog ::= ∆ : 〈σ〉 → 〈τ〉

processing a stream of input data 〈σ〉 and producing a stream of output results 〈τ〉.
Sequential functions fc, fd represent families of functions that enable the splitting of
a singleton stream in tuples of singleton streams and vice-versa: fc : 〈◦〉∗ → 〈◦〉 and
fd : 〈◦〉 → 〈◦〉∗, being 〈◦〉 the singleton stream. As an example fc, fd may be used to
split an array in their rows/columns and join them back to the original array shape.

Intuitively, seq skeleton just encapsulates sequential portions of code in such a
way they can be used as parameters of other skeletons; farm and pipe skeletons model
usual task farm (alias embarrassingly parallel) computations and computations or-
ganized in stages ; comp models pipelines with stages executed serially (on the same
processing element); map models data parallel computations: fd decomposes the
input data into a set of possibly overlapping data subsets, the inner skeleton com-
putes a result out of each subset and the fc function rebuilds a unique result out of
these results; d&c models divide and conquer computations: input data is divided
into subsets by fd and each subset is computed recursively and concurrently until
the ftc condition does not hold true. At this point results of subcomputations are
conquered via the fc function. Last but not least, for, while and if skeletons model
finite iteration, indefinite iteration and conditional.

More formally, the operational semantics of the Lithium skeletons is described in

4Namely the run() method call of an instance of JSkeletons class (see Section 2.3.3).

58 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Figure 2.11 (a full version of these semantics appears in [16]. Here curly braces de-
note tuples (e.g. {x1, · · · , xk}), α represents the apply-to-all on tuples (α ∆ {x1, · · · , xk}
= {∆ x1, · · · , ∆ xk}) and all the functions used are assumed to be strict, but the
infix stream constructor :: which is only strict in his first argument5. Actually, in
all those cases where a rule such as

Skel . . . 〈x, τ〉� → F(x) :: Skel . . . 〈τ 〉�

holds6, then another further rule holds, which is not summarized in Figure 2.11 to
avoid clobbering the figure:

Skel . . . 〈x〉� → F(x)

In the computation of a Lithium skeleton program parallelism comes from two
distinct sources:

• data parallelism: all the computations in the α apply-to-all may be performed
in parallel (in map and d&c skeletons)

• task parallelism: each item of a stream (e.g. a (strict) function application
appearing within some :: operators) may be computed in parallel with any
other function application appearing in the same stream provided that their
labels differ;

In fact, in this operational semantics, streams are labeled and different skeletons
behave differently with respect to labels. The idea here is that labels are used to
distinguish computations that may be performed in parallel from those that may
not. Function O(�, x) simply returns a “fresh”, unused label built using information
coming from the previously used label � and from the current data item x.

Therefore, each data item processed by a farm is given a fresh label, modeling the
fact that embarrassingly parallel task farm computations can all possibly happen
concurrently. Pipeline keeps labels in such a way that first and second stage cannot
be computed in parallel on the same data item.

As an example, consider the computations described in Figure 2.12. The opera-
tional semantics rewrites the farm computation relative to a six item stream by an
expression involving seq skeletons (first half of Figure 2.12). All the seq skeletons
work on singleton stream with different labels. Therefore all the seq f 〈xi〉lj can
be possibly computed concurrently. When pipelines are used (second half of Figure
2.12) another seq based expression is derived, whose terms happen to have all the
same label. Therefore, at the beginning only one seq skeleton can be computed, i.e.
the rightmost of those with the ⊥ label. From this step on, two expressions happen
to have a different label: one relative to the computation of the first pipeline stage

5Therefore :: evaluates arguments left-to-right.
6Skel ∈ [seq, farm, pipe, comp, map, d&c, for, while, if]

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 59

(with ⊥ label) and one relative to the computation of the second pipeline stage
(with 1 label): these skeleton expressions can actually be computed in parallel.

Lithium supports most of the skeletons discussed in previous skeleton/structured
parallel programming works [26, 29, 154, 140, 132], and allows a reasonably large
number of parallel applications to be implemented. The architectural design of
Lithium also allows relatively easy extension of the skeleton set (see Sec. 2.3.4) in
case it is needed.

2.3.2 Skeleton optimizations

We define a stream parallel skeleton composition as a skeleton expression only holding
pipe, farm and seq skeletons. For such composition we inductively define the fringe
(φ) as follows:

φ(∆) =

⎧⎨
⎩

seq f ∆ = seq f
comp φ(∆1) φ(∆2) ∆ = pipe ∆1 ∆2

φ(∆w) ∆w = farm ∆w

In [15] we demonstrated that for any stream parallel skeleton composition ∆
a normal form ∆ exists (with ∆ = farm φ(∆)) such that it computes the same
program computed by ∆ with a performance equal or better than the one of the
original skeleton composition ∆ (i.e. Ts(∆) ≤ Ts(∆), with Ts(∆) the service time
of the skeleton program ∆). Equivalence of normal and non normal form is derived
by using the skeleton “functional” semantics that can be easily derived from the
operational semantics described in Figure 2.11. The relationship between perfor-
mance of normal and non normal form is derived using a simple, ideal, logP-like
performance model taking into account both sequential computation time and com-
munication time. As an example, the performance model defines Ts(farm ∆) as the
min{max{Ti(∆), To(∆)}, Ts(∆)}. Here, Ti and To represent the time spent in de-
livering a new task and retrieving the computed result to and from the processing
element computing the task, respectively. In other words, the time needed to ac-
cept a new input task in an embarrassingly parallel computation (the stateless farm)
is determined by the minimum between the time spent in communicating data to
and from the remote processing elements and the time spent in actually computing
results out of the input tasks.

Starting from these results, while developing Lithium we also demonstrated two
further results concerning skeleton tree (nesting) optimizations. The first one ex-
tends normal form to data parallel skeleton nesting with stream parallel only work-
ers:

given a skeleton program ∆ = map fd ∆w fc, with ∆w being a stream parallel
skeleton composition, a normal form exists ∆ = map fd ∆w fc such that
Ts(∆) ≤ Ts(∆).

60 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

The second one concerns resources (processing elements) used by normal a non nor-
mal form programs. In theory, and according to the operational semantics of Figure
2.11, the execution of a skeleton program needs, at any time, a set of processing
elements holding a distinct processing element for each concurrent activity7. The
amount of resources needed to compute a skeleton program is the maximum number
of elements in this set measured during the whole program execution. We denote
such number by #(∆). Under this assumptions:

for any skeleton program ∆ being either a stream parallel skeleton composi-
tion or a map fd ∆w fc with ∆w a stream parallel skeleton composition then
#(∆) ≤ #(∆).

A full proof of these new results is described in [161]. The point we want to
make here is that these results guarantee that Lithium can perform effective opti-
mizations in the execution of skeleton code. Actually, Lithium performs automatical
transformation of skeleton nestings into normal form, before proceeding to compute
the programs. The user may explicitly ask to avoid such transformations.

2.3.3 Lithium API

Lithium provides the programmer with a set of classes implementing the skeletons
described in Section 2.3.1. The classes can be used to instantiate objects that will
populate the skeleton nesting modeling the parallel behavior of the applications.
All the skeletons are provided as subclasses of a JSkeletons abstract class. This
class defines two abstract methods: the first one is a public Object run(Object)

method. It is used to encapsulate a sequential portion of code (in case of sequential
skeleton) or the code that sequentially emulates the parallel skeleton behavior (in
case of the other, non sequential skeletons). The second method defined is a pro-
tected Object[] getSkeletonInfo() method, which is basically used by Lithium
to gather the information needed to build the application skeleton nesting.

Therefore, a Lithium sequential skeleton is nothing but a subclass of the Lithium
abstract class JSkeletons providing and implementation of the abstract method
public Object run(Object), while a farm is modeled via the Farm JSkeletons

subclass, the pipe via the Pipe one, etc. All the details relative to skeleton definition
in Lithium can be found in [161]. Lithium source code is available as open source8

with Javadoc documentation as well.
Beside defining skeleton nestings, Lithium API provides a way to execute such

skeleton programs. This is accomplished through objects of the Ske class. This
class provides the object actually taking a skeleton program, a set of input tasks
and providing to compute the program in parallel. After creating a Ske object,
a setProgram(JSkeletons pgm) method can be invoked to define which skeleton

7I.e. each one of the function applications labelled with different labels and each one of the
computations happening within an apply-to-all.

8At www.sourceforge.net/projects/massivejava or Lithium home page [62].

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 61

import lithium.*; ...
public class SkeletonApplication {
public static void main(String [] args) {
...
// define skel. program
Worker w = new Worker();
Farm f = new Farm(w);
// setup evaluator
Ske evaluator = new Ske();
evaluator.setProgram(f);
String [] hosts = {"alpha1","alpha2",

"131.119.5.91"};
evaluator.addHosts(hosts);
// prepare input tasks
for(int i=0;i<ntasks;i++)

evaluator.setupTaskPool(task[i]);
evaluator.stopStream();
evaluator.parDo();
// ask parallel computation
while(!evaluator.isResEmpty()) {

Object res = evaluator.readTaskPool();
... // consume results

}
}}

Figure 2.13: Sample Lithium code: parallel application exploiting task farm paral-
lelism.

program is to be executed, an addHosts(String [] hostlist) method can be
called to provide the names of the machines to be used for parallel execution, some
setupTaskPool(Object task) can be invoked to provide the task items of the input
stream, a parDo() method call can be issued to start parallel program execution
and eventually Object readTaskPool() method can be invoked to read the results
computed.

In summary, in order to write parallel applications using Lithium skeletons, the
programmer should perform the following steps:

1. define the skeleton structure of the application;

2. declare a Ske object and define the program (the skeleton code defined in the
previous step) to be executed by the evaluator as well as the list of hosts to
be used to run the parallel code;

3. setup a task pool hosting the initial tasks;

4. start the parallel computation issuing a parDo() method call;

5. retrieve and process the final results.

62 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

...
public static void main(...) {
 ...
 Ske evaluator = ...
 ...
 evaluator.parDo();

class SkeletonApplication {

controlThread[i]

remoteHost[i].execute(..)
store resulting fireable MDFi

fetch fireable MDFi

store resulting fireable MDFi

fetch fireable MDFi

controlThread[j]

remoteHostj].execute(..)

LithiumServer {
...
public TaskItem[]
 execute(TaskItem[] t)
...
public static void main() {
...
LithiumServer worker = new ...
Naming.rebind("LithiumWorker", worker);
...
}

LithiumServer {
...
public TaskItem[]
 execute(TaskItem[] t)
...
public static void main() {
...
LithiumServer worker = new ...
Naming.rebind("LithiumWorker", worker);
...
}

PE0 PEi

PEj

Figure 2.14: Lithium architecture.

Figure 2.13 outlines the code needed to setup a task farm parallel application pro-
cessing a stream of input tasks by computing, on each task, the sequential code de-
fined in the Worker run method. The application runs on three processors (the hosts
ones). The programmers are neither required to write any (remote) process setup
code nor any communication, synchronization and scheduling code. They issues
an evaluator.parDo() call and the library automatically computes the evaluator

program in parallel by forking suitable remote computations on the remote nodes.
In case the user simply wants to execute the application sequentially (i.e. to func-
tionally debug the sequential code), they can avoid to issue all the Ske evaluator
calls. After the calls needed to build the JSkeletons program they can issue a
run() method call on the JSkeletons object. In that case, the Lithium support
performs a completely sequential computation returning the results that the par-
allel application would eventually return. We want to point out that, in case we
understand that the computation performed by the farm workers of Figure 2.13 can
be better expressed by a functional composition, we can arrange things in such a
way that farm workers are two stage pipelines. This can be achieved by substituting
the lines Worker w = new Worker(); and Farm f = new Farm(w); with the lines:

Stage1 s1 = new Stage1();

Stage2 s2 = new Stage2();

Pipeline p = new Pipeline();

p.addWorker(s1);

p.addWorker(s2);

Farm f = new Farm(p);

and we get a perfectly running parallel program computing the results according to
a farm of pipeline parallelism exploitation pattern. Therefore, a very small effort is
needed to change the parallel structure of the application, provided that the suitable
sequential portions of code needed to instantiate the skeletons are available.

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 63

2.3.4 Lithium implementation

Lithium exploits a macro data flow (MDF, for short) implementation schema for
skeletons. The skeleton program is processed to obtain a MDF graph. MDF instruc-
tions (MDFi) in the graph represent sequential JSkeletons run methods. Data flow
(i.e. the arcs of MDF graph) is derived by looking at the skeleton nesting struc-
ture [68, 70]. The resulting MDF graphs have a single MDFi getting input task
(tokens) from the input stream and a single MDFi delivering data items (tokens) to
the output stream.

The skeleton program is executed in Lithium by setting up a server process on
each one of the processing elements available and a task pool manager on the local
machine. The remote servers are able to compute any one of the fireable MDFi in
the graph. A MDF graph can be sent to the servers in such a way that they get
specialized to execute only the MDFi in that graph. The local task pool manager
takes care of providing a MDFi repository (the taskpool) hosting fireable MDFi
relative to the MDF graph at hand, and to feed the remote servers with fireable
MDFi to be executed.

Logically, any available input task makes a new MDF graph to be instanti-
ated and stored into the taskpool. Then, the input task is transformed into a
data flow “token” and dispatched to the proper instruction (the first one) in the
new copy of the MDF graph9. The instruction becomes fireable and it can be dis-
patched to one of the remote servers for execution. The remote server computes
the MDFi and delivers the result token to one or more MDFi in the taskpool. Such
MDFi may (in turn) become fireable and the process is repeated until some fireable
MDFi exists in the task pool. Final MDFi (i.e. those dispatching final result to-
kens/data to the external world) are detected an removed from the taskpool upon
evaluator.readTaskPool() calls.

Actually, only fireable MDFi are stored in the taskpool. The remote servers know
the executing MDF graph and generate fireable complete MDFi to be stored in the
taskpool rather than MDF tokens to be stored in already existing, non fireable,
MDFi.

Remote servers are implemented as Java RMI servers. A remote server imple-
ments a LithiumInterface. This interface defines two main methods: a TaskItem[]
execute(TaskItem[] task) method, actually computing a fireable MDFi, and a
void setRemoteWorker(Vector SkeletonList) method, used to specialize the re-
mote server with the MDF graph currently being executed10. RMI implementation
has been claimed to demonstrate poor efficiency in the past [136] but recent improve-
ments in JDK allowed us to achieve good efficiency and absolute performance in the
execution of skeleton programs, as shown in Section 2.3.5. Remote RMI servers
must be set up either by hand (via some ssh hostname java Server & command)

9Different instances of MDF graph are distinguished by a progressive task identifier.
10Therefore allowing the server to be run as daemon, serving the execution of different programs

at different times.

64 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

or by using proper Perl scripts provided by the Lithium environment.

In the local task pool manager a thread is forked for each one of the remote
hosts used to compute the skeleton program. Such thread obtains a local reference
to a remote RMI server, first; then issues a setRemoteWorker remote method call in
order to communicate to the server the MDF graph currently being executed, and
eventually enters a loop. In the loop body the thread fetches a fireable instruction
from the taskpool11, asks the remote server to compute the MDFi by issuing a
remote execute method call and deposits the result in the task pool (see Figure
2.14).

The MDF graph obtained from the JSkeletons object is used in the evaluator.
setProgram() call can be processed unchanged or a set of optimization rules can
be used to transform the MDF graph12 methods of the Ske class. Such optimization
rules implement the “normal form” concept outlined in Sec. 2.3.2.

As the skeleton program is provided by the programmer as a single (possibly
nested) JSkeletons object, Java reflection features are used to derive the MDF
graph out of it. In particular, reflection and instanceOf operators are used to
understand the type of the skeleton (as well as the type of the nested skeletons).
Furthermore, the Object[] getSkeletonInfo private method of the JSkeletons

abstract class is used to gather the skeleton parameters (e.g., its “body” skele-
ton). Such method is implemented as a simple return(null) statement in the
JSkeletons abstract class and it is overwritten by each subclass (i.e., by the classes
Farm, Pipeline, etc.) in such a way that it returns in an Object vector all the
relevant skeleton parameters. These parameters can therefore be inspected by the
code building the MDF graph. Without reflection much more info must be supplied
by the programmer when defining skeleton nestings in the application code [75].

2.3.5 Experiments

In order to assess Lithium performance, we performed a set of experiments on a
Beowulf class Linux cluster operated at our department, as well as on a set of
“production” workstations available at our department.

The cluster based experiments were aimed at demonstrating Lithium performance
features, mainly. The cluster used for the experiments hosts 17 nodes: one node
(backus.di.unipi.it) is devoted to cluster management, code development and
user interface. The other 16 nodes (ten 266Mhz Pentium II and six 400Mhz Celeron
nodes) are exclusively devoted to parallel program execution. All the nodes are
interconnected by a (private, dedicated) switched Fast Ethernet network. backus is
a dual hosted node and provides access to the rest of the cluster node from Internet
hosts. All the experiments have been performed using Blackdown JDK ports version
1.2.2 and 1.3.

11Using proper TaskPool synchronized methods.
12Using the setOptimizations() and resetOptimizations().

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 65

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14 16

C
om

pl
et

io
n

tim
e

(s
ec

s)

Number of Processing Elements

Mandebrot (ideal)
Mandebrot (measured)

Figure 2.15: Mandelbrot application: ideal vs. measured completion time.

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processing Elements

Mandebrot (perfect speedup)
Mandebrot (measured)

Figure 2.16: Mandelbrot application: ideal vs. measured speedup.

66 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9

C
om

pl
et

io
n

tim
e

(s
ec

s)

Number of Processing Elements

Normal Form (task parallel only application)
Non Normal Form (task parallel only application)

Figure 2.17: “Synthetic” task parallel application: Normal vs. non normal form
completion times.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9

C
om

pl
et

io
n

tim
e

(s
ec

s)

Number of Processing Elements

Normal Form (data+task parallel application)
Non Normal Form (data+task parallel application)

Figure 2.18: “Synthetic” task+data parallel application: Normal vs. non normal
form completion times.

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 67

0.81

0.9

0.99

2 3 4 5 6 7 8 9

E
ffi

ci
en

cy

Processing elements No.

Grain=81
Grain=225
Grain=450

Figure 2.19: Effect of grain on efficiency.

First of all we considered the overhead introduced by serialization. As data
flow tokens are dispatched to remote executor processes exploiting plain Java seri-
alization, and as we use Java Vector objects to hold tokens, we measured the size
overhead of the Vector class. The experiments showed that serialization does not
add significant amounts of data to the real user data (less than 10%) and therefore
serialization does not cause significant additional communication overhead.

Second, we measured the Lithium applications absolute completion time and
speedup. Typical results are drawn in Figure 2.15 and 2.16. The plot shows that
Lithium support scales. The graph actually refers to a skeleton version of a Mandel-
brot benchmark, but we achieved similar results also with simple numerical appli-
cations. The completion times (ideal and measured) show an additional decrement
from 10 nodes on, as the 11th to 16th nodes are more powerful that the first 10
nodes and therefore take a shorter time to execute sequential portions of Java code.

Third, we measured the impact of normal form optimizations, exploiting the
possibility provided by Lithium of asking the execution of either the original program
or the (automatically derived) normal form one. Figures 2.17 and 2.18 plots the
differences in the completion time of different applications executed using normal
and non normal form. As expected normal form always performs better that non
normal form. The good news are that it performs significantly better and scales
better (non normal form programs stops scaling before normal form ones).

In addition, we measured the effect of computational grain of MDFi on effi-

68 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Figure 2.20: Medical image segmentation application: screen snapshot.

ciency13. Computational grain represents the average computational grain of MDFi.
grain = k means that the time spent in the computation of MDFi is k times the
time spent in delivering such instructions to the remote servers plus the time spent
in gathering results of MDFi execution from the remote servers (via plain Java
RMI). Experimental results showed that efficiency is always more that 90% when
grain is higher that 100 (roughly). When average grain is under 100 efficiency falls
under 90% already when 3 processing elements are used for program execution and
continues to decrease rapidly as more and more processing elements are used.

We also performed experiments using a real application. We considered a medical
application rendering mammography images. Images come from patient analysis.
First, a set of images is taken, each representing a breast slice, more and more
distant from patient ribs. Then some series of similar images are taken after the
ignition of a contrast liquid. Overall a single, complete examen consists of about
one hundred images. Each image must be properly segmented in order to highlight
the interest zones (i.e. zones were cancer may be discovered). Figure 2.20 shows one
of such images in a video snapshot taken from our Java segmentation application.

13As usual, we define efficiency (ε) as ε = Tseq

n×Tpar(n) , where Tseq represents the sequential execu-
tion time, n is the parallelism degree and Tpar(n) is the time spent in the execution of the parallel
program with parallelism degree n.

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 69

0

100

200

300

400

500

600

0 2 4 6 8 10 12 14 16

C
om

pl
et

io
n

tim
e

(s
ec

s)

Number of Processing elements

measured completion time
ideal completion time

Figure 2.21: Results with the medical image segmentation application.

The rendering of an image set takes about 10 minutes on a 266Mhz Pentium II
Linux box. Figure 2.21 shows the times achieved using Lithium on our cluster. The
application perfectly scales14. Efficiency is constantly over 90% in this case. Figure
2.22 plots efficiency of segmentation application. Superscalar efficiency in the right
part of the plot is due to the fact that sequential times are taken onto the Pentium
processors (processors from 1 to 10) and processors 11 to 16 happen to be faster.

With the medical image segmentation code we also performed experiments on our
Department production workstations, in order to assess the load balancing policies of
the macro data flow execution mechanism. The production workstations used range
from 233 Mhz PentiumII Linux boxes to dual 450 Mhz Pentium III and 1.6Ghz
Pentium IV Linux workstations. All the machines are interconnected by means of a
plain 10Mbit (not switched) Ethernet network that happens to be very busy all the
time.

The first result is that using faster machines Lithium achieves better completion
times. The processing of one hundred images took about 1.71 minutes on our 266
Mhz Pentium II cluster on 6 PEs, while using 6 faster production workstations (three
1.2 Ghz Pentium IV, two 450 Mhz Pentium III and a single 233 Mhz Pentium II
machine) the same processing took only 0.85 minutes.

The second result concerns load balancing. Table 2.23 shows the number of

14The data is relative to normal form execution. Plain application is a farm with three stage
workers.

70 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16

E
ffi

ci
en

cy

Number of Processing elements

Efficiency (measured)
Efficiency (ideal)

Figure 2.22: Efficiency of medical image segmentation application (The efficiency is
figured out with respect to the sequential execution time computed on the slower
processors (PE ∈ [1, 10])).

task executed by each workstation along with workstation bogomips (the rough
performance measure taken by Linux kernel at boot time) and load (measured with
uptime during the experiments). It is clear that load balancing has been achieved in
that slower, more loaded workstation participated in the computation by computing
a smaller number of tasks with respect to faster, unloaded workstations.

WS1 WS2 WS3 WS4 WS5 WS6

Bogomips 3204 3630 901 3204 466 897

6 PE load 1.44 0.75 1.90 0.24 0.39 0.34

tasks# 20 29 5 26 7 13

4 PE load 1.44 0.88 0.46 0.37 – –

tasks# 24 36 6 34 – –

Figure 2.23: Load balancing on heterogeneous processing elements (100 tasks).

2.3. EXPLOITING EFFICIENT SKELETONS IN JAVA 71

import lithium.*;

public class Emitter extends JFrame {
...
public static void main(String [] args) {

...
File dir = new File(args[0]);
String[] files = dir.list();
...
JSkeletons stage1 = new DicomToImage();
JSkeletons stage2 = new Segmenter();
JSkeletons stage3 = new PostProcessing();
JSkeletons worker = new Pipe();
worker.addWorker(stage1);
worker.addWorker(stage2);
worker.addWorker(stage3);
Farm theMain = new Farm(worker);
Ske eval = new Ske();
String[] hosts = {"izar","icaro","quanto",

"cassiopea","montecristo"};
eval.addHosts(hosts);
eval.setOptimizations();
eval.skelProgram(theMain);
for(int f=0; f<taskNo; f++) {

...
b = f(DD.getImageToDisplay(files[f]));
try {

eval.setupTaskPool((Object)(b));
} catch (Exception e) {

System.out.println("TP setup: "+e);
return;

}
}
eval.stopStream();
try {

eval.parDo();
} catch (Exception e) {

System.out.println("Start: "+e);
return;

}
while(!ske.isResEmpty()) {
try {

res = (byte[]) eval.readTaskPool();
} catch (Exception e) {

System.out.println("Result fetch: "+e);
return;

}
...
e.doImage(g(res),w,h); // display image

}
return;

}

}

Figure 2.24: Medical image processing application skeleton.

72 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Conclusions

We described a new Java parallel programming environment providing the program-
mer with simple tools suitable to develop efficient parallel programs on workstation
networks/clusters. Lithium is the first skeleton based parallel programming environ-
ment written in Java and implementing skeleton parallel execution by using macro
data flow techniques. We performed experiments that demonstrate that good scala-
bility and efficiency figures can be achieved. Lithium it is currently available as open
source [62].

Despite the large number of projects aimed at providing parallel programming
environments based on Java, there is no existing project concerning skeletons but
the CO2P3S one [132, 131]. Actually this project derives from the design pattern
experience [88]. The users are provided with a graphic interface where they can com-
bine different, predefined parallel computation patterns in order to design structured
parallel applications that can be run on any parallel/distributed Java platform. In
addition, the graphic interface can be used to enter the sequential portions of Java
code needed to complete the patterns.

The overall environment is layered in such a way that the user designs the parallel
application using the patterns, then those patterns are implemented exploiting a
layered implementation framework. The framework gradually exposes features of
the implementation code thus allowing the programmer to perform fine performance
tuning of the resulting parallel application. The whole object adopts a quite different
approach with respect to our one, especially in that it does not use any kind of macro
data flow technique in the implementation framework. Instead, parallel patterns are
implemented by process network templates directly coded in the implementation
framework. However, the final result is essentially the same: the user is provided
with a high level parallel programming environment that can be used to derive high
performance parallel Java code running on parallel/distributed machines.

Macro data flow implementation techniques have also been used to implement
skeleton based parallel programming environments by Serot in the SKiPPER project
[154, 153]. SKiPPER is an environment supporting skeleton based, parallel image
processing application development. The techniques used to implement SKiPPER
are derived from the same results we started with to design Lithium, although used
within a different programming environment (the whole SKiPPER environment is
written using OCaml, the ML implementation from INRIA).

2.4. THE ASSIST PROGRAMMING ENVIRONMENT 73

2.4 The ASSIST programming environment

ASSIST (A Software development System based upon Integrated Skeleton Technol-
ogy) is a new programming environment oriented to the development of parallel and
distributed high performance applications according to a unified approach. ASSIST
has been designed and developed at University of Pisa15, and actually is our group
latest proposal in the area of structured parallel programming (see also Section 2.1).

ASSIST is a pretty complex environment framed in a currently ongoing project,
although a running version already exist. ASSIST is actually the environment where
eskimo class languages will live; at the least we expect to exploit eskimo design
lessons learned in further releases of ASSIST. However, we believe that both eskimo
design experiment and ASSIST are also meaningful per se. In the remaining of this
section we shall sketch ASSIST main features, reminding to the literature for any
further detail [169, 66, 13, 12, 11]. eskimo language is presented in Chapter 4.

2.4.1 Motivations and main goals

According to our previous experience in structured parallel programming, in ASSIST
we wish to overcome some limitations of the classical skeletons approach to improve
generality and flexibility, expressive power and efficiency for irregular, dynamic and
interactive applications, as well as for complex combinations of task and data par-
allelism. A new paradigm, called “parallel module” (parmod), is defined which, in
addition to expressing the semantics of several skeletons as particular cases, is able
to express more general parallel and distributed program structures, including both
data-flow and nondeterministic reactive computations. ASSIST allows the program-
mer to design the applications in the form of generic graphs of parallel components.
Another distinguishing feature is that ASSIST modules are able to utilize external
objects, including shared data structures and abstract objects (e.g. external objects
accessed via CORBA), with standard interfacing mechanisms. In turn, an ASSIST
application can be reused and exported as a component for other applications, pos-
sibly expressed in different formalisms.

Motivations. The motivations for our research on new programming environ-
ments for high-performance applications are mainly related to the requirements for:

1. a high-performance software component technology,

2. the development of high-performance applications on emerging Large-scale
Platforms and Grids,

3. overcoming the limitations of structured parallel programming beyond the
“classical” skeletons model.

15With the support of the Italian Space Agency (ASI-PQE2000 project) and National Research
Council (Agenzia 2000 CNR project).

74 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

Software component technology is playing a central role in the development of
complex and multidisciplinary applications, especially in distributed and loosely
coupled systems. The main, strongly interrelated, goals are portability across dif-
ferent hardware-software platforms, reuse of existing components to create different
more complex systems, easy evolution through specific versions of the application.
These goals are fundamental for the high-performance computing field too, both in
scientific and in industrial applications. Some interesting projects [89, 6, 25] are fo-
cused on the issue of characterizing the component technology for high-performance
computing applications, and this is also one of the main goals of our research: a new
programming environment oriented to the development of parallel and distributed
high-performance applications according to a unified approach, that matches the fea-
tures of component technology and the features of structured parallel programming
technology.

Beyond the “classical” skeleton approach. Despite several advantages of
skeletons, a strong evolution of structured parallel programming beyond such models
is needed, at least for the following reasons:

a) in addition to the capability of expressing some typical parallel schemes, we
need a larger degree of flexibility in expressing parallel and distributed pro-
gram structures. In general generic graph structures are required for complex
compositions in multidisciplinary applications;

b) essentially, skeleton-based programming models have functional and determin-
istic semantics that can be a serious obstacle in many complex applications.
The concepts of internal state of parallel components and of nondeterminism
in communications/interactions between components are fundamental, as well
as dynamic interactivity in a client-server or in a peer-to-peer environment.
In general, all such features are not stressed in skeletons models;

c) though in many skeletons programs the integration of task and data parallelism
[33] can be expressed, there are many cases in which the composition of the
available skeletons is not natural or it is inefficient. In our experience with
SkIE, this occurs in some irregular and/or dynamic problems for which the
integration of (task) stream parallelism and data parallelism is a source of
inefficiency and produces codes that are more complex than the equivalent
codes exploiting only data parallelism;

d) to develop a complex, multidisciplinary application we need to be able to utilize
predefined objects in a modular and invisible way: they can be abstract objects
according to commercial standards (e.g. CORBA), as well as abstractions of
systems resources (devices, file, severs, and so on) and several kinds of libraries
(scientific, image processing, data mining);

2.4. THE ASSIST PROGRAMMING ENVIRONMENT 75

e) in many applications the adoption of a shared space of objects, or a Distributed
Shared Memory space (independent of the distributed nature of the underlying
platform), is fundamental to efficiently manipulate very large data sets, to sim-
plify the programming of irregular and/or dynamic problems and, sometimes,
to mask communication overheads. In our experience [63] the integration of
shared objects into a structured parallel programming formalism increases the
expressive power and the efficiency of parallel programs significantly;

f) at our knowledge, the skeletons model is not suitable to fully support the
reuse of parallel applications written in different formalisms. This goal has to
be achieved in the new context of parallel components.

One of the basic features of structured parallel programming that we wish to
preserve is related to the efficiency of implementation, and of the run-time support
in particular. On the one hand, compared to “classical” skeletons, it is more difficult
to define a simple cost model for a generic construct like parmod, and this can render
optimizations at compile time more difficult. On the other hand, at least with
the current knowledge of software development for Large-scale platforms/Grids, we
believe that run-time support optimizations are much more important than compile-
time optimizations (which, anyway, remain a significant research issue).

2.4.2 Features of ASSIST

ASSIST is a new programming environment for parallel and distributed high-performance
applications. The design of ASSIST applications is done by means of a coordination
language, called ASSIST-CL.

Parallel/distributed programs can be expressed by generic graphs, without re-
nouncing the possibility of structuring specific (skeletons-like) graphs for which some
interesting cost models already exist [139]. The components can be parallel mod-
ules or sequential modules, with high flexibility of replacing components in order
to modify the degree of granularity according to the application requirements of
and/or to the underlying platform evolution. ASSIST introduces a construct, which
is more flexible and powerful than the “classical” skeletons. It could be considered
a sort of “generic” skeleton which can be programmed to emulate the most common
“specific” skeletons, but which is also able to easily express new forms of parallelism
(e.g. optimized forms of task + data parallelism, nondeterminism, interactivity), as
well as the invariants and personalizations. When necessary, the parallelism forms
that are expressed could beat a lower abstraction level in respect of the “classical”
skeletons. We call this new construct parallel module, or parmod.

Generality and flexibility do not mean to abandon the idea of structured par-
allel programming. On the contrary, the proposal of a “generic” skeleton and of
applications as graphs of parallel and sequential modules aims to reinforce such idea
and, at the same time, to achieve a more satisfactory trade-off between high-level
structuring, expressive power, reuse and efficiency.

76 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

The composition of parallel and sequential modules is expressed, primarily, by
means of the very general mechanisms of streams, by which we can represent power-
ful interfaces simply and effectively. In addition, modules can share objects imple-
mented by forms of Distributed Shared Memory, invoked through their original APIs
or methods. While the stream-based composition is the basic mechanism for struc-
turing applications and defining the component interfaces, shared memory objects
are an additional mechanism for solving problems of memory space, programmabil-
ity of highly dynamic structures, and communication of heavy datasets. Moreover,
the parallel and the sequential modules have an internal state.

It is worth noticing that the modules of a parallel application can refer to any kind
of existing external objects, like CORBA and other commercial standards objects, as
well to system objects, though their interfaces. In the same way, an ASSIST parallel
application can be exported as a component or as an object to other applications: the
stream-based interface mechanisms is transformed at compile-time in a mechanism
compliant to existing standards, i.e. CORBA IDL interfaces in the first version of
ASSIST.

Finally, the methodology by which the environment is implemented is itself
component-based and object-based, in order to be able to flexibly modify its imple-
mentation according to significant changes in the underlying technologies and/or in
applications requirements [11].

2.4.3 Structure of ASSIST programs

The structure of an ASSIST program is a graph, whose nodes are components and
the arcs are abstract interfaces that support streams, i.e. ordered sequences, pos-
sibly of unlimited length, of typed values. Any graph structure, possibly including
cycles and merge (many-to-one) and multicast (one-to-many) streams, is permitted.
Streams are the structured way to compose modules into an application. In addi-
tion, components can also interact by means of external (shared) objects, in general
not expressed in ASSIST-CL. Components are expressed by ASSIST modules, which
may be parallel modules (parmod, defined in the next section) or sequential modules.
A sequential module is the simplest component expressed in ASSIST: it has an in-
ternal state and is activated by the input stream values according to a deterministic
data-flow behavior (the nondeterministic behavior can be expressed only by parallel
modules). Figure 2.25 shows the example graph of a simple program.
Modules M1 and M2 have no input stream and, in fact, are in charge of generating
streams S13, S23 and S24. M2 has two output streams S23 and S24; in general,
during an activation, M2 may send values onto both S23 and S24, or only onto one
of them, or none of them. M3 may have a deterministic or, if it is a parallel module,
a nondeterministic behavior on the input streams S23. M4 and M5 have no output
stream, thus are in charge of generating the result data structures of the program.
A composition of modules, expressed by a graph P , may be, in turn, reused as a
component of a more complex program Q. The composition is legal provided that P

2.4. THE ASSIST PROGRAMMING ENVIRONMENT 77

S13

S35

S23 S24

M1 M2

M3 M4

M5

Figure 2.25: An ASSIST graph.

is correctly interfaced to the other modules of Q, i.e. the types of input and output
streams must be compatible.

2.4.4 Parallel module

The construct called parallel module (parmod) is the proposed solution for many
parallel programming problems introduced in the previous section. The idea of
parmod is shown graphically in Figure 2.26

A parmod is defined by the following elements: 1) Virtual processors; 2) Topology
(naming scheme); 3) Internal state; 4) Input streams; 5) Output streams; 6) External
objects.

A set of virtual processors (VPs), i.e. independent and cooperating entities
delegated to perform the parallel computation, is defined as the “calculation engine”
of a parmod. The support tools will map the set of VPs onto a suitable set of physical
processing nodes, statically or dynamically.

Each VP has a unique identifier, which often is usefully expressed in a parametric
way in order to implement collective forms of parallelism, e.g. data-parallelism. As
a consequence, the naming scheme is often related to the way in which the internal
state is assigned and distributed to VPs and to the way in which it is referred.
The topology is in no way related to the cooperation scheme, or the communication
stencil, of VPs. Currently ASSIST supports the following topologies:

multidimensional array to denote every VPs by the values of one or more indexes;

none to denote the name of VPs is not significant for the computation to be ex-
pressed, e.g. in several farm-like structures composed of fully independent
workers;

78 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

VP VP VP

VPVPVP

VP VP VP

input
streams

other
Parallel
Module

other
Parallel
Module

output
streams

�������
�������
�������
�������

set of Virtual Processors

External Objects

Figure 2.26: Graphical scheme of a Parallel Module.

one to denote that the parmod has only one VP. This is different from the sequen-
tial module, because a parmod-one exploits many of the general features of a
parmod, in particular nondeterminism and stream control features.

Notice that more than one topology is possible for the same problem, according
to the parallelization strategy and/or the granularity that the programmer wishes
to express. The component-based structuring of an ASSIST program allows the
designer to change easily the internal implementation, e.g. the granularity, according
to new requirements. As a special case, the topology “one” is adopted when the
programmer wishes to force a sequential (though nondeterministic) execution, being
aware that a parallel implementation could be inefficient on the currently available
platform; however, such a component is predisposed to be modified into a parallel
one when the platform will be changed and/or more efficient parallelization strategies
will be possibly defined.

Streams are the basic mechanism for the composition and interfacing of com-
ponent modules, they may be thought as “channels” linking parallel modules one
each others. The input streams may be used according to a data-flow scheme when,
for each activation, the module waits for values from all the input streams. In the
most general, case a subset of streams is selected at each activation: this expresses
a nondeterministic behavior. The semantics of nondeterminism is the one of the
CSP model [105] based on guarded commands, and in particular the semantics of
ECSP concurrent language [32]. Data items flowing from input streams may be
sorted into Virtual Processors according to several distribution strategies, namely
on demand, scatter, multicast, and broadcast. ASSIST behaves as follows in respect
of distribution strategies:

2.4. THE ASSIST PROGRAMMING ENVIRONMENT 79

On demand: a received value is transmitted to a ready VP, chosen nondeterminis-
tically;

scatter: a received, structured value is partitioned to the VPs according to a rule
expressed by program,

multicast: a received value is sent to all the VPs belonging to a certain subset
expressed by program,

broadcast: a received value is sent to all VPs.

Similarly, the results of an activation may be sent onto one or more output
streams, or not sent at all. This choice is controlled explicitly by program.

A parmod has a internal state that is logically partitioned and/or replicated into
VPs. Some state variables will be also utilized to control the communication from
the input streams and to the output streams.

A module (sequential or parallel) of an ASSIST program can refer to external
objects according to the interfaces/methods or APIs of such object. As seen, this
is a mechanism to exploit (import) the functionalities of possibly existing objects
defined outside the application. External objects are also a mechanism to cooperate
with other modules of the same application, in addition to the stream mechanism.
External objects helps to overcome the limitations of the single node memory ca-
pacity in distributed architectures and make the management of dynamic and/or
irregular program/data structures easier. Moreover, they provide a powerful mech-
anism to import/export abstract objects in commercial standards. Three kinds of
external objects are distinguished at the moment:

Shared variables. A first kind of external object is defined just in terms of the
same data types of ASSIST-CL. Any variable can be defined as shared by
modules of an ASSIST application. This can be interpreted as an extension
of the concept of internal state of modules: now the state can also be shared
between distinct modules.

Distributed Shared Memory libraries. In many problems, the goals c), d), e)
mentioned above can be met by means of external objects expressed by ab-
stractions of shared memory. In particular, we consider the integration of
libraries for both (software) DSM and abstract objects implemented on top of
them (e.g. spread trees, see Chapter 5). While on shared variables we can only
execute the operations corresponding to the ASSIST-CL types, on the shared
memory objects the proper set of operations is defined for expressing powerful
strategies of allocation, manipulation and synchronization. Currently, we are
using DVSA [31] and SHared OBjects [48] libraries, all such tools having been
developed at the Computer Science Department of Pisa in previous research
projects. However, any existing library (e.g. JIAJIA [107], DSM-PM2 [19])
or imagined (eskimo indeed, see Chapter 5) can be integrated and utilized by

80 CHAPTER 2. STRUCTURED PARALLEL PROGRAMMING

the ASSIST. Of course, it is responsibility of the programmer to correctly uti-
lize the library according to its semantics (interfaces, consistency model, data
types).

Remote Objects. The utilization of remote objects through CORBA (in the next
versions of ASSIST, other commercial standards) is done according to modal-
ities similar to the ones described for DSM libraries. ASSIST-CL defines an
ORB interface containing APIs to connect and utilize remote objects in AS-
SIST applications. No constraints are imposed on the access and utilization of
a CORBA object by an ASSIST program, except that the registration modal-
ity of the external object must be verified according to the implementation of
the object itself [12].

Chapter 3

DSM: the state of the art

Readers’ road-map. In this chapter we present a survey of distributed shared memory archi-
tectures, that are part of the framework of the thesis. The core of the discussion is reached
through a brief review of DSM basic concepts, namely cache coherence and memory consis-
tency. In Section 3.1.3 DSMs are characterized accordingly several functional aspects: imple-
mentation level, consistency model, and behavior with respect data replication. Those aspect
are discussed in Sections 3.2, 3.3 and 3.4 respectively. Cilk main features are also sketched
within consistency models section. In Section 3.5 some technical issues related to software im-
plemented DSMs are presented. Eventually, the Athapascan language is presented in Section
3.6.

In order to satisfy the ever increasing demands of typical applications, a large
progress was made in the research and development of systems with multiple pro-
cessors capable of delivering high computing power. Distributed Shared Memory
(DSM) systems tries to combine the advantage of two classes of systems: multi-
processors, having a single global physical memory (equally accessible to all proces-
sors) and multicomputers consisting of multiple processing nodes communicating by
means of message passing. A DSM system logically implements the shared model
on a physically distributed memory system.

3.1 Basic concepts

Realizing the shared address space abstraction basically requires a two-way request-
response protocol. A global address is decomposed into a module number and a
local address. For a read operation, a request is sent to the designated module
requesting a load of the desired address and specifying enough information to allow
the result to be returned to the requester through a response network transaction. A
write is similar, except that data is conveyed with the address and command to the
designated module, and the response is merely an acknowledgment to the requester
that the write has been performed. In this case the response essentially informs the

82 CHAPTER 3. DSM: THE STATE OF THE ART

Source Destination

Load r ← [Glob. Addr.]

Read request

wait

��

��������������

Read request
�� ��

�� ��Memory access

Read response
�����������

Read response

1) Initiate memory access
2) Address translation

3) Request transaction

4) Remote memory access

5) Reply transaction

6) Complete memory access

Figure 3.1: Shared address space abstraction:two-way request-response protocol.

source that the request has been serviced (see Figure 3.1).

In shared memory multiprocessor, reading and writing shared variables by differ-
ent processors is expected to be a frequent event, since it is the way used by multiple
processes (or threads) belonging to a parallel application to communicate with each
other. Therefore, we want to allow caching of both private and shared data. As
far as shared data concern, we assume to deal with cache coherent1 shared memory
multiprocessors. Coherence defines what value has to be assumed by a memory
location (Section 3.1.1).

In order to formally define the memory system behavior we need also to define
the consistency model, i.e. when a written value will be returned by a read.

Observe that the consistency model is orthogonal to the coherence model. Co-
herence defines the behavior of reads and writes only to the same memory location,
all copies of a memory location (sooner or later) will be committed, afterwards all
processors will observe a coherent view of the memory. Consistency defines in what
temporal order two memory operations, both from a single thread and from different
threads, will have their effect with respect to memory locations. For instance, all the
following are consistency issues: In what order two memory operations, to different
locations and from different threads, must complete? In what order two memory
operations, to different locations and from the same thread, must complete? Is it
possible that a read issued from a given processor complete while another processor
is committing the same location? As we shall see, several answers are possible.

In the next two sections we shall discuss about cache coherence memory consis-
tency models in very general terms.

1In this meaning we refer to “cache” as functional concept, i.e. a device holding a data copy,
not necessarily a specialized hardware device or a particular type of memory.

3.1. BASIC CONCEPTS 83

3.1.1 Cache coherence

In sequential systems, following the intuition, memory provides a set of locations
that holds values, and when a location is read it should return the latest value
written in that location. We rely on such property writing sequential programs, and
we expect the memory to behave in the same way in multiprocessor shared address
space: a read would return the latest value written to the location regardless of
which process wrote it. In sequential systems, caching does not change the behavior
since all processes see the memory through the same cache/memory hierarchy. In
multiprocessor systems, when two processes see the shared memory through different
caches, a risk exists that one may see the new value in its cache while the others
still see the old value. Cache coherence can be provided using both hardware and
software techniques. Snooping and directory-based cache coherence are the most
known techniques, we refer back to the literature in the field for any further detail
[65, 100]. For our purpose is enough to know that coherence defines what value has
to be assumed by a memory location.

3.1.2 Memory consistency

Often in writing a parallel program, we want to ensure that a read returns the
value of a particular write; i.e. we want to establish an order between a write
and a read. Typically, we use some form of event synchronization to convey this
dependence, e.g. locks and barriers. Surrounding accesses to shared data with a
pair of synchronization operations (lock-unlock) protects shared data from accesses
by other threads, ensuring an order among different threads.

To put other irons in the fire, observe that we have said nothing yet about the
order of memory operations from the same thread. (We are implicitly assuming that
they are completed in program order!) Suppose the memory operation are generated
where it naturally occurs in the program. The processor may be allowed to proceed
past it and find other independent computation or memory access that would come
later in the same thread of execution; in fact, making non-blocking (long latency)
memory accesses. The subject is a key issue in design of a hardware level shared
address space

For our purpose is more interesting to reason about the order of execution of
memory operations belonging to different threads (and possibly different processors),
assuming a safe order among memory operations belonging to the same thread has
been guaranteed.

Anyway, since processors communicate through shared variables (both those for
data values and those used for synchronization), it is of prime importance to establish
the order in which a processor must observe the data writes of other processors, i.e.
the memory consistency model.

The question is straightforward if there is just one data copy in the whole system
and all memory operations are atomic: we expect from a memory system to return

84 CHAPTER 3. DSM: THE STATE OF THE ART

“the last value written” for each location. The question becomes more complex if
the system uses some kind of data replication (e.g. caches or local data copies)
and an independent two-way transaction memory protocol, just because it is a bit
more difficult to establish what is “the last value written”. It is certainly possible to
ensure the same behavior requiring that processors delay all memory accesses until
the current one has been completed and all data copies has been kept coherent. But
is this a good consistency model?

It depends on the viewpoint. The model we have implicitly defined is called se-
quential consistency, and is surely easy to understand. As we shall see, is neither the
only one, nor the more efficient. In particular we shall see how, relaxing sequential
consistency constraints, it is possible to address two major classes of performance
optimizations in DSM systems:

• Relaxed memory consistency models enable the hiding of remote memory ac-
cess latency in shared memory cache-coherent multiprocessor. The idea is
hiding memory latency by finding something else useful for the processor to
do, while remote memory accesses are ongoing. The memory operation may
be generated where it naturally occurs in the program, but the processor is
allowed to proceed past it and find other independent computation or memory
access that would come later in the same thread of execution; i.e. long latency
memory accesses are made non-blocking. The technique has been mainly used
in hardware implementations of shared address space.

• Relaxed memory consistency models enable the reduction of coherence ori-
ented handshakes in shared memory cache-coherent multiprocessor. The idea
is delaying coherence oriented actions (invalidate, update) until certain syn-
chronization points. This behavior may have a strong impact both on hardware
required to realize the shared address space and on programming model.

We will consider both sequential and relaxed consistency models in Section 3.3, in
particular we will examine how they work in abstract, how they may be characterized
and what is their expected performance.

3.1.3 Characterizing DSMs

Since the early DSM systems developed in mid-eighties to nowadays, tens of dif-
ferent DSM systems have been proposed. From the first research prototypes, the
interest of research community in such systems is progressively grown particularly
because DSM allows the experimentation of innovative solutions (also) with low cost
hardware. Actually this is one reason why we decided to use DSM as framework. In
this contest, make no sense exhaustively list and discuss all DSM prototypes we have
got to known. Conversely, it is important functionally classify solutions appeared
in DSM technology.

3.2. IMPLEMENTATION LEVEL 85

outside kernelinside kernel

operating system

softwarehybrid

COMA

hardware

runtime libraryCC−NUMA compiler generated

implementation level

Figure 3.2: DSM implementation level taxonomy.

In the following we discuss several key functional aspects in DSM design: the
implementation level, the memory consistency model, the algorithms used to provide
memory coherence and eventually the programming model. Each functional aspect is
introduced by means of a taxonomy and the description of the mainstream technical
solutions proposed by the research community. Observe that presented functional
aspect are rather orthogonal one each other. However, through the presentation,
we underline the significant correlations among different functional aspects and the
implication of each design choice.

3.2 Implementation level

The DSM shared address space is distributed (in some way) across different memo-
ries. Realizing a shared address space raises two basic design issues with respect to
the implementation level:

1. At which level data lookups are executed?

2. At which level consistency actions related to write access are executed?

Both lookups and consistency actions can execute in software, hardware or a
combination of both. Following a classification similar to that of Protić, Tomašević
and Milutinović [163, 143], we refer to these class in Figure 3.2 as hardware, software
and hybrid implementations.

The choice of the implementation level essentially depends on price versus perfor-
mance trade-offs. Hardware implementations are in general superior in performance
while require a greater design complexity respect to software solutions. High per-
formance (and cost) machine resolve both previous questions equipping machine
with hardware co-processors. Low-end systems, including Beowulf class clusters,
entrust completely to software solutions to keep low the machine cost. Hybrid, mid-
range systems employ low-cost additional hardware to commodity component such
as “smart network interfaces”

86 CHAPTER 3. DSM: THE STATE OF THE ART

It is worth pointing out in parallel systems a simple consideration trammel the
price/performance trade-off: A parallel system is expected to be fast. In some
cases, the implementation in software of a hardware device yields either unacceptable
overheads in performance or too strong constrains on programming model.

3.2.1 Hardware

Hardware implemented mechanisms for shared memory guarantees automatic man-
agement of shared data in local memories, transparently for software layers. Hard-
ware implementations efficiently supports fine grain sharing. The address space is
non-structured and the unit of coherence is small (typically the cache line). The
small unit of sharing and coherence characterizes hardware solutions for look-up and
coherence/consistency actions. The granularity of data sharing is (in general) related
with the address translation mechanism granularity, since an all software address
translation may introduce unacceptable overheads. Therefore, the minimum unit
of sharing often correspond to the minimum unit the hardware can discriminates
memory lookups, even if some exceptions exists.

CC-NUMA Cache Coherent Non Uniform Memory Access. This kind of systems
statically distributes the shared virtual address space across local memories
of nodes. The static organization facilitates direct access to a unique memory
location in one of the nodes. A processor node can access both local memory
and remote memory, although with pretty different access latencies. Cache
coherence frequently relies on directories. Both sequential and relaxed mem-
ory consistency models may be adopted as memory consistency model. An
application running on this architecture exhibits the best performance when
its working set is contained within the memory hierarchy of the node. Static
data partitioning should be done carefully to maximize the frequency of local
access.

COMA Cache Only Memory Access. This kind of systems uses the memory as-
sociated with each node as a higher level cache (attraction memory). There
is no memory home location predetermined for a particular data item, and
it can be replicated and migrated. They are less sensitive to static distribu-
tion of data than NUMA systems, since data distribution quickly adapt to
the dynamic memory reference behavior of executing applications. Neverthe-
less, there are many unresolved issues associated with COMA architectures,
including hardware and system support for locating and replacing data blocks.

3.2.2 Software

The last decade has exhibited the proliferation of low cost distributed systems, espe-
cially in the form of Beowulf class systems. This kind of systems are often assembled

3.2. IMPLEMENTATION LEVEL 87

using complete computers equipped with a standard or proprietary network inter-
face, and they do not provide any specialized hardware for address sharing among
different nodes, while they provide a native message passing programming model.
Software DSMs supplies the shared memory programming model on top of message
passing native mechanism. Generally, this can be achieved via operating system
primitives, via user level run-time libraries, via compiler generated instrumented
code, or a combination of the previous approaches (see Figure 3.2).

Run-time library The DSM mechanism is implemented via run-time library rou-
tines linked to with the application program using the (virtual) shared address
space. The approach is flexible and particularly indicated for experimentation
since the library code may be easily augmented and corrected.

Operating system The DSM mechanism is incorporated in the operating system
on specialized software controller, that can live either inside or outside the
kernel. The inside kernel solution may profit from the fine control over the
scheduling and interrupt processing. The outside kernel solution sacrifices part
of these advantages in the name of portability over different kernels or different
evolutions of the same kernel.

Compiler generated The DSM is implemented at the level of parallel program-
ming language via data types and language primitives, and then compiled/
translated into the appropriate message passing code. The programming lan-
guage have to support specific shared data objects and the primitives to man-
age them. Portability across different systems is realized recompiling the code
(thus the compiler is required to exists).

3.2.3 Hybrid

Hybrid implementations represent a variety of trade-offs between hardware and soft-
ware solutions. We classify as hybrid the approaches that make use of hardware
co-processors that are programmable or anyway visible at the programming level.
In general a hybrid implementation reduces the cost and complexity of hardware
design while allows the compiler/programmer to suggest particular behaviors to the
hardware [52]. Let us see a couple of examples.

MIT Alewife [5] implements a hardware-software, space efficient directory co-
herence protocol. The hardware implemented part of directory mechanism holds a
limited part of directory entries in order to manage common cases. In exceptional
circumstances, when more entries are needed, an interrupt is generated (fast-trap)
and the directory protocol is software managed. A multiple context capability effi-
ciently support fast-trap mechanism.

88 CHAPTER 3. DSM: THE STATE OF THE ART

Name Level Year Notes Ref.

DDM hw 1992 COMA [97]
Stanford Dash hw 1992 CC-NUMA [124]
KSR1 hw 1993 COMA [84]
SGI Origin 2000 hw 1996 CC-NUMA [123]

IVY sw 1986 runtime library + OS modifications [128]
Munin sw 1990 [49]
Threadmarks sw 1992 runtime library [118]
Midway sw 1993 runtime library + compiler [37]
CLR sw 1995
Shasta sw 1996
DSM-PM2 sw 1999 run-time library [19]

MIT Alewife hybrid 1990 hw-based coherence supported by a sw mechanism [5]
Stanford FLASH hybrid 1994 programmable protocol engine into mem. controller [121]

The Stanford FLASH [121] multiprocessor uses the specialized programmable
protocol processor MAGIC (Memory and General Interconnection Controller) to ef-
ficiently execute coherence actions (in a pipelined fashion2). The coherence protocol
is implemented in software but it is executed in cooperation with the MAGIC co-
processor. The approach give a considerable flexibility in experimenting and testing
coherence and consistency protocols.

3.3 Memory consistency models

The challenge of a consistency model is to enable the developing of a programming
model that is simple and yet allows a high performance implementation. Such
implementation may be built totally in hardware or both in hardware and software
(the operating system, the compiler or a library may be involved in assuring a given
consistency model). In our survey, we will reason about two observable features,
irrespectively of which is the layer that supply the features:

• what program orders among memory operations are guaranteed to be pre-
served by system as whole;

• what mechanism the system provides to enforce order explicitly when desired
(such mechanisms are usually called fences).

It is worth pointing out that fences are mechanisms to enforce order among reads,
writes and read-writes, both among operations in a single thread and between those

2See also pipelined write notices, page 98.

3.3. MEMORY CONSISTENCY MODELS 89

Processors issuing
memory references
as per program order

The "switch" is randomly
set after each memory
reference

P P P P1 2 3 n

Memory

Figure 3.3: Abstraction of the memory subsystem under the sequential consistency
model

of different threads, at the hardware/firmware level. Pretty often programmer level
synchronizations (locks and barriers) are built using atomic read-writes operations
(exchange, fetch&add . . .) that act as fences. However, the compiler (or the assem-
bler programmer) may also decide to use a fence to enforce the order between two
given regular memory operations (read, write).

In the following we consider sequential consistency, that is for historical reasons
the seminal memory consistency model.

3.3.1 Sequential consistency

The intuitive concept of the extension of the uniprocessor behavior to shared memory
(multiprocessor) model was first formalized by Lamport as follow [122]:

A multiprocessor is sequentially consistent if the result of any execution
is the same as if the operations of all the processors were executed in
some sequential order, and the operations of each individual processor
occur in this sequence in the order specified by its program.

There are two relevant aspects in sequential consistency:

1. Maintaining program order among memory operations from individual proces-
sors.

2. Maintaining a single sequential order among operations from all processors, i.e.
memory operations must execute atomically or instantaneously with respect
to other memory operations.

90 CHAPTER 3. DSM: THE STATE OF THE ART

Sequential consistency provides a simple abstraction of the system as illustrated
in Figure 3.3. Conceptually, there is a single global memory and a switch that
connects an arbitrary processor to memory at any time step. Each processor issues
memory operations in program order and the switch provides the global serialization
among all memory operations [82, 3].

Consider the following example. Let us assume that A and B are shared between
processors Pi and Pj and initial values of A and B are 0.

Pi Pj

op1(i) write(A,1); vt1=read(B);

op2(i) write(B,2); vt2=read(A);

As far as sequential consistency is concerned, it is not important in what order
memory operation between Pi and Pj are interleaved. What matters for sequential
consistency is that they appear to complete in a way that satisfies the constraints just
described. Let op1(i) be the first operation issued by processor i, in the example
just shown the memory operation may execute and complete in the following orders:

op1(i);op2(i);op1(j);op2(j); (vt1=2,vt1=1)

op1(i);op1(j);op2(i);op2(j); (vt1=0,vt2=1)

op1(i);op1(j);op2(j);op2(i); (vt1=0,vt2=1)

op1(j);op2(j);op1(i);op2(i); (vt1=0,vt2=0)

These are all the orders in which, for all processors k the memory operation
op1(k) is issued and completed before op2(k). Under sequential consistency the
result (vt1=2,vt1=0) would not be allowed, because:

• op1(j) must be executed before op2(j), thus vt1 will be set before vt2.

• if vt1==2 then both op1(i) and op2(i) have already been executed and sooner
or later op2(j) will be executed, thus vt1==1.

Let us consider a more significant example:

Pi Pj

write(A,0); write(B,0);

... ...

write(A,1); write(B,1);

if (B==0) ... if (A==0) ...

Sequential consistency assure that both if statement are not evaluate to true,
maintaining the programmer intuition.

3.3. MEMORY CONSISTENCY MODELS 91

Sequential Consistency

write to read reorder

write to read−write reorder

all program orders

st
ric

tn
es

s
of

 o
rd

er
in

g
dr

op
pi

ng

Total Store Ordering
Processor Consistency

W Rrelax

Weak Ordering
Relaxed Memory Ordering
Release Consistency
Entry Consistency
Scope Consistency

Partial Store Ordering

W Wrelax

relax all

Figure 3.4: Relaxation relations among various system specification.

3.3.2 Relaxed consistency models

As an alternative to sequential consistency, several relaxed memory consistency mod-
els have been proposed in both academic and commercial settings to enable latency
tolerant memory optimization in programs. Many currently shipped (multi)processor
support one of more of them, each with its own mechanisms for enforcing orders.
We try here to summarize the seminal concepts over these models rely on, for a
detailed description of all models we refer back to the suggested literature in the
field.

Relaxed models can be characterized and grouped using as key feature the re-
laxations in program order they allow, i.e. the ordering among reads (R) and writes
(W) performed by a single processor to different address [3, 90, 100]. For instance
we will sketch W→R if we don’t allow a write to be bypassed (completed after)
by a read. An atomic read-write operation (e.g. fetch&add, compare&swap, load-
linked/store-conditional) is treated as being both a read and a write, so it can be
reordered with respect to another operation only if both a read and a write can be
reordered with respect to that operation. All models in the class all program orders

in Figure 3.4 allow also the reordering of two reads to the same location. Figure 3.5
shows orders imposed in a program by several consistency models.

As discussed in Section 3.1.2 relaxed memory consistency models can be used
to optimize the memory sub-system performance in two different ways (at least).
In the next section we briefly digress on the first method, i.e. the hiding of remote
memory access latency. Then, we focus on the reduction of coherence oriented

92 CHAPTER 3. DSM: THE STATE OF THE ART

communication, that is even more important for our work. In the following we will
take into account, from time to time, the most important (for our work) among
all consistency models presented in Figure 3.4. Clearly, the presentation does not
pretend to conclude the analysis of the incredibly large set of existing consistency
models, but tries only to characterize them and present some significant examples.

Hiding long latency memory accesses

We discuss relaxed memory consistency models in their capacity of hiding of remote
memory access latency. The idea is hiding memory latency by finding something
else useful for the processor to do, while remote memory accesses are ongoing. The
memory operation may be generated where it naturally occurs in the program, but
the processor is allowed to proceed past it and find other independent computation
or memory access that would come later in the same thread of execution. The
technique has been mainly used in hardware implementations of shared address
space for many factors. Since the goal is to keep the processor busy in useful work,
all actions undertaken to make the memory operation non-blocking have to be either
faster than the latency itself or run by an independent processing element. In both
cases, a co-processor is the natural candidate. Moreover, if processors issue memory
operations in program order, to make memory operations non-blocking we have to
operate at memory transactions protocol level, that is commonly hardwired.

The main motivation of the R→W relaxation is to allow the hardware to hide the
latency of write operations. While the write miss is still outstanding and not visible
to other processors, the processor can issue and complete reads that hits in its cache
or even a single read that miss in its cache. This class of models includes Total Store

Ordering (TSO) and Processor Consistency (PC), that mainly differ in when they allow
a read to return the value of a write. The TSO model allows a read to return the
value of its own processor’s write even before the write is serialized with respect to
other writes to the same location. The PC model is even less strict with respect to
TSO allowing a read to return the value of any write before the write is serialized or
made visible to other processors. Relaxing the program order from a write followed
by a read can improve performance substantially at the hardware level by effectively
hiding the latency of a write operations. For compiler optimization, however this
relaxation alone in not effective in practice. The reason is that reads and writes
are usually finely interleaved in a program; therefore, most reordering optimizations
effectively results in reordering with respect to both reads and writes. Thus, most
compiler optimizations require full flexibility of reordering any two operations in
program order. The ability to only reorder a write with respect to a following read
is not sufficiently flexible [91, 3].

The program order requirements can be further relaxed by eliminating con-
straints between writes to different locations (R→W, W→W relaxations). The Sun
SPARC V8 Partial Store Ordering (PSO) model is the only example of such a model.
As the previous set of model, the optimizations allowed by PSO are not sufficiently

3.3. MEMORY CONSISTENCY MODELS 93

= A

B =

lock(S)

C =

= D

unlock(S)

E =

F =

= A

B =

lock(S)

C =

= D

unlock(S)

E =

F =

Store Order

Total

= A

B =

lock(S)

C =

= D

unlock(S)

E =

F =

Release

Consistency

= A

B =

lock(S)

C =

= D

unlock(S)

E =

F =

Consistency

Sequential

Store Order

Partial

Ordering

Weak

= A

B =

lock(S)

C =

= D

unlock(S)

E =

F =

Figure 3.5: Orders imposed in a program by various consistency models. An arrow
show a mandatory order, arrows’ transitive closure show the partial order among
the instructions.

flexible to be useful in practice to a compiler [91].

Next step in relaxing all program order requirements between all operations
to different locations. Relatively to previous consistency models the benefit is that
multiple read requests can be outstanding at the same time, can be bypassed by later
writes in program order, and can themselves complete out of order, thus allowing the
hiding of read latency. These models are particularly well matched to dynamically
scheduled processors whose implementation indeed allows them to proceed past read
misses to other memory references. They are also the only models that allow many
of the key reordering and elimination of accesses as done by compiler optimizations.
Weak Ordering (WO) is the seminal model, Release Consistency (RC) is an extension
of WO supported by the Stanford DASH prototype.

The motivation behind WO model is that most parallel programs use synchro-
nization operation to coordinate accesses to data when necessary. Between syn-
chronization operations, they do not rely on the order of accesses to be preserved.
Before a synchronization operation is issued, the processor waits for all previous op-
eration in program order to have completed. Similarly, memory accesses that follow
the synchronization are not issued until the synchronization operation completes.
Read, write and read-write operations that are not labeled as a synchronization can
be arbitrarily reordered between synchronization operations.

The RC model further relax WO model distinguishing among types of synchro-
nization operations and exploiting their semantics. In particular, it splits synchro-

94 CHAPTER 3. DSM: THE STATE OF THE ART

Model Used in Op.Ordering Fences

SC most machines as op-
tional mode

R→R, R→W,
W→R, W→W

All memory operations

TSO IBM S/370, DEC VAX,
SGI challenge

R→R, R→W,
W→W

memory barrier, read-write

PC Intel Pentium R→R, R→W,
W→W

memory barrier, read-write

PSO Sun SPARC (V8) R→R, R→W memory barrier, read-write

WO IBM PowerPC explicit synchronization
RC DEC Alpha, Stanford

DASH
release, acquire, read-write

RMO Sun SPARC (V9) four flavors memory barriers

Table 3.1: Memory models supported by various processors and systems.

nization operations into acquires and releases. An acquire is a read operation that
is performed to gain access to a set of operations or variables. A release is a write
operation that grant permission to another processor to gain access to some opera-
tions or variables. The splitting of synchronization operations in classes cuts down
the number synchronization required.

It is clear that this class of models provides considerable reordering freedom to
the hardware and the compiler. The prominent specifications or relaxed models just
described are summarized in Table 3.1 [3, 65]. Notice, all modern processors support
at least one of the relaxed memory consistency model.

Performance impact

A processor can proceed past a memory operation to other instructions if the mem-
ory operation is made non-blocking. The room for latency tolerant overlapping of
memory operations is greatly restricted by sequential consistency requirements. Re-
laxed models allow the compiler (or the programmer) to deal more effectively with
optimization towards latency tolerance.

Actually latency tolerance methods by overlapping of memory operations, both
one each other and with processor busy time, represent the instantiation of memory
consistency model we have seen in the previous section. Starting from the more
conservative (Sequential Consistency) to the more aggressive (Release Consistency),
our ability to introduce memory tolerant optimization grows at the same pace of
complexity of hardware/software design.

To proceed past write misses (W→R, W→W relaxations), the only support we
need in the processor is a write buffer. Most uniprocessors already include an aggres-
sive write buffer placed before the first level cache. In a uniprocessor, this approach

3.3. MEMORY CONSISTENCY MODELS 95

Dynamic scheduling or out-of-order scheduling means that instructions are fetched and
decoded in program order as presented by the compiler, but they are executed by the functional
units in the order in which the operands become available at run time. In other words, a
processor with out-of-order scheduling simultaneously examines several consecutive instructions
within an instruction window, using one of the well known methods like scoreboarding or
reservation stations (Tomasulo’s algorithm) [100].

Speculative execution allows the processor to look at and schedule for execution instructions
that are not necessarily going to be useful to the program’s execution. Instruction after the
speculation point (e.g. branch) continue to be decoded, issued and executed, but these are
not allowed to commit their values into the architectural state of the processor until all prior
speculation have been resolved [100, 99].

Observe that these methods are independent from memory consistency models, since out-of-
order execution does not means that the results of instructions is made visible out-of-order at
memory system level. It is quite possible that operations completed (in any order) keep their
results in reorder buffer, without temporarily committing the register file. Thus, even with
aggressive out-of-order execution, memory operation can complete in program order.

Table 3.2: Concepts recap: Dynamic scheduling and speculative execution.

is very effective as long as reads check the write buffer to satisfy dependences, i.e.
the read may be allowed to bypass the write buffer as long as a write to the same
location is not pending in the write buffer. In multiprocessors, the write buffer is
responsible for controlling the visibility of writes to the rest of the extended mem-
ory hierarchy, and hence to other processors. This is enough to implement models
like PC and TSO. If in addition, multiple writes in the write buffers may merged
(coalesced) or retired, so they may complete out of order, we obtain much like PSO
model. Moreover, write buffer enables the writes to be pipelined through the mem-
ory hierarchy. Of course having multiple writes outstanding in the memory system
requires that the caches allows multiple outstanding misses.

Relaxing W→R constraint usually is enough to hide most of the write latency
from the processor, while relaxing W→W does not help masking read latency since
reads are blocking. As matter of fact, Sun SPARC V8 PSO model has not got
a great success in commercial processors design and has been replaced by Relaxed

Memory Order (RMO) in later Sun SPARC V9 design.

The last step is to make also reads non-blocking (all relaxations) and introduce
a mechanisms to look ahead beyond dependent instructions. These instructions
might be finely interleaved with branches. Thus, going beyond reads requires ef-
fective branch prediction as well as speculative execution3 past predicted branches.
Nowadays, the trend is towards increasingly sophisticated processors that provide all
these features in hardware (for instance they are included by the Intel PentiumPro

3See Table 3.2.

96 CHAPTER 3. DSM: THE STATE OF THE ART

SC PC RC SC PC RC SC PC RC SC PC RC SC PC RC

100 %

80 %

60 %

40 %

20 %

0 %

82

58

79

44

57

43

79 77
68

SC PC RC

FFT LU MP3D Radix Water Mean

54

67
79

100 100 100 100 100 100

a)

SC PC RC SC PC RC SC PC RC SC PC RC SC PC RC

100 %

80 %

60 %

40 %

20 %

0 %
SC PC RC

FFT LU MP3D Radix Water Mean

586063

4345 43

76

60 57 60

47 43

63
73 68 66

56
53

b)

Figure 3.6: Performance of straightforward implementation of memory consistency
models versus speculative out-of-order implementation. (Performance figures taken
from Adve et al. [4])

and the Sun UltraSparc). Theoretically, the compiler has a great opportunity to
make latency hiding optimization using non-blocking reads. The most interest-
ing question is whether, with aggressive, dynamically scheduled processor, relaxed
methods that allow non-blocking reads still buys substantial performance gains over
Sequential Consistency.

A recent study (Adve, Pai and Ranganathan [4]) seems to indicate that, in ab-
sence of sophisticated hardware mechanisms like out-of-order and speculative execu-
tion, Release Consistency is still beneficial with respect to both Sequential Consis-
tency (SC) and Processor Consistency (PC). The result is shown is Figure 3.6. The
top series of histograms (Fig. 3.6a) show the performance of PC and SC normalized
with respect to SC for six applications of the Stanford SPLASH/SPLASH-2 suites
[156] on a simulated hardware cache coherent shared-memory multiprocessor system
(8-16 PEs). In the bottom series of histograms (Fig. 3.6b) is shown the execution
time of the same tests in case of speculative out-of-order processor implementa-
tion normalized with respect to straightforward SC implementation. We see that
nowadays hardware optimizations at single processor level results in a significant
narrowing of the performance gap between consistency models.

3.3. MEMORY CONSISTENCY MODELS 97

Reduction of coherence oriented communications

Let us now see relaxed memory consistency models from another viewpoint. As pre-
viously mentioned, relaxed memory consistency models might enable the reduction
of coherence oriented communications in DSM systems. The primarily source of
overhead in a DSM system is the large amount of communication that is required
to maintain consistency, in other words to maintain the shared memory abstraction.
The issue become particularly critical in software DSM where communications are
expected to be expensive, and totally in charge of the processor. In fact, from early
software DSM systems such as IVY [128] relying on sequential consistency, software
DSM designer has rapidly converged towards less strict memory consistency models.

Ideally, the amount of communication for an application executing on a software
DSM system should be comparable to the amount of communication for the same
application executing directly on the underlying message passing system. In reality,
the message passing programming model forces the programmer to distribute by
hand (and carefully) data structures in application threads. This actually represent
both the principal drawback of the programming model and the trump card of its
run-time support. Conversely, DSM support may suffer from data false sharing
and other phenomena that raise the traffic of the underlying communication layer.
False sharing occurs when two threads on different machines concurrently update
different shared data items, ideally independent one each other, but lying in the
same coherence unit (i.e. the same virtual memory page). False sharing may cause
a coherence unit to be “ping-ponged” back and forth between different machines.
This kind of communications are extraneous to the logic of the parallel program,
and they are a serious caveat for the application performance. Another issue is the
size of coherence oriented messages, that has strong relation with both false sharing
and the size of coherence unit.

The mechanism to reduce the coherence oriented traffic basically consist in delay-
ing coherence oriented actions (namely write notices) until certain synchronization
points. The choice of synchronization points have important implication both on
theoretical performance and programming model.

As discussed, the problem is particularly critical in software DSM implementa-
tions. In fact the trend in software DSM systems is to move towards increasingly
relaxed memory consistency models. For this reason we start here from the point
we stopped in the previous section, the Release Consistency and moving towards
even more relaxed models (see Figure 3.4).

Release Consistency

Release Consistency (RC) originate from the observation that programmers use syn-
chronization to separate accesses to shared variables by different threads; typically
a pair of synchronizations trammel a critical section. As previously discussed, RC
splits synchronization operations into acquires and releases. Lock acquires and lock

98 CHAPTER 3. DSM: THE STATE OF THE ART

releases map in the natural way onto acquires and releases, barriers are treated as
a release-acquire pair. The idea is that memory consistency is guaranteed only at
synchronization points, while temporarily inconsistencies are allowed between syn-
chronization points.

Formally to ensure RC the memory subsystem have to respect the following
constraints:

• Before a read or a write is allowed to perform with respect to any other pro-
cessor, all previous acquire accesses must be performed.

• Before a release access is allowed to perform with respect to any other proces-
sor, all previous read and write accesses must be performed.

• Synchronization accesses must be sequentially consistent one each other.

Notice the model establishes that before the release all written values after the
acquire have to be committed: Any moment between the write and the release is
legal moment to issue and complete the write notice. For example, if the thread T1

issues a write on variable V , another thread T2 may have access to the value of V ,
written by T1, only after T1 has issued a release.

RC relaxes the constraints of sequential consistency in the following ways:

1. Reads and writes can be buffered or pipelined between synchronization points.

2. Reads and writes following a release do not need to be delayed for the release
to complete. Release only signals the state of past accesses to shared data.

3. An acquire access does not need to delay for previous reads and writes to
complete. An acquire only controls the state of future accesses to shared data.

The first point actually represent the main source of performance gain of RC
with respect to sequential consistency [50]. Moreover, it describes the dual use of
RC: pipelining is mainly used to mask communications latency, buffering to reduce
frequency of communications.

Hardware solutions, in general used to avoid the stalling of the processor, adopt
pipelining. They do not guarantee that the effect of the write will be see until the
release, but in fact they usually will be. Since the goal is to make the memory oper-
ation non-blocking, there are no reason to delay the write notice (e.g. invalidations)
at the release point: a specialized hardware device does all the work without any
processor intervention, and it does as soon as possible. Since multiple write notices
may be issued in a acquire-release region, they are pipelined reducing the total la-
tency of communications. However, pipelining does not help too much neither in
reducing the frequency of communication nor the false sharing phenomena.

The significant difference from hardware and software solutions lie in the fact that
software solutions adopt the buffering behavior in order to reduce coherence related

3.3. MEMORY CONSISTENCY MODELS 99

communications. In this behavior, write notices are really not propagated until a
synchronization point, avoiding the proliferation of write notices. When a processor
writes to several different replicated data items within a critical section, the buffering
implementation buffers writes to shared data until a subsequent synchronization
point, at which point it transmits the buffered writes.

The choice of the subsequent synchronization point represent another key issue
for RC models:

Eager Release Consistency (ERC), introduced in Munin [49, 50], send write
notices at release points. Exiting from a critical section, a thread invalidate all
copies of dirty coherence units (memory pages), i.e. memory pages that have
been modified in the critical section. Only the first access to an invalidated
page after a synchronization point generates a request for that page.

Lazy Release Consistency (LRC) [117] delays write notices from a release to the
next acquire in temporal order. On an acquire, the thread obtains the write
notices corresponding to all previous release operations that occurred between
its previous acquire and its current acquire and applies them to the relevant
coherence units. By further postponing coherence actions to acquires, LRC
alleviate several performance problems of ERC. First, false sharing on a co-
herence unit occurring before the acquire, but not after it, have no effects.
Second, the invalidation message (due to release) may be coalesced with ac-
quire messages. Third, in ERC the system have to send invalidations to all
thread that have used a certain coherence unit, even if it will no longer use it.
In LRC we exactly known what threads will use a coherence unit (since the
thread is acquiring a lock), thus only interested threads will receive invalida-
tion messages. In contrast, LRC is significantly more complex to implement
than ERC.

All relaxed consistency models have deep implications on how a program is writ-
ten and executed. Let us consider some example on how a couple of simple programs
are executed under ERC and LRC.

In Figure 3.7 is sketched executions of the same program under ERC and LRC.
Because of effect just described LRC uses considerably less messages with respect
to ERC. Notice the program have different semantics in the two models. Supposing
variable A initially zero, a read out from a critical section issued by P2 return 0 in
ERC and 1 in LRC. In the latter model the read is locally resolved, while in the
former the earlier invalidation cause a local copy to be refresh.

Let us underline the difference in the programming model supported by the two
consistency model. Suppose the variable A in the Figure 3.8 code is initialized to
0. Sooner or later Pi will grab the lock (acquire), execute the write, and finally
unlock (release) leaving the critical section. Pj is cycling at the while loop.

Under ERC, when Pi issues the release, thus notify to Pj the new value of A

that is 1. At this moment Pj jumps out of the loop and eventually execute its

100 CHAPTER 3. DSM: THE STATE OF THE ART

unlock

W(A,2)

lock

unlock

lock

W(A,1)

unlock

lock

W(A,1)

unlock

W(A,2)

lock

tim
e

LRCERC

R(A)

R(A)

P0 P1 P2 P1 P2

R(A)

R(A)

R(A) P0

R(A)

−0−

−0−
−0−

−0−

−1− −0−

ack

inv inv

inv inv

inv
ack

Figure 3.7: Eager Release Consistency (ERC) and Lazy Release Consistency (LRC).
ERC propagate invalidations at release point, while LRC coalesces invalidation with
lock grant at acquire point.

Pi Pj

lock(L); ...

write(A,1); ...

unlock(L) while (A==0) nop;

... lock(L);

... vt1=read(A);

... unlock(L);

Figure 3.8: An example highlighting differences between ERC and LRC program-
ming models.

3.3. MEMORY CONSISTENCY MODELS 101

critical section. on the contrary, in LRC write notices are propagated only at the
moment of acquire operation (lock), thus Pj will known the new value of A at the
moment of the lock, but since Pj will never spontaneously goes out from the loop,
Pj is stuck in the loop.

Entry Consistency

Entry Consistency (EC) has been introduced in the Midway DSM system [37]. Like
both variants of release consistency, it requires the programmer to use lock (ac-
quire) and unlock (release) at the start and end of each critical section, respectively.
However, unlike release consistency, entry consistency requires each ordinary shared
variable to be associated with some synchronization variable such as a lock or barrier.
If it is desired that elements of an array be accessed independently in parallel, then
different array elements must be associated with different locks. When an acquire is
done on a synchronization variable, only those ordinary shared variables guarded by
that synchronization variable are made consistent. Entry consistency (EC) differs
from lazy release consistency in that the latter does not associate shared variables
with locks or barriers and at acquire time has to determine empirically which vari-
ables it needs.

Formally, a memory exhibits entry consistency if it meets all the following con-
ditions :

1. An acquire access of a synchronization variable is not allowed to perform with
respect to a process until all updates to the guarded shared data have been
performed with respect to that process.

2. Before an exclusive mode access to a synchronization variable by a process is
allowed to perform with respect to that process, no other process may hold
the synchronization variable, not even in non-exclusive mode.

3. After an exclusive mode access to a synchronization variable has been per-
formed, any other process next non-exclusive mode access to that synchro-
nization variable may not be performed until it has performed with respect to
that variable’s owner.

Scope Consistency

Scope Consistency (ScC) tries to bridge the potential performance advantages of ease
of programming offered by Release Consistency. The basic idea under Scope Consis-
tency is to use a concept of consistency scope to implicitly establish the relationship
between data and synchronization events, thus further relaxing Lazy Release Con-
sistency.

Data modifications performed within a scope are guaranteed to be visible within
that scope only. A scope is the union of critical sections protected by a given lock,

102 CHAPTER 3. DSM: THE STATE OF THE ART

with an additional global consistency scope for barriers which include the whole
program. Data modifications performed within a scope are guaranteed to be visible
within that scope only. Updates made outside a scope session (critical section)
may not be visible to other threads. For a formal definition of rules defining Scope
consistency we refer back to Iftode, Singh and Li paper [109]. Jiajia DSM system
[107] implements in software Scope Consistency.

The potentially innovative contribute of ScC with respect to EC is the implicit
binding of data to synchronization. Such binding is dynamical and transparent, and
in most cases program written for LRC can run with ScC without modifications.
However, not all LRC programs are correct under ScC. Authors report that LRC
programs can be easily modified to run under ScC expanding critical sections by
moving synchronization operations or adding more scopes (more locks). However,
the former solution have a non trivial performance penalty due to the increased
contentions on locks. The latter solution require partial rewriting of the program.

The relation of ScC with EC is more intriguing. In ScC scopes are related to
tasks or section of codes: the control flow of thread enter into a (memory) scope
and exit from it, within such session the thread can see the variables of that scope.
In EC critical sections are related to data structures. This difference maps in a
presumed ease of programming of ScC programs with respect to LRC.

Indeed, have anyone tried to write a parallel version of the quicksort with scope
consistency? Quicksort, and in general divide&conquer algorithms seem to us very
hard to be written with ScC.

DAG consistency

All consistency models we have seen up to now have had one thing in common:
they are “processor centric” in the sense that they define consistency in terms of
actions by physical processors. Leiserson et al. [42, 112] proposed a pretty different
consistency model: DAG consistency. DAG consistency is defined on the DAG of
threads that makeup a parallel computation. Intuitively, a read can “see” a write
in the DAG consistency model only if there is some serial execution order consistent
with the DAG in which the read sees the write. Unlike sequential consistency, but
similar to certain processor-centric models, DAG consistency allows different reads
to return values that are based on different serial orders, but the values returned
must respect the dependencies in the DAG.

DAG consistency is a relaxed consistency model for distributed shared memory.
It has been used in the Cilk language developed at MIT by the Leiserson’s group
[40, 42, 41, 85, 86, 146]. In Cilk DAG consistency is maintained by means of the
BACKER [42] algorithm.

As far DAG consistency concern, shared memory consists of a set of objects
that instructions can read and write. When an instruction performs a read of an
object, it receives some value, but the particular value it receives depends upon the
consistency model. DAG consistency is defined separately for each object in shared

3.3. MEMORY CONSISTENCY MODELS 103

memory.
In order to give the definition, we first define some terminology. Let G = (V ; E)

be the DAG of a multithreaded computation. For i, j ∈ V , if a path of nonzero
length from instruction i to j exists in G, we say that i (strictly) precedes j, which
we write i ≺ j. To track which instruction is responsible for an object’s value,
we imagine that each shared-memory object has a tag which the write operation
sets to the name of the instruction performing the write. We make the technical
assumption that an initial sequence of instructions writes a value to every object.
We can now define DAG consistency.

Definition 1 The shared memory M of a multithreaded computation is DAG con-
sistent if for every location x in the global address space, there exists a function
fx : V → V such that the following condition hold.

1. For all instructions i ∈ V , the instruction fx(i) writes on x.

2. If an instruction i writes on x, then we have fx(i) = i.

3. If an instruction i reads, it receives a value tagged with fx(i).

4. For all instruction i ∈ V , we have i ⊀ fx(i).

5. For each triple of instruction i, j and k, such that i ≺ j ≺ k, if fx(j) �= i holds,
then we have fx(k) �= i.

Informally, the function fx(i) represents the viewpoint of instruction i on the
contents of location x, that is, the tag of x from i’s perspective. Therefore, if an
instruction i writes, the tag of x becomes i (part 2 of the definition), and when it
reads, it reads something tagged with fx(i) (part 3). Moreover, part 4 requires that
future execution does not have any influence on the current value of the memory.
The rationale behind part 5 is the following: when there is a path from i to k through
j, then j “masks” i, in the sense that if i’s view of x is no longer current when j
executes, then it cannot be current when k executes. Instruction k can still have a
different viewpoint on the memory than j, for instance, it can see writes performed
by other instructions (such as l in the figure) incomparable with j.

A comparison among DAG consistency and others classical consistency models
can be found in [86].

The BACKER algorithm. Let us suppose that all of the threads of a multi-
threaded algorithm have access to a single, shared virtual address space, and in order
to support such a shared memory abstraction. The BACKER coherence algorithm
assumes that each processor’s memory is divided into two regions, each containing
pages of shared memory objects. One region is a page cache of C pages of objects
that have been recently accessed by that processor. The rest of each processors’

104 CHAPTER 3. DSM: THE STATE OF THE ART

memory is maintained as a backing store of pages that have been allocated in the
virtual address space. Each allocated page is assigned to the backing store of a
processor chosen by hashing the page’s virtual address. In order for a processor
to operate on an object, the object must be resident in the processor’s page cache;
otherwise, a page fault occurs, and BACKER must “fetch” the object’s page from
backing store into the page cache. When a page fault occurs, no progress can be
made on the computation during the time it takes to service the fault. In addition
to servicing page faults, BACKER must “reconcile” pages between the processor
page caches and the backing store so that the semantics of the execution obey the
assumptions of DAG consistency.

In the BACKER coherence algorithm, versions of shared memory objects can
reside simultaneously in any of the processor caches and the backing store. Each
processor’s cache contains objects recently used by the threads that have executed
on that processor, and the backing store provides default global storage for each
object. In order for a thread executing on the processor to read or write an object,
the object must be in the processor’s cache. Each object in the cache has a dirty bit
to record whether the object has been modified since it was brought into the cache.
BACKER uses three basic operations to manipulate shared-memory objects: fetch,
reconcile, and flush.

A fetch copies an object from the backing store to a processor cache and marks
the cached object as clean. A reconcile copies a dirty object from a processor cache
to the backing store and marks the cached object as clean. Finally, a flush removes
a clean object from a processor cache. The BACKER coherence algorithm operates
as follows. When the application code performs a read or write operation on an
object, the operation is performed directly on a cached copy of the object. If the
object is not in the cache, it is fetched from the backing store before the operation
is performed. If the operation is a write, the dirty bit of the object is set. To make
space in the cache for a new object, a clean object can be removed by flushing it
from the cache. To remove a dirty object, it is reconciled and then flushed.

Besides performing these basic operations in response to user reads and writes,
BACKER performs additional reconciles and flushes to enforce DAG consistency.
For each edge i → j in the computation DAG, if instructions i and j are executed
on different processors, say P and Q, then BACKER causes P to reconcile all its
cached objects after executing i but before enabling j, and it causes Q to reconcile
and flush its entire cache before executing j. Note that if Q’s cache is flushed for
some other reason after P has reconciled its cache but before Q executes j (perhaps
because of another interprocessor DAG edge), it need not be flushed again before
executing j.

3.3.3 Multi-protocol consistency

It has been noticed that different applications exploits different performances with
different consistency model. Moreover, as seen comparing ERC with respect to

3.4. DATA REPLICATION 105

Twinning
DiffingCaching

Multiple Reader
Single Writer

Single Reader
Single Writer

Multiple Reader
Multiple Writer

Figure 3.9: DSM algorithms taxonomy.

LRC (see Figure 3.8), the consistency models have profound implications on how a
program is written and executed. It would clearly useful provide the programmer
with many consistency protocols. It would be very useful is them can be exploited
in the same program.

DSM-PM2 platform supports this features [19]. It provides the programmer with
several ready-made consistency protocols: sequential (in two flavors), eager release,
lazy release, Java (in two flavors). Also, DSM-PM2 provide the programmer with
the possibility to define their own consistency protocol: a feature that makes it a
valuable platform to experiment consistency protocols.

DSM-PM2 has noticed that all DSM systems share a number of common features.
As an example, a DSM core should provide routines to detect page faults, to extract
information related to each fault (address, fault type, etc.) and to associate protocol-
specific consistency actions to a page-fault event. Overall, DSM-PM2 triggers 8
kinds of events (page faults, receipt of a page request, receipt of the requested page,
receipt of an invalidation request, lock acquire, lock release and barrier calls). The
programmer can build his new protocol simply by fulfilling handlers of these events.

3.4 Data replication

DSM systems can be categorized by whether they allow data copies. As depicted in
Figure 3.9, our classification starts from the simpler model in which no data copy
is allowed and proceed towards more complex models by successive relaxations.
Relaxations are actually made allowing read-only data copies and read-write data
copies.

SRSW. Single Reader Single Writer class systems permit just one copy of data
items in the distributed memory. Memory addresses may be centrally managed
by a server or statically distributed. The centralized server solution suffers serious
scalability problem since the manager rapidly becomes a bottleneck. The static
distribution of memory addresses allows the static distribution of the functionalities
of the server, i.e. it permits the distribution of the server onto the nodes. Simple
mapping functions can serve to locate the appropriate server for the correspondent
memory block. This class of methods may be implemented using migration (even if
is not required). Anyway, the SRSW class solutions are rarely used in DSM systems

106 CHAPTER 3. DSM: THE STATE OF THE ART

Manager. The node managing the write access to a data block.
Owner. The node owning the only writable copy of data block.
Copy set. The nodes holding copies of the data block.

Migration. The data is shipped to the location of the data access request allowing subsequent
accesses to the data to be performed locally. Typically, the whole page or block containing the
data item migrates instead of an individual item requested. This algorithm takes advantage
of the locality of reference exhibited by programs by amortizing the cost of migration over
multiple accesses to the migrated data. However, this approach is susceptible to thrashing,
where pages frequently migrate between nodes while servicing only a few requests. To reduce
thrashing, we could use a tunable parameter that determines the duration for which a node
can possess a shared data item. This allows a node to make a number of accesses to the page
before it is migrated to another node.

Table 3.3: Concepts recap: Manager, owner, copy set, and migration mechanism

since they do not exploit important performance improvements such as replication
of read-only data items.

MRSW. Multiple Reader Single Writer (or read-replication) class systems ex-
ploits the possible parallelism in read sharing application patterns. The writable
data copy have to be unique in the system. Since the read sharing tend to be the
prevalent pattern in parallel applications, the room for performance improvements
with respect to SRSW is remarkable. A MRSW systems can be implemented in
several ways.

• The centralized manager gathers and process all read and write requests. On
a memory operation, the manager mediates between the requesting node and
the owner. The manager keeps trace and authorize data coping/migration for
the owner to the requester. It knows in each moment the copy set and the
status of all memory blocks.

• The previous organization may be improved distributing a predetermined set
of data blocks for each node and distributing functionalities accordingly. The
distributions proceeds according to a static mapping function. The organiza-
tion may tolerate a pretty high memory operation pressure provided a “good”
mapping function. The quality of mapping function depends on the appli-
cation, and may be instantiated depending on the application or the data
structures.

• Li and Hudak [129] have proposed another distributed organization based on
the concept of “probable owner”. For each data block the probable owner (not
necessarily the real owner) is saved in the support data structures. All requests

3.4. DATA REPLICATION 107

are sent to the probable owner, who is ready to forward the message in the
case it no longer is the real owner. All memory operations and invalidations
hold additional information to update owner field during the application run
in such a way to limited message bouncing. The algorithm allows a dynamic
distribution of memory block in memory. Authors report a logarithmic degra-
dation of support performance with respect to numbers of nodes accessing the
same data block.

MRMW. Multiple Reader Multiple Writer (or full-replication) class systems allow
replication of data blocks with both read and write permissions. It is an extension
of the read replication algorithm. Because many nodes can write shared data con-
currently, the access to shared data must be controlled to maintain its consistency.
Observe that a multiple writes protocol, anyway, takes account of concurrent writes
to the same memory block provided data structures within the block are not subject
to a mutual exclusion discipline. The most frequent case is the one in which two
different data structures are mapped in the same block (coherence unit), i.e. the
false sharing case. It is pretty clear that the problem gains a particular importance
in the case coherence unit is large, as for example in software implemented DSMs.

The first implementation of a MRMW protocol was in TreadMarks [118]. Tread-
Marks adopt as coherence unit the memory page. A shared page is initially pro-
tected, the first write after a synchronization point, a protection fault is raised. The
fault manager makes a copy of the page (namely the twin) and then get rid of the
write protection from the page. At next synchronization point4 the twin and the
(dirty) memory page are compared to create a diff, i.e. a compact representation of
the difference between the two pages. Diff are then propagated to make all copies
coherent. Of course, “when” multi-written pages are made coherent depends on the
consistency discipline.

Anyway, a multiple writer protocol does not make sense if not completed by an
“enough lazy” memory consistency model. Clearly, performance benefits of multiple
writer protocol can be exploited only if write operation can be issued and completed
in parallel, i.e. if we don’t require each write operation to ordered each other (but
only at certain synchronization points).

Moreover, the creation of twin, together with diff processing and application
may produce a significant processing overhead due also to the node cache hierarchy
pollution. In addition, twin and diff have to be stored, thus they require additional
memory room. The actual memory overhead due to twin pages depends on many
factors, among the other the memory consistency model, the particular implementa-
tion of MRMW protocol and how the application has been written. In TreadMarks
the shared space is limited to the physical memory of one node (because the memory
room allocated for twins is not dynamically managed). Jiajia does not have such
limitation but require a fixed additional space for twin pages, that are managed with

4Release in ERC, acquire in LRC, see also Release Consistency at page 97.

108 CHAPTER 3. DSM: THE STATE OF THE ART

a replacing mechanism.

3.5 Software implementation issues

Software DSM implementations provide a shared address space with no specific
additional hardware support. Typically, software DSM are implemented on top of a
Beowulf class cluster, i.e. a collection of complete processing node interconnected by
means of a (standard or proprietary) network. The processing node may be in turn
a parallel machine, as for example a bus-based Symmetric Multi-Processor (SMP).
This case is quite common and it has important effects on DSM design; nevertheless,
at the coherence and consistency end we consider them as a single node since they
resolve these issues in hardware.

In general, DSM are implemented at the software level by leveraging to vir-
tual memory support provided both by processor MMU and operating system5. In
software DSM systems the typical DSM functions are performed in software.

Denning [78] summarize the three major concerns for the virtual memory de-
signers as follows: “(1) Address mapping, the process of translating virtual addresses
to memory addresses, should easily accommodate the kinds of objects that program-
mers are working with. (2) Address translation should be efficient, costing no more
than 3% of hardware execution speed. (3) Overall system performance, measured by
throughput and response time, should be within 10% of the best possible performance
attainable for a given workload.”

In message-passing systems, local references incur no more overhead than on a
uniprocessor. In the shared address space the simple address translation for shared
data access in software as opposed to hardware may heavily penalize application
performance. As example Scales and Lam [151] experiment (in Burnes-Hut applica-
tion) a reduced performance by about 20% due only to software address translation
for local memory references. This performance slowdown is due to a number of
factors, among the others: determining if the referred address is local or remote,
determining the address of a possible local copy and the cost of cache management.
In addition, the presence of additional code related to local memory reference might
prevent possible optimization of code during compilation.

It is clear that the address translation overhead can be fully minimized only
adopting an all hardware solution. Target architecture for DSM, i.e. Beowulf class
architectures, have no such support by definition. In order to mitigate the address
translation overhead many DSM are built using as much as possible the hardware
available on off-the-self processors.

5Indeed, software implemented DSM systems are sometime called Shared Virtual Memories
(SVM).

3.5. SOFTWARE IMPLEMENTATION ISSUES 109

Page based

One popular way do to it is the following: Try to emulate the cache of a multiproces-
sor using the MMU and operating system software. In a DSM system, the address
space is divided up into chunks, with the chunks being spread over (in some way)
all the processors in the system. When a processor references an address that is not
local, a trap occurs, and the DSM software fetches the chunk containing the address
and restarts the faulting instruction, which now completes successfully. Clearly, the
trap is triggered by a page fault event, under the control of processor MMU. The
method makes the local access for non faulting instructions as cheap as in unipro-
cessor systems. Faulting references incur the overhead of fetching the page from a
remote node and the overhead of managing internal tables, that may be pretty large
with respect to uniprocessor virtual memory page replacement. Several key issues
emerge:

• Standard MMU can be programmed via operating system to discriminate
memory accesses at the granularity of memory pages. Using off-the-shelf pro-
cessors there are no ways to discriminate at hardware level two accesses in the
same memory page. Due to the distributed nature of the underlying memory
system any parallel application will require the replication or the migration of
data structures (shared memory chunks), that can be done at the minimum
granularity of underlying memory page.

In this setting, a careless allocation of data structure raises the likelihood of
false sharing. False sharing of a page occurs when two different data items,
not shared but accessed by two different processing elements, are allocated to
a single page. False sharing yields unnecessary contention on memory pages
resulting in some cases to a significant performance slowdown of the DSM.

• As previously mentioned, one possible improvement to the basic system that
can improve performance considerably is to replicate chunks that are read only.
Another possibility is to replicate not only read-only chunks, but all chunks.
As long as reads are being done, there is effectively no difference between
replicating a read-only chunk and replicating a read-write chunk. However, if
a replicated chunk is suddenly modified, inconsistent copies are in existence.
The inconsistency have to be prevented by using some consistency protocols.

• Since page faults involving remote pages are particularly expensive, the full
exploitation of all sources of locality (spatial, temporal, group spatial, group
temporal) in applications is a key issue in DSM based systems. Data locality
is affected by several factors: data structures allocation and mapping, threads
mapping with respect to data mapping, data replication management (caches
management). We shall examine in great detail all of them.

110 CHAPTER 3. DSM: THE STATE OF THE ART

3.6 Athapascan

Athapascan is parallel programming library extending C++. It is built on top of a
two-tier run-time: Athapascan-0 and Athapascan-1.

Athapascan allows built the macro data flow graph of the application starting
from explicitly parallel program based on the shared address model. It strongly
characterizes shared memory accesses. These are distinguished as: read (“r”), read-
write (“r w”), write (“w”), and accumulation (“cw”). Athapascan is mostly inspired
from Jade [148] concerning characterization of memory accesses and Cilk [43] con-
cerning parallelism expression. It deals with data and control flow at a grain defined
by the user. Parallelism is expressed through asynchronous remote procedure calls,
denoted as tasks, that communicate and are synchronized only via access to a shared
memory. A task definition is similar to a C procedure definition (the void returned
type replaced by the task keyword). A task implements a sequential computation;
it is created in program statements by prefixing a standard C++ procedure call by
the “fork” keyword.

During the execution of an Athapascan program, the interpretation of the “fork”
and “shared” directives are performed and the data flow graph is built. The seman-
tics of Athapascan assumes that a task does not make side effects, otherwise the
semantics of the program may be not guaranteed by the data flow graph (as in
Lithium, see Section 2.3). Afterwards ready tasks can be executed. In case of recur-
sive parallel programs forks must be re-interpreted (leading to an on-line dynamic
building of the data flow graph [87]). The scheduling algorithm sort out the mapping
of tasks and data using this graph. The scheduler uses the work-stealing principle
[51]. However, the scheduler is configurable. Athapascan provides the possibility
to design new scheduling algorithms. These algorithms may use scheduling infor-
mations expressed as attributes of the fork. Some attributes are predefined, one
of them enables to apply the owner computes rule for the newly created task. In
this case the task will rather be mapped onto the processor holding a chosen shared
object.

The Athapascan semantics relies on shared data access and ensure that the
value returned by the read statements is the last written value according to the
lexicographic order defined by the program. This order defines a total ordering on
all tasks during the execution.

The control of the accesses semantic during execution is entirely data driven: the
precedences between the tasks, the needed communications or the data copies are
ensured automatically by the runtime system. It is based on an entry release consis-
tency scheme (see also page 101); the objects entries are always done at beginning
of tasks and the corresponding release at the end of tasks.

Chapter 4

eskimo: design principles

Readers’ road-map. In this chapter we introduce “eskimo” language, i.e. a skeletal exten-
sion of C language for parallel programming based on the shared address model. We introduce
the topic by briefly analyzing the lacks of previous skeletal programming framework (in par-
ticular our group’s ones), thus motivating (yet) another evolution of skeletal frameworks. In
Section 4.1 we present eskimo basic design principles. These are developed along parallelism
exploitation (Sections 4.1.1 and 4.1.2), and memory sharing (Sections 4.1.3 and 4.1.4). The
expected pay-back of the skeletal approach is discussed in Section 4.2. Eventually, we conclude
sketching the differences between eskimo and some related works (Cilk and Athapascan).
eskimo C language extension has been fully designed by the author himself. Part of this chapter
will appear in [10].

The development of efficient parallel programs is a quite hard task. As discussed
in Chapter 2, the unstructured/low-level approach exposes to the programmer many
cumbersome aspects of parallelism exploitation such as: concurrent activity set up,
communication/synchronization handling and data allocation. From more than a
decade our research group has been active in experimenting new technologies in
order to simplify parallel programming by raising the programming model level of
abstraction. Skeletons have been present all along in such programming environ-
ments.

Several real world applications have been used as test-bed to validate the effec-
tiveness of our programming environments; these includes applications in the follow-
ing research areas: computational chemistry, massive data-mining, remote sensing
and image analysis, visual and numerical computing [64, 150, 92, 67, 24, 63, 35, 168].
Even if the skeletal approach has been proved to be effective for some of them, the
overall feedback we received cannot be considered fully satisfactory. Actually a lack
of expressivity emerged, at least for some complex applications. In principle, the
skeletal approach is not particularly targeted towards a class of applications. How-
ever, we experienced that some applications can be straightforwardly formulated in
terms of skeleton composition, others need a greater design effort. The boundary be-
tween the two classes depends on many factors, such as the particular programming

112 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

environment and the skeleton set chosen for applications development. Anyway,
some common flaws may be recognized in both the environments we designed and
other research group works (see also [60]):

i) The selection of skeletons to make available in the language skeleton set is a
quite critical design issue. Despite several endeavors to classify and close the
parallel programming skeleton set [47, 140], in many cases during application
development we experienced the need of the “missing skeleton”, or at least the
missing functionality for an existing skeleton.

ii) Many parallel applications are not obviously expressible as instances of (nested)
skeletons, whether existing or imagined. Some have phases which require the
use of less structured interaction primitives. Others have conceptually layered
parallelism, in which skeletal behavior at one layer controls the invocation of
operations involving ad-hoc parallelism within [67].

iii) Although all kind of languages may be equipped with a skeletal super-structure,
skeletal languages has been historically designed in a functional programming
style fashion [27, 76, 29, 153]. In this setting the non functional code1 is em-
bodied into the skeletal framework by providing the language with wrappers
acting as pure functions (i.e. the seq skeleton, see also Chapter 2). Actually,
the fully functional view (by its very nature) does not enhance programmer
control over data storage. This feature may happen to be useful in the design
of applications managing large, distributed, randomly accessed data sets.

As discussed in Section 2.1, the role of skeletons in the programming language
has evolved and matured along the past decade. Such evolution has been designed
to overcome (among other things) skeletal languages lack of expressiveness while
preserving their ease of use.

The former two issues have already been faced in a variety of ways. As an
example, SKElib [75] allows the programmer to mix skeletons and ad-hoc parallelism
exploited via message passing primitives. Lithium [70], allows the programmer to
modify/extend basic skeletons behavior via the standard Java OO class extension
mechanism.

The third issue is a bit more subtle. A skeleton designed as a pure high-order
function simplifies a number of points in the design of both the language and its run-
time support; in addition it enables the smart compilation and the optimization of
the parallel code [140, 18, 9, 17]. From the language viewpoint, it eases the nesting
of skeletons via their functional interfaces (represented by arguments and results
of functions). From the run-time viewpoint, it enables the structural assembling
of implementation templates: a skeleton can be implemented by composing (in
some way) implementations of called skeletons. Since user code is embodied into a

1As for example C/C++/Java code chunks.

113

wrapper skeleton and skeletons have no side-effects, in principle the run-time does
not need a shared storage among skeletons. All programming environments we
designed (except ASSIST) rely on these principles. For such kind of languages we
eventually proved that any skeletal program admit a normal form, i.e. a semantically
equivalent program obtained from the original program by means of source-to-source
transformations and exposing a no worse (in many cases better) performance and
speedup with respect to the original program (under mild additional requirements)
[15]. In other words, reducing a skeletal parallel program to the normal form consists
in to squeeze the skeleton nesting in a flat program in such a way it can be easily
farmed out (while preserving the functional semantics).

Normal form reduction technique has been successfully used in the optimization
engine of the Lithium programming framework (see also Section 2.3). On the other
hand, the bare existence of the normal form led us to reflect upon the expressive
power of such kind of languages. As a matter of fact, the normal form (whether
applicable) suggests that a program exploiting any skeletons nesting can be rewritten
in flat, farm-based program with no performance slowdown. In turn, this clearly
suggests that skeleton languages admitting normal form reduction lack in expressive
power. This ultimately springs from the limited number of interconnection patterns
admitted among constructs (that makes normal form reduction applicable).

In particular, our skeletal programming frameworks have exhibited the strongest
limitations when dealing with applications exploiting highly irregular access patterns
to large data sets. A couple of cases are noteworthy:

i) The application data-set can be naturally described in a hierarchical fashion
by a recursive or irregular data structure (as in the C4.5 data-mining and
clustering applications [35, 24]). In addition, the relationship among data
items dynamically change along the application run (as in tree-based sim-
ulation methods [170]). These applications often visit data-structures in a
Divide&Conquer fashion.

ii) Even if the application data-set may be statically bounded (e.g. stored in
an array), the application access pattern to data items is highly irregular
and cannot be statically predetermined (as in some computational chemical
applications [64]).

Due to irregular and dynamically changing nature of such applications, a coherent
shared address space programming model has been argued to have substantial ease of
programming advantages for them, and also to deliver very good performances when
cache coherence is efficiently supported in hardware. Our previous programming
frameworks (P3L, SkIE) do not natively support neither distributed dynamic data
structures nor the Divide&Conquer skeleton. Nevertheless, in these languages the
Divide&Conquer behavior may be mimed by means of (quite tricky) combination
of the others skeletons. Some preliminary experiments using SkIE equipped with a

114 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

shared memory abstraction2 have shown a expressivity boost in the deployment of
application classes mentioned before [35, 48].

In summary, our skeletal programming environments have exhibited several short-
comings during the design of real world applications. These shortcoming mainly
regard language expressive power, especially in the deployment irregular applica-
tions. From this point we moved over to design eskimo, a new skeletal programming
framework exploiting a novel skeleton role in the language.

4.1 eskimo: A new skeletal language

eskimo [Easy SKeleton Interface (Memory Oriented)] is a parallel extension of a
“host” language (the C language) based on shared address programming model. The
target architectures for the language are parallel machines without native support for
sharing memory among processing elements. In this setting, eskimo is conceived to
be a framework to experiment the feasibility of the skeletal approach with dynamic
data structures in parallel programming. eskimo run-time support is based on a
software distributed shared memory, and allows the programmer to freely access
data items in the shared memory. Notably it is not yet another DSM, it rather relies
on DSM already known technologies to experiments the co-design of dynamic data
structures and parallel programming patterns enforcing locality in the distributed
memory access. We outline the main features of eskimo as follows.

Abstraction. eskimo is a skeleton based programming language. The core prin-
ciple of the skeletal programming is neither particularly deep nor particularly com-
plex. Skeletal programming would simplify programming by raising the level of
abstraction, providing the programmer with performance and portability for its ap-
plications. In order to convey this simplicity to practitioners we must be careful not
to bundle it with other conceptual baggage, no matter how natural this may seem
from the perspective of the researcher [60].

At this end we enriched C language in such a way the language extension fairly
raises the level of abstraction. The main sources of abstraction regard data struc-
tures, the flow of control, and the interaction between them. All abstractions rely
on solid concepts like concurrency and abstract data types. A rather big effort has
been spent to keep the gap between level of abstraction of C native programming
model and extended environment as low as possible in order to preserve the C pro-
gramming pragmatics. The basic idea is the programmer is not compelled to learn
a new programming language but only the new primitives effect. Moreover, eskimo
languages support does not interfere with C functions not using eskimo primitives.
Such functions may use all C features (e.g. pointers) and standard libraries (e.g.
pthread).

2Actually a simple non-coherent software DSM [31].

4.1. ESKIMO: A NEW SKELETAL LANGUAGE 115

Expressiveness. As previously argued, the main reason motivating eskimo is the
lack of expressiveness of almost all previous skeletal parallel programming frame-
works [74, 27, 29, 17]. We propose a structured programming environment that
allows the programmer to deal directly with (dynamic) shared data structures by
means of language primitives. In particular, the programmer deals with an abstrac-
tion of data structures represented as single entities, even in case it is constituted
by a collection of parts spread across the system. These parts are kept consistent
by the run-time support following a (very) lazy memory consistency model, namely
DAG consistency (see Section 3.3.2). The particular consistency model adopted en-
forces the high-level approach of the language since it enables to read/write data
objects avoiding the need of explicit low-level synchronization primitives (like locks
and barriers). In this setting the skeleton is no longer a ready-made object of the
language (e.g. an high-order function), it is rather a code pattern build directly
by the programmer using language primitives. Since the language does not force
the programmer to use ready-made patterns but slightly lower level primitives in-
tegrated into the host language, ad-hoc parallel patterns may be coded using both
eskimo and other libraries primitives. It greatly improves language interoperability
with standard developing tools with respect to “classical” skeleton frameworks.

Framework and design principles. eskimo is specifically designed for loosely
coupled parallel architectures, in particular Beowulf class clusters. Such architec-
tures, that are becoming pretty popular due to their limited cost, present several
difficulties in drawing good steady performance from applications (particularly dy-
namic ones). Following the nature of target architecture class, eskimo exposes to
the programmer a (virtual) shared NUMA address space. However, the language
does not expose to the programmer all parallel exploitation details. The main idea
consists in supplying the programmer with a framework enabling him to make some
decisions about the relationship among data structures or their sub-parts (as for
example spatial locality) without forcing him to deal with low level orchestration of
parallel activities (e.g. data and processes mapping, load balancing, etc.). The un-
derlying design principle consists in considering preferable a programming environ-
ment on which performance improves gradually with increased programming effort
with respect to one that is capable of ultimately delivering better performances but
that requires an inordinate programming effort. This can consist in either program-
ming each detail of the application (as in low-level approaches) or expressing the
application attempting to use a fixed set of ready-made parallel paradigms. eskimo
provides the programmer with language hooks to take advantage from a possible
deep knowledge of application memory access patterns. In other words, eskimo pro-
grammers may applications as they like, but they know that some combinations of
primitives achieve a better performance than others on the target architecture class.

116 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

Layered implementation design. eskimo is built on top of a hierarchy of run-
time layers, each of them providing mechanisms and policies to solve some of paral-
lel programming run-time support issues (i.e. data mapping, processes scheduling,
shared memory abstraction, caching, etc). In particular flows of control mapping
and scheduling as well as shared data structure mapping are implemented in the top
tier, i.e. etier-1 . At this level many information about the system status may be
accessed (e.g. processing elements load, memory load, etc.). These information are
maintained by a lower level tier (i.e. etier-0) that basically wraps the communication
stack (i.e. the TCP stack in the current implementation) and provides a framework
to manage pools of threads.

In summary eskimo extends the C language with three classes of primitives ab-
stracting data structures (and their management) and parallelism exploitation:

1. flows of control management (Sections 4.1.1 and 4.1.2);

2. Shared Data Types declaration, allocation and management (Section 4.1.3);

3. shared variables read/write primitives (Section 4.1.4).

In the rest of the chapter we shall briefly describe these classes in order to provide
an intuitive insight of the issues. Later on (Chapter 5) we shall formally return back
on the same issues by describing the syntax of language primitives and exemplifying
their use.

4.1.1 Exploiting parallelism in eskimo

The basic idea behind eskimo is that a programmer should concentrate on co-
designing his data structures and his algorithms. Moreover, in order to obtain a
high-performance application, the programmer ought structure its application prop-
erly, and eventually suggest to run-time important information about algorithm data
access patterns. eskimo run-time takes care of all other details like process scheduling
and load balancing.

The parallelism is exploited through concurrency. The minimal unit for concur-
rency exploitation is the C function. Just as in a serial program, an eskimo program
starts as a single control flow, i.e. the main control flow. In any part of the program,
the programmer may split the flow of control through the asynchronous call of a
number of functions; such flows must, sooner or later, converge to a single flow of
control. The basic primitives managing program flow of control behave like Dennis’
fork/join [79], we call them e-call/e-join3. eskimo flows of control are called e-flows.
These flows of control share a virtual memory address space. The relationship among
e-calls, e-joins and e-flows is intuitively sketched in Figure 4.1 a).

3From now on we use the e- prefix to distinguish abstractions provided by eskimo.

4.1. ESKIMO: A NEW SKELETAL LANGUAGE 117

e-call/e-join primitives enable the programmer to set up a dynamic and variable
number of e-flows. This features is especially important in eskimo design. eskimo
is basically a language to experiment the feasibility of the skeletal approach with
dynamic data structures in parallel programming, in particular linked data struc-
tures as lists and trees. Almost all interesting algorithms using these data structures
explore them in a recursive fashion, following the Divide&Conquer paradigm thus
exploiting a variable concurrency availability along the program run lifespan.

Actually Divide&Conquer has been already present in classical skeleton sets.
This skeleton, as others (e.g. scan and map), has been often interpreted as a col-
lective operation on a given data structure by the skeleton community [18, 93, 95,
30, 38]. In the best case this originated a family of variants for each skeleton, each
of them optimizing a particular behavior of the algorithm on the data structure
[101]. In other cases, application programmers have been compelled to match a
given shape of the data structure with a given behavior of the skeleton (that is
likely to be a frustrating task). eskimo approaches the problem from a lower-level
viewpoint: it enables the co-design of algorithms and data structures as in the very
classical sequential programming [171]. There is no ready-made Divide&Conquer
skeleton in eskimo, there are rather all ingredients to build it in such a way the
programmer may express the suitable variant of the skeleton for its data structure.
Then, the language run-time tries to understand from the ingredients and from the
programmer hints what is the expected parallel behavior for the particular variant,
and even in case hints are wrong or missing the program does not lose its correctness
(even if we cannot expect from it an optimal performance).

4.1.2 Concurrency and flows of control

Actually e-flows do not necessarily match any concrete entity at eskimo run-time
support level or its underneath run-time layers (as for example threads or processes).
In particular an e-call has to be considered as the declaration of a “concurrency
capability” with respect to a given function instance: an e-called function instance
might be either concurrently executed or sequentialized with respect to the caller
function. In the former case, the matching e-join represents the (last) point along
the execution unfolding where a called e-flow must converge into the caller e-flow.

The two e-flows coming out from an e-call may be executed in parallel, inter-
leaved or serialized in any order depending on the algorithm, the input data and the
system status. Since e-call/e-join primitives denote in the algorithms points where
it is possible to proceed in more than one way, even for the same input data set, they
are non-deterministic primitives [83, 57]. At such points, the language compiler or
run-time may chose to either parallelize or serialize (choosing their order) the re-
sulting e-flows. As an example, eskimo program sketched in Figure 4.1 a) exploits
four e-flows that represent its top concurrency degree. However, as shown in Fig-
ure 4.1 b) the language run-time might choose to halve the concurrency degree and
project the four e-flows in two actual concurrent entities. Serialized e-flows do not

118 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

e-call

C-code
C-fun

C-code

C-funC-fun

e-join

e-call
e-call

C-code

e-join
e-join

return

C-fun

C-code

main

e-flow2

e-flow3

e-flow1

e-flow4

a)

main

e-call

e-join

e-call
e-call

e-join
e-join

return

process
 or thread

process
 or thread

b)

Figure 4.1: An eskimo program execution intuitive view. a) Relationship among
e-calls, e-joins and e-flows (grey boxes). b) A possible execution of the program.

lead to any overhead related to parallelism exploitation (thread creation, activation,
synchronization).

As it might be expected, e-flows have to be mapped on concrete concurrent
entities (i.e. processes or threads) at the language run-time level. This mapping is
sketched on-the-fly, step by step (in a distributed fashion) by eskimo run-time; in
correspondence of an e-call the calling e-flow maps the new e-flow. Actually, the
mapping process must answer two key questions:

1. Must the new e-flow be really concurrently executed (either in parallel or
interleaved) or must it be serialized with respect to the calling one?

2. In case of concurrent execution, must the fresh e-flow be locally or remotely
spawned?

In both cases the language run-time looks for a trade-off between opposite needs.
In the former case, it tries to maintain the amount of concurrent flows in the system
within acceptable bounds: enough to exploit the potential speedup of the system,
but not too much in order to avoid unnecessary overheads (in time and memory
space) due to parallelism management: this may be considered as a mapping prob-
lem. In the latter case, the run-time tries to balance workload on PEs while keeping
data locality as much as possible: this is a scheduling problem.

4.1. ESKIMO: A NEW SKELETAL LANGUAGE 119

We shall deeply discuss both mapping and scheduling of e-flows in Chapter 6;
here we just would like to highlight that the relationship among e-flows is slightly
more abstract than concurrency. Different e-flows encompass parts of an application
which might be concurrent each other, but in some cases they are not. As an example
consider the following two cases:

• the e-flows are called in a sequence that establish a (direct or indirect) prece-
dence relation of one over another;

• the e-flows are mapped by the language run-time on the same concurrent
entity of the operating system (process or thread).

In both cases e-flows do not correspond to actual concurrent code. We shall talk
about the former case in Chapter 5 where we introduce the formal machinery to de-
scribe e-flows and their relationship. The latter case regards e-flows implementation
policy we shall discuss in Chapter 6.

eskimo e-call/e-join are the basic primitives to create and destroy an e-flow.
In addition to them, eskimo provides the programmer with their generalization,
i.e. e-foreach/e-joinall. They work basically in the same way but, as shown in Fig-
ure 4.2 b), they can create and destroy an arbitrary number of e-flows. Since e-flows
created by means of e-foreach have no data dependencies one each other, they can
be non-deterministically executed. Complementary e-joinall non-deterministically
waits for the completion of all e-flows created by the matching e-foreach. e-foreach/e-
joinall have an additional freedom degree with respect to a sequence of e-call/e-join:
the order in which e-flows are mapped/scheduled and joined. This turns in some
additional advantages with respect to the basic case from the run-time viewpoint. In
particular, at e-foreach time the language run-time knows how many and which e-
flows have to be executed, and may choose their execution order depending on data
availability. eskimo run-time uses the possibility to enhance locality of data accesses
by running first tasks that are likely to have needed data (or a part of them) already
present (or cached) in the PE. In the same way, the run-time non-deterministically
joins e-flows in the order they complete. Therefore, the same program may be sub-
jected to different mapping and scheduling decisions on different runs (even on the
same input data). As an example, Figure 4.2 a) and c) sketch two runs of the same
program that have been subjected to different mapping and scheduling decisions.

4.1.3 Sharing memory among flows of control

eskimo language is specifically thought for NUMA parallel computing frameworks,
in particular for distributed memory architectures. These architectures naturally
supply a very efficient memory access to local memory and a more expensive access
to remote memory (through the network). The language abstracts these memory
categories, but it does not obscure the differences between them. eskimo language

120 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

a)

Run1
Run

2

C-fun
C-funC-fun

return

C-code

main

C-code

e-joinall

e-foreach

b)

process
 or threadprocess

 or thread

process
 or thread

process
 or thread

c)

C-code

1

main

e-foreach

e-joinall

return

main

e-foreach

e-joinall

return

2 3 4
process

 or thread

Figure 4.2: An eskimo program resulting in different mapping and scheduling in
different runs.

exposes to the programmer two class of memory spaces: private and shared, which
hold the respective classes of program variables.

Private and shared variables are distinguished by their types. Shared variables
must have a Shared Data Types (SDT). SDTs are obtained by instancing a fixed
set of Shared Abstract Data Types (SADT), i.e. parametric types, including spread
arrays, spread k-trees and shared regions4. All variables with a different type are
private. However, not all C variables are allowed as private variables, in particular
C global variables are (with some exception) forbidden in eskimo programs. These
must be substituted with shared variables. The relationship between e-flows and
memory classes is the following:

• Each e-flow has its private address space; thus private variables are always
bound to the e-flow where they have been declared. Private variables can be
accessed without any eskimo (neither static nor run-time) mediation.

• All e-flows can access the shared address space, that is spread across the
system. Shared variables may be accessed by several e-flows, thus might be
subjected to concurrent accesses. These accesses are regulated by the eskimo
run-time.

Overall, SADTs and their constructors provide a device to make sharable any
C data type by building SDTs. These are data structure containers allowing the
access to contained data (i.e. private or shared variables) by several e-flows. In case

4A contiguous region of memory that is shared but not spread.

4.1. ESKIMO: A NEW SKELETAL LANGUAGE 121

of trees and arrays the container is structured and holds many contained data in
a lattice; such data is distributed across the virtual architecture thus it may have
a greater total size than memories of the single PE. Shared variables (or part of
them) may be referenced across e-flows by using references, i.e. void pointers into
shared address space. References are the basic mechanism to pass shared variables
across e-calls. Pragmatically, eskimo references and shared variables would provide
globally addressable data structures matching the same relation between C pointers
and variables.

All SDTs are designed to be concurrently accessed by e-flows. SDTs may be
statically or dynamically (and incrementally) allocated, in particular k−tree nodes
must be dynamically allocated by means of a language primitive (see Chapter 5).
Nodes of each tree are blocked in segments by the language run-time following
programmer hints (as an example as an heap or in first-fit order), but not forcing him
to directly deal with data blocking. Data structure allocation is always performed
in the current processing element (even if all processing elements may access it).
The programmer may require locality for two data structures (e.g. a tree node and
an array) simply allocating them along the same e-flow.

Beyond trees, the programmer may build any shared linked data structure by
using references. Shared variables obey to DAG consistency (see Section 3.3.2) and
can be accessed through eskimo primitives (see next section). That basically means
two different e-flows may have a non coherent view of a given address in the shared
memory space; the coherence is then reconciled at e-join time. Pragmatically it
means different e-flows must write different shared address locations.

4.1.4 Reading and Writing Shared Variables

Most software DSMs rely on MMU and operating system traps in order to make
the access of remote data transparent. When a processor references an address that
is not local, a trap occurs, and the DSM software fetches the chunk containing the
address and restarts the faulting instruction, which now completes successfully (see
Section 3.5). However, the interrupt cost, associated with receiving a message has
been proved to be the largest component of the slow remote latency, not the actual
wire delay in the network or the software implementing the protocol [145].

We followed a different approach: shared variables, differently from private ones,
can not be read and written directly. In order to access to a shared variable the
programmer must explicitly bind it to a private pointer. The technique avoids the
use of signal handlers and operating system traps. In addition it has a pragmatic
importance: since binding operations may be expensive the programmer is required
to reduce their number by exploiting temporal/spatial locality in shared memory
accesses5.

5Anyway, transparency may be achieved by preprocessing/instrumenting the user code. The
topic is further developed in Section 6.1.2.

122 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

eskimo provides a pair of language primitives enabling the access to a shared
variable: r (for read-only) and rw (for read/write). Both r and rw take as argument
a reference and return a void (private) pointer that can be used to access the (private)
variable value. Such value may be the node of a tree, the cell of an array or the
data value contained into a region. In all cases an explicit cast of the void (private)
pointer to the correct type is required. The prototypes of the two primitives, their
exact semantics and examples of use are shown in Section 5.2.2.

4.2 Skeletons and their expected pay-back

eskimo provides the programmer with a family of constructs that specialize e-foreach.
Each of them run through elements of a given type of shared variables. Currently
there are three types of e-foreach constructs:

e-foreach-child run through non-null children of a spread tree node;

e-foreach-cell run through cells of a spread array;

e-foreach-refset run through a given set of references to shared variables or elements
of them (as for example the set of tree leafs, or array cells).

The e-foreach constructs introduce a form of data parallelism, which is based on
domain decomposition principle. eskimo allows the programmer to dynamically de-
fine and decompose the domain. In fact, the parallel application of a function to
(sub)set of children in a tree may be interpreted as a form of data parallelism (where
the dynamic domain of children is decomposed). As a result, also Divide&Conquer
paradigm may be interpreted as a special (dynamic, recursive) case of data paral-
lelism.

eskimo offers to the programmer the possibility to store data using a flat (arrays)
or hierarchical (trees) structure, then offers two standard parallelization paradigms
for the two cases: forall (or map) and Divide&Conquer. The two paradigms may be
freely interleaved and are both introduced at the language level by just one primitive
(family), namely the e-foreach. In case the application is not obviously expressible as
instances of proposed paradigms or their interleaving, the programmer may ad-hoc
parallelize it by using the standard C language enriched with e-calls/e-joins.

The basic idea under eskimo is to abstract both (dynamic) data structures and
application flow of control in such a way they result orthogonalized. Creating an e-
flow, either an e-called function may be migrated to the PE holding the data it needs
or vice-versa. Clearly, the principal decision is to evaluate which is the better choice
in each case. In such task the run-time takes in account a number of elements: the
system status (load balancing), the shared memory space status and the program-
mer hints. Several policies may be implemented by using such information. Since
Beowulf class cluster exploits an unbalanced communication/computation power
tradeoff, the run-time tries to schedule an e-flow on the same PE of the data it

4.2. SKELETONS AND THEIR EXPECTED PAY-BACK 123

needed and takes in account load-balancing only as secondary constraint. Clearly,
the key issue here is to know in advance what data a function will access. The
run-time uses two kind of information:

1. The data blocking. The run-time makes scheduling decisions only when a
function parameters cross the current data segment boundary. As result e-
flows accessing to data in segment are sequentialized enhancing locality and
coarsening computation grain.

2. The programmer hints. We assumed that the first parameter of each e-called
function (that must be a reference) is considered as a dominant factor, the
run-time expects the majority of data allocated “close” to data referenced by
it. A wrong/missing information has no impact on program correctness but a
great impact on its performance.

eskimo pragmatics is more similar to sequential programming than shared mem-
ory parallel programming. This is a precise design issue that found its main moti-
vation in the wish to experiment shared dynamic data structures in loosely coupled
target architectures as Beowulf class clusters. As shown is Chapter 3, the literature
is quite rich of techniques to turn a Beowulf cluster in a shared memory parallel
machine. Actually, software distributed shared memory systems can create the il-
lusion of a single shared memory across the whole cluster by means of a software
run-time layer. Some DSMs relies on weak memory consistency models in order to
hide some of the false sharing created by their coherence strategies. Some of these
consistency models (LRC as an example) require an even stricter programming dis-
cipline in the use of synchronization primitives in respect of sequential consistency.
Others are more friendly with the programmer but seriously lack in expressivity. As
an example a quite simple program like quicksort cannot be easily written by using
scope consistency memory model.

Let us take spatial locality as an example. Normally DSMs cannot control the
shared memory at the granularity of the machine word. All of them group data
in blocks (typically in pages) in order to reach an acceptable working grain for the
architecture. Designing a parallel algorithm we should be sure that such process does
not destroy spatial-locality, on the contrary we should turn data blocking into space-
locality exploitation. At this end we should consider the peculiarities of dynamic
data structures. Let us take trees as an example. Trees are rarely accessed in
random way (as we can expect for arrays). Trees are often used to describe a
hierarchically organized data set. In many cases the programmer will follow the
tree structure, from the root down to leaves and vice-versa. We can spread tree
nodes among processing elements, let us say, using a hash function, but is this a
good organization for a tree? We believe we should respect the nature of tree. More
ambitiously, we would like the programmer would express his insight of the algorithm
by co-allocating data that he known expose a good temporal/spatial locality.

124 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

In this task the e-flow concept has a foremost significance. Currently eskimo
run-time always assumes data structures (or their parts) allocated along the same
e-flow as “spatially related” items, thus it tries to keep them close one another
(within some other constraints like keeping a fair memory distribution).

In addition, programmers may rely on data-driven mapping/scheduling policies
embedded in the e-foreach construct. Accessing a data structure they can use the
e-foreach construct to describe the minimal synchronization requirements of the
algorithm (i.e. the maximum concurrency) and rely on the language support to
reduce the concurrency availability to the correct grain for the architecture as well
as access to task mapping/scheduling that enhances locality in data accesses. This
may be achieved moving data toward computation or vice-versa depending on the
overall system status.

Overall, eskimo provides the programmer with some ready-made shared data
types (trees, arrays, regions) and a method to build shared data structures that
respect their nature and their typical access patterns. Also, the programmer may
force some relationship (locality actually) among data structures (or their parts)
using his insight of the algorithm by means of language hooks. As an example the
same tree might be build in different ways depending of the typical access patterns
the programmer expect to exploit on it. Program performance is then enforced
by the eskimo run-time data-driven scheduling. As briefly described before, the
language run-time tries to schedule e-flows on such a way an e-flow happens to be
executed on a processing element that already hold data item (or its cached copy)
that are likely to be accessed either because spatially related with some previous
accessed data or due to a specific hint given by the programmer by means of language
hooks.

Eventually, it is worth noticing that layered implementation of eskimo run-time
support enables the skilled programmer to experiment several SDTs mapping and e-
flow mapping and scheduling policies by operating at etier-1 (the top tier) run-time
level, that actually holds all mapping and scheduling policies.

4.3 Related work and discussion

eskimo programming framework is designed and developed from scratch but it has
several analogies with a number of well-known research works. Among the others it
is worth mentioning Cilk (see also Section 3.3.2) and Athapascan (see also Section
3.6). In particular, eskimo inherits memory consistency model from Cilk. The layered
implementation design and the idea to make customizable the scheduling are quite
similar to Athapascan. Moreover the Athapascan “task” concept is similar to e-
flow one at the first glance. e-flows differently Athapascan may produce side effects
according to DAG consistency. Athapascan “computes owner rule” scheduling policy
should not be confused with eskimo behaviour: an e-flow running on a processing
element may write other processor element data.

4.3. RELATED WORK AND DISCUSSION 125

Neither Cilk nor Athapascan implements spread dynamic data structures as sin-
gle entities (and their dynamic allocation). These are designed to be grouped in
segments in order to reach an acceptable working grain for the target architecture
class in a transparent way (see Chapter 6). As we shall see in Chapter 6, it is de-
signed for loosely coupled architectures. It does not rely on any shared stack (e.g.
cactus task) for function calls: the stack never moves across PEs and may be op-
timized by the standard C compiler (e.g. inlining). It does not use work stealing,
that has load-balancing as main target. It tries to exploit a mix of data locality
and load-balancing. In addition eskimo exploits skeletal primitives (the e-foreach
primitives family, at least) enabling a e-flows scheduling that enanches locality of
data accesses.

126 CHAPTER 4. ESKIMO: DESIGN PRINCIPLES

Chapter 5

eskimo: language usage

Readers’ road-map. In this chapter we take again eskimo concepts intuitively presented in
Chapter 4. In particular we describe and exemplify eskimo primitives syntax and pragmatics. In
Section 5.1 we present the eskimo computational model. Then in Section 5.2 we present eskimo
details: How to write an eskimo program; eskimo primitives dealing with data type abstraction;
eskimo primitives dealing with parallelism exploitation. eskimo pragmatics is developed in
Section 5.3 by means of a running example. eskimo is a pretty young programming platform
and it is explicitly targeted to dynamic data structure experimentation in a skeletal framework.
Therefore it is subjected to continuous modifications and improvements. We present here
the current assessed status only, avoiding to mention possible improvements (that are already
underway). eskimo languages have been designed and developed by the author himself. Part
of this chapter will appear in [10].

eskimo [Easy SKeleton Interface (Memory Oriented)] is a skeletal extension of
the C language for parallel programming. The primary aim of eskimo is to experi-
ment the feasibility of the skeletal approach in parallel programming with dynamic
data structures. Shared memory programming has been argued to have substan-
tial ease of programming advantages for this class of problems. We present eskimo
library which constitutes an attempt1 to merge the two programming models by in-
troducing skeletons in a shared memory framework. At this end we take a step back
with respect to the classical interpretation of skeletal programming (in our opin-
ion moving back to their original meaning [59, 60]). Skeletal programming would
simplify programming by raising the level of abstraction, providing the programmer
with performance and portability for its applications. Indeed, eskimo abstracts the
shared address programming model. It provides the programmer on one hand with
data structure abstraction (SADT, SDT) and constructs to deal with their manage-
ment in a distributed shared address space; on the other hand with flow of control
abstraction (e-flows) and constructs to deal with their management (e-call/e-join,
e-foreach/e-joinall). These constructs abstract both data mapping and process

1The first attempt, at the best of our knowledge.

128 CHAPTER 5. ESKIMO: LANGUAGE USAGE

mapping/scheduling. For this reason they can be considered “skeletons” (even if we
call them construct to distinguish them from classical skeletons). Constructs may be
easily composed to implement paradigms in the classical skeleton set such as map,
reduce, Divide&Conquer.

It is worth remarking that abstraction is not an exclusive prerogative of the
skeleton research community. eskimo is pretty similar to other languages exploit-
ing multithreading in a shared address space such as Cilk and Athapascan [43, 87],
besides eskimo has been designed with previous research experiences in mind. Ac-
tually, eskimo inherits memory consistency model from Cilk (Athapascan relies on
entry release consistency, see also Chapter 3). eskimo like Athapascan (unlike Cilk)
is thought for loosely coupled NUMA distributed memory systems and exploits a
layered implementation design. Neither Cilk nor Athapascan can cope with dynamic
data structures presented as single entities at the language level. eskimo, unlike its
predecessors, abstracts both (dynamic) data structures and application flow of con-
trol in such a way that they result orthogonalized. Either function execution and
shared data may migrate one towards the other with the aim of improving memory
accesses locality. This is actually the ultimate eskimo aim.

In the next sections we first describe the computation model of eskimo language,
then eskimo in details. Afterwards a running example is presented in order to explain
eskimo features.

5.1 eskimo computation model

We briefly recap main eskimo concepts introduced in Chapter 4. eskimo C language
extension provides a high-level parallel programming environment. Parallelism is
exploited through concurrency. The minimal unit for concurrency exploitation is
the C function. Just as in a serial program, an eskimo program starts as a single flow
of control, i.e. the main control flow. In any part of the program, the programmer
may split the flow of control through the asynchronous call of a number of functions;
such flows must, sooner or later, converge to a single flow of control. eskimo flows
of control are called e-flows. The basic primitives managing program flow of control
behave like Dennis’ fork/join, and we call them e-call/e-join. eskimo flows of control
are called e-flows. Their n-way extensions are named e-foreach/e-joinall ; each of
them representing a family of primitives that distinguish one another for the type
(and the concrete behavior). As discussed in Section 4.1.2, our primitives do not
manage directly actual concurrency (threads or processes), they only describe the
(partial) order among instances of program functions.

We call e-functions the C functions that can be e-called. These are standard C
function with two additional requirements (extensively described in Section 5.2.3):

1. The function prototype is fixed, with regards to return and formal parameters
type.

5.1. ESKIMO COMPUTATION MODEL 129

m1 m2 m4m3 m5 m6

f1 f2 f3 f4 f1 f2 f4f3

main

instance of f instance of f
e-call

g1 g2 g3 g4 g6g5

instance of g
return

call call

h1 h2 h3

instance of h
return

return

return

e-flow

e-flow

e-flow

e-call e-joinreturn

Figure 5.1: An eskimo computation described by the e-flow graph. Dashed arrows
highlight e-calls/e-joins and solid arrows highlight standard C function calls.

2. The first statement of the function is a language primitive (that basically
initializes the function run-time support)

An e-flow is basically an e-called (i.e. asynchronously spawned) e-function in-
stance. An eskimo computation can be viewed as graph that unfolds dynamically.
The graph representation models very intuitively the dynamic evolution of flow of
control in a program.

Definition 2 (e-flows graph) The flow of control flow G = (V,E) of an eskimo
program is a directed graph where executed instructions are vertices of the graph.
Vertices are connected each other by two kinds of oriented edges:

1. Seq-edges representing the execution order of program instructions. Calls and
returns to and from functions are also represented by seq-edges.

2. e-edges representing e-calls and returns from e-calls.

In this graph each path from two connected e-edges is an e-flow.

The e-flow graph represents program instructions and the order they are exe-
cuted at the grain of the source program unit-size instructions. Since C functions
are the basic objects for concurrency exploitation, vertices belonging to the same
function instances can be grouped together in macro-vertices labeled with the func-
tion name. It is worth noticing that, since the graph sketches the flow of control
among e-functions instances, the graph is acyclic, thus it is a DAG. The e-flows
DAG describes the e-flows dependencies only; shared data synchronizations do not
appear on it. However, since DAG consistency defines shared data dependencies
on the ground of dependencies among flow of control, e-flows DAG implicitly gives

130 CHAPTER 5. ESKIMO: LANGUAGE USAGE

information about data synchronization also. Intuitively a read can “see” a write in
the DAG consistency model only if there is some serial execution order consistent
with the e-flows DAG in which the read “sees” the write. DAG consistency allows
different reads to return values that are based on different serial orders, but the val-
ues returned must respect the dependencies in the e-flows DAG (see Section 3.3.2).
Therefore we can claim what follows:

Lemma 1 (Independent e-flows) Let e1, e2 two vertices of the e-flows DAG
(i.e. two C instructions). If it does not exist any direct path along the e-flows
DAG including both vertices, then e1 and e2 never lead to shared data dependencies.
Therefore, e-flows including e1 and e2 have the same propriety. This basically means
the two e-flows can independently complete their execution.

Figure 5.1 shows an example of e-flow graph. The modeled program, starting
from the main function, calls the function f twice (in sequence); the first function
f instance e-calls the function g, while the second function f instance e-calls the
function h.

As described in Section 4.1.3, eskimo provides the programmer with two classes
of memory spaces: private and shared (where private is referred to the e-flow). An
e-flow is always executed in a sequential fashion and bound to a given processing
element. Therefore, we can safely assume that private address space is always
implemented using the most efficient memory the hardware supplies to the operating
system. Accesses to private memory do not need any run-time mediation, thus
they are both very efficient and fully compliant to any C language memory access
implementation.

As far as shared data concern, eskimo level does not provide the programmer
with direct view of processes and processors, therefore in this setting it makes no
sense arguing about where exactly shared data are placed; the programmer only
knows that they are (possibly spread) shared data and therefore accessing to them
may be expensive. Also, e-flow concept has important properties with respect to
shared address space. As an example two shared data items that have been allocated
along the same e-flow are allocated “close” one each other (on the memory of the
same processing element). A function accessing to one of them may probably access
to the other cheaply due to the scheduling policy, that tries to execute an e-flow on
the processing element holding the data.

5.2 eskimo language

The eskimo language extension is a parallel skeleton language. The basic idea behind
eskimo is that a programmer should concentrate on structuring his data structures
and his (possibly non-deterministic) algorithms. Moreover, in order to obtain a high-
performance application, the programmer ought to structure its application properly,
and eventually enrich the program with important information about algorithm data

5.2. ESKIMO LANGUAGE 131

access patterns (via language primitives). eskimo run-time takes care of all other
details like process scheduling and load balancing.

An eskimo program is not parallel ab initio. The programmer may split the flow
of control by means of language primitives.

We envision a C program as a sequence of logical phases. Many applications
might be thought as sequences of phases. As an example consider an application
that in sequence 1) takes an input from a file and stores data into a data structure
2) makes an elaboration of data 3) sends results to an output device. Parallelism
would be not necessarily useful in all phases of an application, or rather it is a source
of either useless complexity or interference with other libraries. Consider as example
the case where input data come from a single entry point (file, channel, memory,
etc). It is pretty clear that parallelism may be useless in the first phase.

In the next section we will go into language details and we describe: how to set
up language run-time support, how language extends C types and variables, how
global variable can be read and written, and how language deals with parallelism.
We will not describe any implementation detail, that is discussed in Chapter 6.

5.2.1 Writing and running eskimo programs

The eskimo language is implemented as a library that extends C language. At
first glance an eskimo program is simply a C program that calls eskimo primitives.
The programmer must include the eskimo.h header file, compile the program using
a C compiler and link the object code2 to the library archive file. Actually, an
eskimo parallel program is designed for multicomputer architecture (e.g. a cluster
of workstations). Compiling an eskimo program a single executable file is produced;
in order to run it on a multicomputer we rely on a specialized launcher program
called erun. erun is the eskimo analogous to mpirun command of MPI programs.
erun requires a (ASCII) machine file to specify target processing elements and some
command line parameters like the number of processing elements and the program
name.

The whole process is shown in Figure 5.2 by means of a terminal working ses-
sion snippet. First the “hello.c” program is shown. It simply echoes command line
arguments onto the terminal. Notice the program has no e-calls, thus it is purely
sequential. Nevertheless, since it includes eskimo.h, it is an eskimo program and
must be linked to the appropriate libraries. eskimo library is implemented using
POSIX threads and some floating pointer functions, therefore any eskimo program
needs to be linked with libeskimo, libm and libpthread libraries. Once compiled,
a program can be launched using erun, provided an appropriate machine file exists.
In Figure 5.2 four processing elements are indicated in the machine file; for each
processing element the number of processors3 and the amount of memory may be

2Currently eskimo is implemented as static library. However, it may be converted into a dynamic
shared library.

3In the case the processing element is actually an SMP box.

132 CHAPTER 5. ESKIMO: LANGUAGE USAGE

montecristo:~/Test> cat hello.c
#include "eskimo.h"
/* includes, defines, typedefs */

/* Global Data Types declarations */

int main(int argc, char **argv) {
int i;

for(i=1;i<argc;i++) {
printf("%s ",argv[i]);

}
printf("\n");

return(0);
}

montecristo:~/Test> make hello
gcc -D_REENTRANT hello.c -o hello -lm -lpthread -leskimo

montecristo:~/Test> cat machines
machine_name n_cpu memory_MB

cassiopea.di.unipi.it 2 512
andromeda.di.unipi.it 2 256
capraia.di.unipi.it 2 512
icaro.di.unipi.it 1 256

montecristo:~/Test> erun -v -m machines -n 2 hello Verbose Hello Word
STARTING: montecristo -> cassiopea [1] hints: [n_cpu 2] [mem 512 MB]
STARTING: montecristo -> andromeda [0] hints: [n_cpu 2] [mem 256 MB]
--
Verbose Hello Word
--
SHUTTING DOWN: Process terminated:[0] on andromeda (exit: 0)
SHUTTING DOWN: Process terminated:[1] on cassiopea (exit: 0)

montecristo:~/Test> erun -m machines -n 4 test Hello Word
Hello Word

Figure 5.2: Writing, configuring, compiling and running an eskimo program.

5.2. ESKIMO LANGUAGE 133

specified as optional hint to the run-time support. A number of these may be se-
lected using the -n num option of erun; in case the file does not contain sufficient
processing element names, they will be cyclically replicated. Selected processing
elements constitute the (virtual) distributed architecture to run eskimo programs
that have the sum of parallelism degree of each processing element as total paral-
lelism degree (see also Section 6.1). As we shall see, erun and the library run-time
support will set up the (virtual) distributed architecture by means of a completely
connected network among processing elements. In this network, the first processing
element acts as master element, while the others act as slave elements. The master
processing element – running on the first machine of the machine file – is delegated
to execute at least the main e-flow. At the language level the master element is a
distinguished element, it is the only processing element we can associate with a given
machine name. All resources (non-NFS files, devices, GUI, etc.) accessed along the
main e-flow are referred to the master element. It is worth noticing that the total
parallelism degree of the virtual distributed architecture represents an upper bound
for the exploited parallelism in the program. In Figure 5.2 a couple of runs are
shown: the former uses two out of four processing elements (-n 2), the latter uses
all processing elements (-n 4). Observe the execution is independent from paral-
lelism degree in both cases since the program exploits a single e-flow, therefore it
exploits no parallelism.

Observe that since “hello.c” is a fully sequential program (see Figure 5.2) there
is no need to activate eskimo support. In the general case eskimo support can be
activated and terminated by using the following primitives: e initialize() and
e terminate(). The eskimo support can be activated and terminated just once in
a program. All language primitives except declarations can be called only if the
support is active.

5.2.2 Types and variables

eskimo extends C types introducing Shared Abstract Data Types. These types con-
stitute the building blocks of eskimo distributed data structures. In the following
we will discuss shared abstract data types and their instances, i.e. Shared Data
Types. Afterwards we introduce shared variables, i.e. variables having a shared
data type. Eventually, we discuss references to shared variables and we discuss how
programmer can deal with all the presented objects.

Shared Abstract Data Types

A Shared Abstract Data Type (SADT) is a parameterized type, i.e. a (simple) type
template. In order to be used, a SADT must be instanced through the proper
constructor into a Shared Data Type (SDT). The first parameter of the constructor
is the name of the SDT. Instancing a SADT constitutes a declaration of a SDT.
There can be many SDT declarations, provided they have different names.

134 CHAPTER 5. ESKIMO: LANGUAGE USAGE

Type constructors

Abstract syntax Concrete syntax

tree t ≡ T 〈node t, int k sons〉 e declare tree(tree t, node t, k sons)
array t ≡ A〈elem t, int n memb〉 e declare array(array t, elem t, n memb)
region t ≡ R〈elem t〉 e declare region(region t, elem t)

Table 5.1: Type constructors for spread trees, spread arrays and shared regions.

Since the C language framework does not natively support parametric types,we
introduce two syntaxes for SADT constructors in order to nominate them: the
concrete and the abstract syntax. Concrete syntax is the real language syntax for
constructors. The application of a concrete constructor in a program constitutes a
type declaration. The motivation under abstract syntax copes with the need of a
handy and brief notation to describe language type system and type of parameters
in function prototypes.

We define three SADT: spread trees, spread arrays and shared regions. Each
SADT has its constructor. We denote SADT constructors in abstract syntax with
T (trees),A (arrays) and R (regions). Overall, a eskimo legal types τ may be sum-
marized as follows:

τ ::= 〈any C type〉 | T 〈τ, int〉 | A〈τ, int〉 | R〈τ〉

Abstract and concrete syntax of SADT constructors are described in Table 5.1.
Spread trees abstract the distributed tree concept, while spread arrays the dis-
tributed array one. Shared regions abstract the opposite concept: a contiguous
region of memory that cannot be spread on memory. A shared region acts as data
container for any C variable, making it accessible out from the single e-flow.

Let us take trees as example. The spread tree SADT must be instanced using
e declare tree constructor. e declare tree(tree t,node t,k sons) adds a SDT
named tree t to program types. It represents a spread k-tree instance where node t

is the type of the tree node and k sons is the number of children of each node. node t

may be any C type, including references and already declared SDT.4 e declare tree

must be used by the programmer as a type declaration; from the e declare tree

on and accordingly with C scope rules, tree t may be used as legal type. A binary
spread tree type holding int values may be declared as follows:

e_declare_tree(binary_tree_t,int,2);

Instances of spread arrays and shared regions are introduced in the same way
using e declare array and e declare region respectively.

4SDT nesting is legal, even if pragmatically not advised for performance reasons.

5.2. ESKIMO LANGUAGE 135

Static initialization Dynamic initialization

TREE INITIALIZER e tree init(T 〈τ, k〉 *the tree)

ARRAY INITIALIZER e array init(A〈τ, k〉 *the array)

REGION INITIALIZER e region init(R〈τ〉 *the region)

Table 5.2: Static and dynamic initializer for spread trees, spread arrays and shared
regions. T 〈τ, k〉, A〈τ, k〉, R〈τ〉 are type variables in abstract syntax.

Private and shared variables

Program variables are distinguished in two classes: private and shared. They are
name-value bindings into respective memory address spaces:

• Each e-flow has its private address space; thus private variables are always
bound to the e-flow where they have been declared. Since they are not sub-
jected to concurrent accesses they can be accessed without any eskimo (neither
static nor run-time) mediation. They are fully managed by the underlying C
compiler.

• All e-flows share a unique shared address space. Shared variables may be ac-
cessed by several e-flows, thus they might be subjected to concurrent accesses.
These accesses are regulated by the eskimo run-time (according to DAG con-
sistency). The shared address space is spread across the distributed memory
of the system.

From the language syntax viewpoint, all variables declared to have a Shared
Data Type are shared variables. All other variables are private variables. However,
eskimo imposes some constraints on the use of standard C variables. These are due
to the fact each e-flow has its own private address space, thus a private variable
cannot be safely accessed in different e-flows. In particular:

• C (private) global variables cannot be referred within any e-flow different from
the main e-flow. A conservative rule consists in completely avoiding the use of
private global variables. These can be substituted with shared global variables.

• C (private) automatic and heap (malloc’d) variables must be referred within
the same e-flow where they are declared. Pointers cannot be used to pass
the address of a private variable to a function living in a different e-flow. As
we shall see, this programming paradigm must be implemented using shared
variables.

• C (private) automatic static variables are completely forbidden.

136 CHAPTER 5. ESKIMO: LANGUAGE USAGE

eref t e add node(T 〈τ, k〉 tree, eref t father, int n)
void e del node(T 〈τ, k〉 tree, eref t father, int n)
void e setchild(T 〈τ, k〉 tree, eref t father, int pos, eref t child)
eref t e getchild(T 〈τ, k〉 tree, eref t father, int pos)

Table 5.3: Primitives for spread trees SDTs.

Currently eskimo weakly enforces the respect of constraints on private variables.
As discussed in Section 8.3, this is mainly due to current implementation design
choices. In particular, the incorrect use of a (private) global variable does not trigger
a compile time error. As private automatic variables concern, the language forbids
their sharing by means of the e-call primitive formal parameter type. The only way
to create an e-flow is by means of an e-call primitive family. These primitives may
accept references as formal parameters.

Shared variables must be declared as standard C variables. Both static and dy-
namic allocation are allowed. Unlike C variables, these variables must be initialized
before being used; the initialization step actually turns a C standard variable into
a shared variable. Statically allocated shared variables must be initialized using a
proper constant, while dynamic initialization is enabled via initialization functions.
Constants and functions for shared variables initialization are shown in Table 5.2.

Since shared variables may be accessed within different functions, and some of
corresponding function instances may belong to different e-flows, shared variables
can be concurrently accessed. In this case a consistency issue arises. Shared vari-
ables are computation consistent: values stored in variables depend on the logical
dependencies among instructions, not on the processor that happens to execute
them. In particular they are DAG consistent [41], and can be accessed through
eskimo primitives. That essentially means two different e-flows may have a non-
coherent view of a given address in the spread memory space; the coherence is then
reconciled at e-join time. From the programming pragmatics viewpoint it means
that different e-flows must write different shared address locations (see also Section
3.3.2, page 102).

Let us describe how to declare a shared variable by means of an example. Ac-
cording to the previous SDT declaration (see page 134), a couple of shared variables
may be declared as follows:

/* declare the SDT named ‘‘binary_tree_t’’ */

/* i.e. a 2-tree holding int values */

e_declare_tree(binary_tree_t, int, 2);

/* statically declare&init a shared var */

binary_tree_t t1 = TREE INITIALIZER;

/* statically declare a private pointer to binary_tree_t vars */

5.2. ESKIMO LANGUAGE 137

binary_tree_t *t2;

...

/* dynamically alloc a candidate shared var */

/* it is private up to init time */

t2 = (binary_tree_t *) malloc(sizeof(binary_tree_t));

/* turn t2 pointed var into a shared var */

e_tree_init(t2);

where t1 is statically declared, allocated and initialized, while t2 pointer enables
the dynamic allocation and initialization by means of the referred shared variable
*t2. The t2 pointer is a private variable instead. Both t1 and *t2 represent a
binary spread tree holding a int value in each node. After the initialization, the
trees are empty and they would be dynamically populated with the root and the
rest of nodes. The complete list of primitives working on spread trees is shown in
Table 5.3.

References

Besides shared data types, eskimo extends C types by providing eref t type, i.e.
pointer to shared variable type. References are declared as standard C variables.
References are used to refer to an arbitrary shared variable (they are “pointer to
shared variables”). References are “void” pointers: each of them can refer any
shared variable irrespectively of the type. eref t is not a shared data type, but a
standard C type, therefore references are natively private variables. As other private
variables, they can be contained into a SDT becoming parts of a shared variable.

As an example, we can define a (spread, shared) binary tree holding a (shared)
linked list in each node as follows:

typedef struct {

int foo;

eref_t next; /* reference */

} list_cell_t;

e_declare_tree(binary_tree_ll_t,list_cell_t,2);

binary_tree_ll_t t1 = TREE_INITIALIZER;

References can be initialized, copied, compared one another and converted into
standard C pointers via language primitives. A reference can be initialized and
copied as standard C variables (through the “=” assignment). They can be compared
one another by means of the function

int e_cmp(eref_t ref1, eref_t ref2)

138 CHAPTER 5. ESKIMO: LANGUAGE USAGE

that returns an integer equal zero if the two references are equal. They can be
converted into standard C pointers by means of r/rw language primitives (presented
later on in the section). A reference is an opaque object, it contains a shared
memory address but it cannot be directly managed by the programmer, in particular
references do not admit any arithmetic operation. E NULL is a distinguished value
for references; pragmatically its role is identical to C NULL constant. As usual in C
frameworks, the programmer must directly guarantee the validity of a reference.

Reading and writing shared variables

Differently from private ones shared variables cannot be read and written directly.
eskimo provides a pair of language primitives enabling the access to a private vari-
able: r (for read) and rw (for read/write). Both r and rw take as argument a
reference and return a void private pointer that can be used to access the shared
variable value. Such value may be the node of a tree, the cell of an array or the
data value contained into a region. In all cases an explicit cast of the void private
pointer to the correct type is required (see also Section 8.3). The prototypes of the
primitives are the following:

void *r(eref_t the_reference)

void *rw(eref_t the_reference)

Figure 5.3 a) explains the use of the two primitives. In the program we can
recognize the following key steps:

1. A binary tree SDT holding int values is declared (line 3);

2. a binary tree t shared variable is declared and initialized (line 4);

3. the t1 tree is populated with the root node (line 11);

4. the node body private variable is linked (through an appropriate type cast) in
read/write mode to datum contained into the root node (line 12);

5. the root node is first written, then read (lines 13 and 14).

It is worth observing the node body private pointer is bound once to the root
node and used twice (to write and read the contained data). In general the following
rule holds: a private pointer linked to a shared variable keeps the validity along its
scope until:

• An eskimo function is either called or e-called ;

• k r/rw primitives with other shared variables as parameter are called. In other
words, the support can maintain alive k links between shared and private
variables; links are removed in FIFO order. The constant k is a parameter of
the runtime support.

5.2. ESKIMO LANGUAGE 139

Pragmatically, the most conservative way to deal with the rule is to pair up a
r/rw primitive with each read/write access to the private pointer. A more relaxed
(and effective) approach may be followed, especially in cases of complex expres-
sions. As an example, line 15 can be legitimately substituted with *node body +=

(*node body % 3)+1. The concept is exemplified in Figure 5.3 b), in particular at
line 14 two active private pointers are deferenced.

5.2.3 Exploiting parallelism

Just as in a serial program, an eskimo program starts as a single flow, i.e. the
main e-flow. In any part of the program, the programmer may create other e-
flows by e-calling a number of e-functions. As discussed, not necessarily the whole
possible parallelism is exploited, the language run-time retains the faculty to exploit
only the parallelism it feels useful (according to criteria exposed in Section 4.1.2).
Clearly, the run-time can drain away the parallelism degree, not increase it beyond
the number of e-flows available. Pragmatically, this means that programmers are
required to exploit all the sources of “concurrency” in the application they feel
useful. As discussed in Section 4.1.2 eskimo does not enable the programmer to
deal with actual concurrency, but it rather enables them to denote activities that
have a “concurrency capability”. These are denoted by e-calling eskimo functions
(see next section). At the run time these operations may be seen as the call of
a number of asynchronous functions that split the flow of control in a number of
e-flows. Eventually some e-flows may match actual concurrent/parallel activities.

eskimo functions

An eskimo function (e-function) is a C function that might be concurrently executed
on the eskimo virtual (parallel) architecture. An eskimo function must be defined
according to a fixed schema. It has a reference as return value and three arguments;
the first one is a reference, the second and the third are strictly linked each other
and represent the pointer to a value and the size of the referred value respectively.
The prototype is the following:

eref t fun name(eref t the reference, const void *arg, int arg size)

the type efun t is an alias for eskimo functions type. The second and third param-
eters provide a mechanism to pass a generic C value to the function; it is actually
the only way to directly pass a private value to an eskimo function. The value may
have any C type, but it is required to be contiguous in the private address space.
The passed value must be used as read-only value in the function. Currently eskimo
does not perform any compile time check on that. Pragmatically a type cast of the
arg void pointer in to a const pointer may help in enforcing the correct read-only
use of referenced values.

140 CHAPTER 5. ESKIMO: LANGUAGE USAGE

a) read and write

1 #include "eskimo.h"
2

3 e_declare_tree(binary_tree_t,int,2); /* SDT declaration */

4 binary_tree_t t1 = TREE_INITIALIZER; /* shared variable decl. */

5

6 int main(int argc, char **argv) {
7 int *node_body;
8 eref_t root; /* a reference declaration */

9 e_initialize(); /* start&init the run-time */

10 /* E_NULL point out that we are creating root of the tree */

11 root = e_add_node(t1,E_NULL,0); /* populate t1 with the root */

12 node_body = (int *) rw(root); /* link node_body to root */

13 *node_body = 7; /* put 7 in the node body */

14 printf("Root node of t1 tree contain %d\n",*node_body);
15 e_terminate(); /* finalize&stop run-time */

16 return(0);
17 }

b) read and write II

1 #include "eskimo.h"
2 e_declare_tree(binary_tree_t,int,2);
3 binary_tree_t t1 = TREE_INITIALIZER(2), t2 = TREE_INITIALIZER(2),
4 t3 = TREE_INITIALIZER(2);
5

6 int main(int argc, char **argv) {
7 int *node_body1,*node_body2;
8 eref_t root1,root2,root3;
9 e_initialize(); /* start&init the run-time */

10 root1 = e_add_node(t1,E_NULL,0); /* return a t1 node */

11 root2 = e_add_node(t2,E_NULL,0);
12 root3 = e_add_node(t3,E_NULL,0);
13 node_body1 = (int *) rw(root1); *node_body1 = 1;
14 node_body2 = (int *) rw(root2); *node_body2 = 2;
15 *((int *) rw(root3)) = *node_body1 + *node_body2;
16 printf("The root node of t3 contain %d\n",*((int *) r(root3)));
17 e_terminate();
18 return(0);
19 }

Figure 5.3: Reading and writing shared variables.

5.2. ESKIMO LANGUAGE 141

e call(ehandler t *h, efun t f, eref t first, void *pp, int pp size)
e join(ehandler t *h, eref t ret)

ehandler init(ehandler t *h, int n)

Table 5.4: e-call and e-join primitives. In addition the primitive to initialize eskimo
handlers.

In addition, any eskimo function is required to call the efun init() function
as the first instruction. A simple example of eskimo function (print) is shown in
Table 5.4; observe that print function is called as a standard C function. Despite
being an e-function, it will be executed as a standard C function. In this case the
efun init() primitive has no effect.

Exploiting concurrency

eskimo programmer deals with e-flows by means of two classes of primitives: e-
call/e-foreach and e-join/e-joinall. Primitives belonging to the former family split
a flow of control, ones belonging to the latter class join many flows of control (see
Section 4.1.2). Each primitive from the former class must be followed by the suit-
able primitive of the latter class within the same e-function. An eskimo function
cannot safely use the return value of an e-called function until it executes an e-join
statement. e-join statements passively wait for all related e-flows to complete. The
e-join statement acts as a local “barrier”, not as a global one (as sometimes used
in message-passing programming). In eskimo, an e-join waits only for the e-called
children of the function to complete, not for the whole world. When all of its re-
lated functions return, the execution of the e-join’s e-flow resumes at the point
immediately following the join statement.

Table 5.4 shows the syntax of e-call ad e-join primitives. e call may be used
anywhere within an e-function. The primitives need the following parameters:

ehandler t *h It is (the pointer to) an handler enabling the matching between an
e-call and e-join. The ehandler t is an eskimo defined type. Handlers are not
shared variables and must be defined as automatic variables. They must be
initialized by using ehandler init primitives that need an array of handlers
and its length as parameters.

efun t f It is the pointer to the e-function to be e-called. efun t is the e-function
type defined in the previous section.

eref t first It is a reference to be used as the first actual parameter of f.

void *pp and int pp size They are the second and the third actual parameters

142 CHAPTER 5. ESKIMO: LANGUAGE USAGE

montecristo:~/Test> cat print.c

#include "eskimo.h"

typedef struct{
int n;
int data[10];

} vector_t;

eref_t print(eref_t dummy, void *arg, int argsize) {
int i;
/* *arg is a read-only value. Declaring v as const helps */

/* in preventing silly errors. */

const vector_t *v = (vector_t *) arg;
efun_init(); /* This makes print an eskimo function */

for (i=0;i<v->n;i++)
printf("%d ",v->data[i]);

printf("\n");
return(E_NULL);

}

int main(int argc, char **argv) {
int i;
vector_t v;
e_initialize(); /* Activate and initialize the run-time support */

for(i=0;i<5;i++)
v.data[i]=-i;

v.n=5;
print(E_NULL,&v,sizeof(v));
e_terminate(); /* Finalize and switch-off the run-time support */

return(0);
}

montecristo:~/Test> make print
gcc -D_REENTRANT print.c -o print -lm -lpthread -leskimo

montecristo:~/Test> erun -m machines -n 1 print
0 -1 -2 -3 -4

Figure 5.4: A simple eskimo program.

5.2. ESKIMO LANGUAGE 143

for f. They represent the private pointer to a private variable5 and its size
respectively.

The e-foreach/e-joinall primitives introduced in Section 4.2 are actually imple-
mented in the language by means of a sequence of primitives. These are shown in
Table 5.5. In order to use an e-foreach/e-joinall pair the programmer has to code
the following paradigm:

/* declare an iterator */

eiterator_t it;
/* initialize it - this is an iterator over a k-tree node children */

eiterator_init_child(it,< a k-tree type here >);
...
e_foreach(it, the_ref) { /* the_ref must be a node of a k-tree */

< possibly set pp or change *pp >

e_callit(f , it, pp, sizeof(pp));
}
...
e_joinall(it,ret_array);

The only noteworthy difference with respect to the e-call is that eskimo handler
has been substituted for an iterator. It embeds both loop index and the handler.
The kind of foreach (see also Section 4.2) is chosen by selecting a suitable initializa-
tion for the iterator. Variants of the e foreach primitives are: e foreach child,
e foreach cell, e foreach refset. These behave like e foreach but statically
enforces the use of the correct iterator.

foreach child runs through non E NULL children of a spread tree node;

foreach cell runs through cells of a spread array;

foreach refset runs through a given set of shared variables or elements of them
(as for examples the set of tree leafs, or array cells). Items of the set are
specified by means of a reference to it. Sets of references are currently arrays
of references.

The e-foreach concept might also be introduced in the language by using just one
primitive instead of a sequence of primitives. The sequence of primitives solution
provides the programmer with a greater flexibility since it enables the change of the
second and third parameter across the unfolding of the e-foreach. Anyway, the one
primitive solution may be achieved by collecting needed code into a parameterized
macro.

5It must be contiguous in memory.

144 CHAPTER 5. ESKIMO: LANGUAGE USAGE

e foreach(eiterator t it, eref t the ref)
e joinall(eiterator t it, eref t ret)
e callit(efun t f, eiterator t it, void *pp, int pp size)

eiterator init child(eiterator t it,T 〈τ, k〉 the tree)
eiterator init cell(eiterator t it,A〈τ, k〉 the array))
eiterator init refset(eiterator t it,eref t the set[],int len)

Table 5.5: e-foreach, e-joinall, e-callit primitives. In addition the primitive to ini-
tialize eskimo iterators.

As a matter of fact, the e-foreach turns the fork/join style paradigm into a
cobegin/coend one (Dijkstra, [80]) in order to apply newly created e-flows to sub-
parts of the domain. As discussed in Chapter 4 this can be considered as a form of
data parallelism. Due to the chosen programming model the e-foreach created e-
flows are independent, thus they can be turned in loosely coupled parallel activities.

Programming and design remarks

The DAG consistency model has a profound impact on how programs are written.
First of all the language does not need locks or barriers. From the language viewpoint
consistency actions (acquire, release) are taken at e-call/e-join time. From the run-
time support viewpoint they are really taken only if a given flow of control moves
from a processing element to another or the cache is flushed. This is a quite relaxed
memory model [86].

The main idea under eskimo (as in other environments like Cilk [42, 112]) is that
writing a parallel program without locks is easier. This simplicity is not for free.
The foremost impact of DAG consistency on programs is that a shared variable can-
not be used to trigger actions in independent e-flows (see also Lemma 1) since their
view of the memory is matched only when they join. A similar phenomenon happens
in Lazy Release Consistency. Since the release does not invalidate other processing
element memory, as shown in Figures 3.8 and 3.7, even a simple producer-consumer
behavior cannot be established without an explicit synchronization event on both
communication sides (a release-acquire pair). The problem is not present in eager
consistency models. DAG consistency, that is even lazier than LRC6, further exac-
erbates the problem since DAG consistency does not keep the coherence (location
consistency) among independent e-flows. When two independent e-flows write the
same memory word, it is undefined at the moment of the join. It is up to the pro-
grammer to avoid that. Observe this is not an eskimo specific problem, but it is
rather a DAG consistency one (Cilk has the same behavior).

Unfortunately, there are many cases in which the programmer needs to “accumu-

6The problem is extensively discussed in [86].

5.3. A RUNNING EXAMPLE 145

late” a result in a given variable or memory region. A possible extension of eskimo
language that copes with this situation is the following one. We can extend join
functions parameters with a pointer to a user defined function. This function must
implement an associative and commutative binary operation on a given type. A
so typed variable has been enclosed in a shared region. At the moment of the join
(at the moment memory consistency is reconciled) the function is applied against
the two (inconsistent) versions of the shared region and the result is stored into the
shared region. As an example if two independent threads increment a shared vari-
able representing a counter, at the join time we can set up the value of the shared
variable as the sum of values held in the two versions of the shared variable (since
they represent a partial sum). This mechanism basically implements the classical
“reduce” skeleton (commutative fold) within eskimo language.

However, even extended as mentioned, the programming model is not still com-
pletely satisfactory. A future extension of run-time support may include the support
for many (possibly coexisting at the same time) consistency models in order to as-
sociate different behaviors to different memory classes. A possible way towards the
result may consist in bringing into eskimo a flexible software DSM that may support
multiple-protocols (as for example [19]).

5.3 A running example

In this section we develop a simple application in order to exploit main eskimo fea-
tures. The application builds a spread tree, then visits it. For the sake of simplicity
we present the application using a pseudo-language, neglecting trivial or already
presented concepts.

In the application (see Figure 5.5) a spread tree SDT (k tree t), then a shared
variable (a tree) are declared. The main procedure first initializes the run-time
support, then calls the build function and the visit function, and eventually it ter-
minates the run-time support.

The seq build tree function (see Figure 5.6) recursively builds a complete k-
tree with a given depth; each node of the tree holds an integer value. Observe that
there are not e-calls within seq build tree function, thus the tree will be built
along a single e-flow. Since shared data items allocated within an e-flow have the
same home node, the tree exploits a very strong spatial locality. Nevertheless, the
tree (and its nodes) are accessible from any e-flow provided they have a reference
to the tree (or to its nodes).

After the tree has been built, we can visit it; the tree visit function is shown
in Figure 5.7. Starting from the root the function accesses to node body, then
recursively applies itself to all (not null) children of the node by means of an e-
foreach. The function waits on the e-joinall for all recursively e-called functions
before returning. e-called functions return values are discarded because they are
useless here (by using NULL as return vector address in the e-joinall primitive).

146 CHAPTER 5. ESKIMO: LANGUAGE USAGE

The function implements a top-down (concurrent, nondeterministic) visit of the
tree. We expect it will accomplish the task exploiting a certain degree of paral-
lelism. The run-time support turns created e-flows into parallelism by evaluating
the parallelism-overhead trade-off as discussed is Section 4.1.2. In the particular
case, we know that the tree is allocated in a single processing element. Therefore,
the support tries to exploit first multithreading parallelism on the tree home node
in order to exploit access locality. The solution has a low overhead since memory
accesses are local to the node; this kind of parallelism is very effective in presence
of SMP nodes and fits very well the parallelization of small tasks (fine-grain). If the
task to be computed is bigger, keeping a strong locality may lead to a heavy compu-
tation imbalance, thus to a resource waste. When the run-time detects a significant
computation imbalance it tries to restore a good resource usage by spawning future
e-flows across the system. Since our visit function does just few basic operations,
we expect just a multithreading parallelism, at least in the case of small trees.

With regard to exploited parallelism, a key role is played by the first parameter
e-functions ; it is really a hint to the run-time support. eskimo scheduling is data-
driven, the language run-time tries to schedule e-called e-functions in such a way
that the first parameter can be accessed as fast as possible. Notice in the case the
first parameter of an e-functions is E NULL the run-time schedules the resulting e-
flow taking into account a mix of workload and memory-load balance. The current
policy consists in considering e-calls with an E NULL parameter as functions having
as main target the allocation shared data items (as in the case of tree par build

function). Thus the run-time privileges the memory-load balance. Alternatively, the
programmer may use e-call variants exploiting a major concern for workload balance.
Since first eskimo aim is experimentation, the programmer may also configure their
own policy by leveraging on workload and memory-load information. At this end (as
we shall see in Chapter 6) eskimo run-time maintains a lazy table of each processing
element status (including load and memory status). The lazy table is updated
together with each message exchange among processing elements (see also Chapter
6).

Let us now parallelize also the function that builds the tree. The tree par build

function is shown in Figure 5.8. The main structure of the function is pretty similar
to its sequential counterpart, the main difference regards recursive function calls
that have been substituted for e-calls. Together with e-calls, a join primitive has
been introduced. Since the function no longer exploits a single e-flow, the tree may
be built in parallel and nodes of the tree may result spread across the system. The
latter fact has nontrivial effects also on visit function performance. The spread tree
is now really spread across distributed memory.

The read and write program writes or reads a tree in distinct, successive phases.
However, creating a function that modifies a tree (i.e. reads and writes) is straight-
forward. It is enough to interleave the order in which tree visit and tree par build

are called, or at least join them in a single recursive function.

5.3. A RUNNING EXAMPLE 147

main (build and visit)

1 e_declare_tree(k_tree_t,int,K);
2 k_tree_t a_tree = TREE_INITIALIZER(K); /* SDT declaration */

3

4 main {
5 < declarations >

6 e_initialize(); /* start and init the run-time */

7 root = tree_seq_build(E_NULL,&arg);
8 tree_visit(root,&arg);
9 e_terminate();

10 }

Figure 5.5: The main of build and visit eskimo program.

tree seq build (build and visit)

1 eref_t tree_seq_build(eref_t father,void *argsv) {
2 eref_t node,a_child;
3 < other declarations and initializations >

4 efun_init();
5 if (< requested depth not reached >) {
6 node = e_add_node(a_tree,father,args.child_n);
7 body = ((int *) rw(node)); /* bind body to node in rw mode */

8 *body= ... /* write node body */

9 for (i=0;i<K;i++) {
10 < Change args >

11 a_child = tree_seq_build(node,&args);
12 e_setchild(k_tree_t,node,i,a_child); /* link a_child to node */

13 }
14 }
15 return(node);
16 }

Figure 5.6: The tree seq build e-function (part of build and visit eskimo program).

148 CHAPTER 5. ESKIMO: LANGUAGE USAGE

tree visit (build and visit)

1 eref_t tree_visit(eref_t node, void *foo) {
2 eref_t body; int *body;
3 eiterator_t it; /* An eskimo iterator */

4 efun_init(); /* this is an eskimo function */

5 eiterator_init_child(it,a_tree);
6 body = r(node); /* bind body to node in r mode */

7 /* foreach child of body apply tree_visit(child,foo,sizeof(foo)) */

8 e_foreach_child(it,body) {
9 e_callit(tree_visit,it,foo,sizeof(foo));

10 }
11 /* wait the completion of all instances, discard return values */

12 e_joinall(it ,NULL);
13 return(E_NULL);
14 }

Figure 5.7: The tree visit e-function (part of build and visit eskimo program).

tree par build (build and visit)

1 eref_t tree_par_build(eref_t father,void *argsv) {
2 < declarations and initializations >

3 efun_init(); /* this is an eskimo function */

4 if (< requested depth not reached >) {
5 e_handler_t h[K];
6 e_handler_init(h, K);
7 node = e_add_node(a_tree,father,args.child_n);
8 body = ((int *) rw(node));
9 *body= ...

10 for (i=0;i<K;i++) {
11 < Change args >

12 e_call(&h[i],tree_par_build,node,&args,sizeof(args));
13 }
14 e_joinall(a_child,tid,K);
15 for (i=0;i<K;i++)
16 e_setchild(k_tree_t,node,i,a_child[i]);
17 }
18 return(node);
19 }

Figure 5.8: The tree par build e-function (part of build and visit eskimo program).

Chapter 6

eskimo: implementation

Readers’ road-map. In this chapter we present eskimo run-time support design principles.
Section 6.1 describes how eskimo abstracts the parallel architecture (consistency model, cache).
Section 6.2 briefly introduce the implementation of Shared Data Types. Some experimental
results are presented in order to support design choices.

A new technology can only gain acceptance if it can be demonstrated that adop-
tion offers some improvement to the status quo. Skeletal approach first concern
are programming simplicity and performance portability. We should be able to
show that structured programs can be ported to new architectures, with little or
no amendment to the source, and with sustained performance. This can be con-
trasted with the performance pitfalls inherent in transferring semantically portable
but performance vulnerable ad-hoc programs. We should be able to show that skele-
tal programs may outperform the conventional implementation constructed with an
“equivalent” programming effort. This basically means that problems that make dif-
ficult the implementation of a low-level parallel program must be (partially) resolved
at skeletal language support level.

eskimo is built on top of a hierarchy of two run-time layers: etier-0 and etier-1
(the former being the lower-level tier). The former one wraps the communication
stack, implements a pool of thread, keeps updated system statistic information, and
provides the basic mechanisms for caching and scheduling and memory consistency.
The latter one implements data structure mapping and provides scheduling policies.
These policies may be supported by statistic information about the system status
(e.g. processing elements load, memory load, etc.).

In next section we sketch basic features of the language run-time. Some experi-
ments that have been supported the run-time design are also presented. Experiments
regarding eskimo applications are instead presented in Chapter 7.

150 CHAPTER 6. ESKIMO: IMPLEMENTATION

���
���
���
���

��
��
��
��

��
��
��
��

�
�
�

�
�
�

writes
reads and

pool
scheduler

eskimo local addr. space
PE native addr. space

eskimo global addr. space
eskimo addr. space (support + cache)

slave PE4

a) b)

f1 f2

f3
fully connected network

of TCP connections

ct4

ct3

ct2

ct1

running eskimo function instances

inst. ready queque

slave PE3slave PE2

slave PE1

master PE0

remote services managers

slave PE4

POSIX TCP ports

eskimo function

f1

f2 f3

f3 f6

host threads (pool)

runtime support threads (partners)
f2

Figure 6.1: a) Virtual architecture in the case of 5 PEs. b) PE internal organization.

6.1 Abstracting the architecture

eskimo languages support is specifically designed for multicomputers, in particular
for clusters of SMP. Multicomputers consists of multiple independent processing
elements (PEs) with local memory modules, connected by a general interconnection
network (see also Section 1.2.1). Multicomputers do not provide a shared address
space at the hardware level. However, SMP nodes of a multicomputer provide shared
address space (in general implemented in hardware) among processors.

eskimo languages provide the programmer with SDT s and references, i.e. vari-
ables and addresses in the shared address space. The shared address space is a
“virtual creature” of the run-time support. The run-time support bridges the gap
between the hardware and the programming abstraction by means of a software DSM
(see Section 6.1.2). Both eskimo DSM and synchronization primitives are built on
top of a connection-based message passing transport layer, namely POSIX TCP
sockets. These are included within a simple wrappers at etier-0 level. Currently
eskimo run-time does not support other communication layers (see also Section 8.3).

At the bare bones, an eskimo application is a “particular” SPMD C program.
Once compiled it can be executed on a virtual architecture by means of the spe-
cialized launcher erun. erun launches a copy of the application in each PE of the
virtual architecture via a secure remote shell connection. Each copy of the applica-
tion contacts the other copies in order to establish a fully connected network across
the virtual architecture. A eskimo program (at etier-1 level) sets up the network as
first operation (before execution enters in main), while at etier-0 it is possible to
set up the network in any part of the application by calling an explicit primitive.
Anyway, before any other eskimo primitive could be called, the architecture must be

6.1. ABSTRACTING THE ARCHITECTURE 151

fully set up and initialized. After the initialization the virtual architecture appears
as sketched in figure 6.1 a). At the operating system level, an eskimo application
consists of a set of identical processes. Many processes may be run on the same PE,
even if this does not lead to any effective speedup because the internal PE paral-
lelism is already exploited by the multithreaded nature of each process. The basic
structure of each one of such processes is sketched in figure 6.1 b); we will first take
a look at the general organization, then we will discuss each point in detail.

At the initialization time eskimo support creates two sets of threads: the first set
(partners) includes a fixed number of threads acting as communication/protocol co-
processors. Each process relies on the protocol in figure 3.1 (see Section 3.1) in order
to interact with each other processes. Threads in the set act as partners of the proto-
col. They wait for a request, do something (typically they read/write the memory),
then reply the transaction.1 The other part of the protocol is included/distributed
into language primitives and is run by threads in the second set.

Threads in the second set (pool) do the rest of the work. Actually they are
arranged in a pool. The number of threads in the pool may change during the
execution, but it has a run-time support constant as a bound. Each thread runs a
simple distributed scheduler (pool scheduler) that takes a ready e-function instance
from a ready queue, then executes it and restarts its cycle.

Notably, running function instances can access the private address space without
any run-time mediation and the shared address space with eskimo support mediation.
In case a function reads or writes a remote shared data item (as an example a node
of a tree) a local cached copy of the segment holding the data item is created and
used instead of the remote one. From the moment the cached copy is created until it
is reconciled no run-time support actions are needed and the cached copy is accessed
without any mediation.

Threads synchronization – both among threads in partners set and pool set –
relies on POSIX thread synchronization primitives (namely mutex lock/unlock and
cond wait/broadcast). eskimo programmers do not see any of them for they are
enclosed into eskimo primitives.

The performance of the virtual architecture for producer-consumer pattern (mim-
ing the not cached write operation) is shown in figure 6.2. eskimo performance
includes thread synchronizations overhead (very few are needed in the described
case) with respect to the same communication pattern implemented in pure C/MPI
(MPICH v1.2.5).

In the Figure 6.3 the eskimo virtual architecture communication performance
are compared for the same producer-consumer pattern in the case each request is
served by a different thread (thread per request model) with respect to the described
architecture with a single thread acting as communication co-processor. The latter
solution has exploited a better performance with respect to the former, thus it has
been adopted.

1Referring to figure 3.1, they implement actions of the protocol under the “Destination” column.

152 CHAPTER 6. ESKIMO: IMPLEMENTATION

 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 1M

eskimo
MPI_Sync

256k

 0.015

 0.25

 1

 4

Packet size (Bytes)

 0.003

 0.062

M
B

yt
es

/s
ec

11.4

Communication Bandwidth (producer−consumer)

Figure 6.2: etier-0 communications performance for a producer-consumer pattern
with respect to MPI communications on the backus cluster (2 PentiumII@266MHz,
switched Ethernet 100MBit/sec). eskimo mimes the protocol shown in figure 3.1 for
the write operation. MPI version uses MPI Sync/MPI Recv primitives.

In the remain of the section we shall examine important features of eskimo sup-
port.

6.1.1 A multithreaded support

Multithreading is becoming a pretty popular programming approach primarily be-
cause threads provide a clean and simple manner in which programmers may express
logical parallelism in applications. For this reason, threads libraries designers do not
often care too much about efficiency of context switching. Our preliminary exper-
iments using Solaris threads suggest a gloomy 10% time gap among thread and
process switch.2

Nevertheless, threads exploit parallelism within a single PE (at least in SMP
processing elements) and may access to the (native) shared memory much more
efficiently than processes. Furthermore, threads may be used also to tolerate (part
of) communication latency with other PEs.

2Experiments on a Sun UltraSPARC running Solaris O.S. and Solaris user threads.

6.1. ABSTRACTING THE ARCHITECTURE 153

 0.062

 0.25

 1

 16

 4 8 16 32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k 256k 1M
Packet size (Bytes)

 4

Thread per request
Co−processor mode

 0.003

 0.015

Communication Bandwidth (producer−consumer)

 M
B

yt
es

/s
ec

s

Figure 6.3: etier-0 communications performance for two different multithreaded or-
ganization schemes on the backus cluster (2 PentiumII@266MHz, switched Ethernet
100MBit/sec).

Preliminary experiments

Our experiments show that software multithreading may be used to hide remote
memory access, and that in many cases the technique work better than prefetching.
In our experiments we take in account the Quadrics CS2 and QM1 multiprocessors,
which are basically scalable clusters of nodes connected by means of a fast fat-tree
network (more than 40MByte/sec full-duplex). In turn, each node is a Sun En-
terprise, a cache-coherent bus-based symmetric multiprocessor running an adapted
version of Solaris UNIX3. Each node is tightly connected to the network through
a communication co-processor (Elan III) that enables nodes to communicate in a
message passing way via DMA transfers; processors into a single node communicate
by sharing memory in a native way.

We consider the farm skeleton (see Chapter 2), an embarrassingly parallel paradigm
in which a set of independent workers compute a function on a stream of tasks.
The farm belongs to the skeleton set of SkIE programming language [167, 29]. It
has traditionally been implemented using a software prefetching technique and the
message passing library MPI (see [7] for any further detail). We developed a new
multithreaded implementation of the farm skeleton in order to understand the per-
formance ratio between the support based on multithreading and the one based on
prefetching/precommunication.

3The nodes of Quadrics CS2 are Sun SparcStation 10 with 2 PEs.

154 CHAPTER 6. ESKIMO: IMPLEMENTATION

Function execution time variancea)

10

60%40%

2

20% 80%

4

6

8

prefetching

4 threads

8 threads

tim
e

(m
s)

b
et

te
r

Function iterations per taskb)

2

6

8

10

4

5k 15k 50k 100k

prefetching

4 threads

tim
e

(m
s)

b
et

te
r

Figure 6.4: SkIE farm: multithreading and prefetching implementation. a) Variance
of tasks load versus service time. b) Tasks load versus service time [36].

Figure 6.4 shows a comparison among the traditional implementation and a new
multithreaded implementation, first (a) with respect to the load variance with fixed
mean, then (b) with respect to the absolute load with fixed 30% variance. The load
is simulated iterating on a dummy function (1000 iterations = 130 µsec), the number
of iteration follows a normal distribution with configurable mean and variance, the
threads load is linear in the number of iterations.

Let us briefly comment on these results: Figure 6.4 a) shows that multithreaded
version is far more stable in execution time with respect to the variance of load, thus
on bursty or highly data dependent loads. Figure 6.4 b) shows how multithreaded
implementation outperforms prefetching implementation on fine grain computations,
while the context switch overhead is a limiting factor for coarse grain computations
where prefetching can completely overlap computations with communications [36].

Clearly the switch cost affects the types of latency that we can hide; in our case,
the context switch time is about 10–20 µsecs and a transfer of 4 KBytes remote page
costs about 150 µsecs. Our experiments show that we can tolerate pretty well a load
of about 600 µsecs with a variance up to 80% using only 4 threads per processor.
Smaller run lengths are also tolerable with a greater number of threads (not with
the same efficiency), but it is pretty clear that we can not tolerate transfers less
than 4 KBytes (a page) due to the high context switch cost. The argument is really
straightforward: we can not tolerate a latency by switching to another thread if the
switch costs about the same time.

A similar set of experiments has been performed in a Beowulf with similar results
(266MHz PentiumII workstations running Linux RedHat and connected by means
of a switched fast Ethernet). The only significant difference consists in the fact
that MPI on this platform does not exploit any valuable parallelism between pro-
cessor work and data precommunication/prefetching by means of its asynchronous
primitives.

6.1. ABSTRACTING THE ARCHITECTURE 155

Starting from these results we decided to adopt the multithreading solution for
the eskimo support.

How many threads?

eskimo language enables the programmer to create a number of e-flows through e-
calls. e-flow concept may be thought as the direct abstraction of a thread. Along
this path a straightforward implementation strategy might be followed: we can
implement an e-call using a thread create primitive, provided we have an opportune
software DSM and a mechanism to spawn threads among different PEs. As discussed
in Chapter 3 tens of DSM exist. Also, a few of them are able to exploit the power
of modern thread libraries to provide multithreaded protocols, or at least to provide
thread-safe versions of the consistency protocols. At the best of our knowledge very
few of them exploit the thread migration feature (the DSM-PM2 platform is one of
them [22, 19]).

However, eskimo language is targeted to experimentation of dynamic data struc-
ture (trees in particular), designing its support we should take in account its peculiar-
ities. The language is designed to adhere to the C programming style. We imagined
trees as the natural lattice to store hierarchical information, and Divide&Conquer
as the natural way to build, to read and to write trees in parallel. We expect most
of eskimo applications to be recursive, at least in parts of them dealing with trees.
Let P ≡ if B then C[S, P] the general schema of a recursive algorithm, where C
is a composition of S (that does not contain P) and P itself. As clear, a recursive
function solving a problem wait the solution of sub-problems before conquering the
results and return. As seen in Chapter 5, eskimo enables the programmer to sub-
stitute calls with e-calls. Executing a recursive e-call we expect that each function
instance will be executed in a different flow of control. The majority of such flows
does nothing, they are stuck waiting in a join statement in order to conquer sub-
problems. We should expect a huge number of them, since only function instances
in the fringe of the activation tree are really able to run.

Let us return back to threads. Current Linux-threads library may tolerate hun-
dreds of threads and no more [127] (even if the Linux-threads implementation is
improving over time [81]). In addition DAG consistency has not explicit mech-
anisms matching directly pthread synchronization queues (e.g. mutex, condition
variable) and the number of synchronization events (related to e-flows number)
is not bound. On the one hand, we need a different event/synchronization queue
for each e-flow. This may lead to an excessive use of system resources (memory
for synchronization queues and time for their management) dedicated to synchro-
nization only. On the other hand, due to pthread synchronization mechanisms
(pthread cond broadcast/wait), the cost of synchronizations grows with the number
of threads waiting of a given event. As result we choose to associate many different
synchronization events (related to e-joins) to a limited number of condition variables
(one condition variable per thread), and at the same time, to bound the number of

156 CHAPTER 6. ESKIMO: IMPLEMENTATION

threads per process. Ready e-flow are then scheduled onto available threads.

The pool of threads

We implement a pool of threads. Each thread in the pool permanently runs a simple
distributed scheduler (pool scheduler) that gets a job in LIFO order (i.e. an eskimo
function instance) from a ready queue, executes it, then restarts the cycle. We can
add a job in the local PE ready queue or in a remote PE one by means of an eskimo 1
primitive. The run-time may dynamically change the number of threads in the pool
according to the run-time status4. The scheduler does not implement preemption
for two main reasons:

1. We would completely rely on standard programming and operating system
tools. Even if we bind an e-flow to a given PE, in order to implement pre-
emption we need at least a mechanism to checkpoint and resume a running
function environment. If in addition we would like to migrate a suspended
e-flow to another PE we must decouple the run-time from standard allocation
mechanism (as an example DSM-PM2 implementing threads migration relies
on a “iso-allocation” strategy among PEs, see [19, 21] for any further detail).
In some sense we feel that it is difficult to design such mechanisms better than
existing.

2. POSIX threads are anyway subjected to operating system preemptive schedul-
ing. Introducing another level of preemption on top of the operating system
one might create interferences between the policies used in the two levels.

Since we have no preemption, an e-flow once extracted from the ready queue is
completely executed up to the return statement, as far as eskimo support concerned5.
It follows that:

• An e-flow (see Section 5.1) is always linked to a given PE (and to a given thread
within a PE). That enables us to implement primitive variables with standard
C variables. Moreover, e-functions may migrate only at e-call time (remotely
spawned actually), thus they do not carry private data except parameters.
This reduces communication volume and enhances locality of accessed data.

• A further scheduling mechanism is needed. Since an e-flow do not leave its
hosting thread before return, if we saturate all threads in the pool with func-
tions waiting for other functions in the ready queue we enter in a deadlock
state. Such further scheduling is enclosed into e-calls. This implements a sim-
ple deadlock avoidance strategy: in the case the pool is close to be empty no

4Such are infrequent events. The run-time does not create (destroy) a thread for any job, but
only when it “feels” more (less) threads are needed.

5Actually it is subjected to the operating system POSIX thread scheduler.

6.1. ABSTRACTING THE ARCHITECTURE 157

16 bit 16 bit

64 bit (2 words)

segment_id CRC

8 bit

home_PE prog_counter displacement

8 bit 32 bit

Figure 6.5: Shared address implementation (eref t): CRC part (in gray) is optional
and normally used only during debugging.

further e-flows are mapped into threads, these are sequentialized. In the case
processing element usage drop below a given limit more resources (threads)
are added to the pool (then removed when they are no longer needed).

6.1.2 eskimo Shared Virtual Memory

eskimo software DSM has been specifically designed for the eskimo run-time support.
According to Chapter 3 taxonomies it is a software implemented DSM, and supports
DAG consistency [42] by means of a Multiple Read Multiple Writer protocol. eskimo
shared virtual memory is engineered starting from already known technologies. We
will not go into all details of it, but we will only describe its original aspects referring
to the abundant literature in the field for already known techniques.

Shared address space. eskimo shared virtual is a segment-based DSM. All shared
variables are allocated in segments, each of them holding a part of the variable.
In principle segment size have no relationship with page size since segments are
allocated via standard malloc (however, they may be set to a multiple of page size
for other reasons). A segment has a home node, and should be considered as an
atomic chunk of memory: a PE may have or have not a (copy of the) segment, but
it cannot have a part of it. An address in the shared address space (i.e. a reference)
is implemented as shown in Figure 6.5. It includes: segment id that represents the
segment identifier. It is the key that distinguish segments with the same home PE
value. home PE that is the home node of the segment. prog counter that is an ever
increasing counter (modulo its maximum). When a shared variable (or a part of it)
is freed, the hosting segment is also deallocated and its segment id is reused. It may
happen (because an error in the program) that an e-flow uses a reference (i.e. a
shared address) having as key a segment id that has been first freed then reallocated
to another purpose. prog counter is used to distinguish the two addresses and to
raise a run-time error. displacement represents the address offset in respect of the
base of the segment. CRC that is a Cyclic Redundancy Check of the other address
field used for debugging purposes. Notice that widths of fields of the address may be
changed (widen for example), even if it would be desirable for performance reasons
that the whole structure match typical architectural parameters.

158 CHAPTER 6. ESKIMO: IMPLEMENTATION

Shared addresses translation is embedded into r/rw eskimo primitives. As exam-
ple we sketch how r works. For the sake of simplicity we neglect consistency related
actions and flags setting (e.g. dirty bit):

void * r(eref_t addr) {
if (< segment not cached and remote >) {

< request to > home_PE < segment > segment_id ;
< wait the answer >;

}
return(segment_table[segment_id].base + displacement);
}

r will find a communication partner in the home PE node, in particular among
threads in the partners set6. A shared address identifies a system-wide unique
data object. A shared address is translated into a PE logical address by using the
segment table. The segment table is (partially) replicated in each copy of eskimo
processes, and it is shared among all threads of the process. The table enables
the match of a shared address with either a segment of the memory local to PE
or a cached copy of it. segment table copies across the system are keep coherent
accordingly to the (relaxed) memory consistency chosen (see also Section 6.1.2).
After a shared address has been translated into a local logical address, then we
can use the latter to access to the data object. eskimo support does not make any
physical copy of the data object, we can consider it a pseudo zero-copy protocol7.

Many address translation mechanisms has been proposed in literature. Some of
them rely on specialized hardware devices [78], some others emulate the cache of a
multiprocessor using the MMU and operating system software [129]. In the latter
approach, the address space is divided up into chunks, with the chunks being spread
over (in some way) all the processors in the system. When a processor references
an address that is not local, a trap occurs, and the DSM software fetches the chunk
containing the address and restarts the faulting instruction, which now completes
successfully. Clearly, the trap is triggered by a page fault event, under the control
of processor MMU. The method makes the local access for non faulting instructions
as cheap as in uniprocessor systems. However, the interrupt cost, associated with
receiving a message has been proved to be the largest component of the slow remote
latency, not the actual wire delay in the network or the software implementing the
protocol [145].

We choose to a bit more abstract approach, we do not rely on the iso-allocation
of logical addresses. We exploit the shared address space obtained as the sum of the
logical address space of all PEs in the virtual architecture. At this end, we defined
shared addresses as opaque objects not limited by machine word length. Dynamic

6Referring to Figure 3.1, r implements actions of the protocol under the “Source” column.
7A copy really happens within the TCP stack, moreover consistency protocol may need to

perform a data copy.

6.1. ABSTRACTING THE ARCHITECTURE 159

test A

1 < force in cache all vars >

2 < start the counter >)
3 for(i=0;i<K;i++) {
4 value = (int *) r(root);
5 *value += i;
6 }
7 < stop the counter >

test B

1 < force in cache all vars>

2 value = (int *) r(root);
3 < start the counter >

4 for(i=0;i<K;i++) {
5 *value += i;
6 }
7 < stop the counter >

Figure 6.6: Experimenting address translation overhead.

data structures mainly motivates the choice. Let us take trees as example, during
vertex allocation we expect to have a really lazy knowledge of tree vertex distribution
among the system, especially because we would not like to synchronize PE to allocate
vertices. In this setting, a 32 bit logical space divided up the processing elements
becomes a little logical space.

The price to pay such flexibility is pretty high. We cannot rely on any hardware
support performing shared address translation. Our shared addresses translation is
completely software implemented. Anyway, we implemented a quite fast translation
code, in case of cache hit it consist in one conditional branch and 5 elementary
statements, no one of them is a memory locking statement. We measured a 31 clock
cycles overhead for r translation on a 450 MHz Pentium III workstation.8 On the
same architecture a sum between (cached) integer costs about 6 clock cycles, and a
(processor) cache miss costs thousand of clock cycles. In both cases the evaluation
does not takes in account the performance gain due to pipelining of many instruc-
tions. Our address translation code is really macro-expanded into source code and
benefits from C compiler classical optimization and processor instruction pipelin-
ing. A more significant experiment is shown in Figure 6.6. test A executes a cycle
including an address translation (r) and an integer sum, while test B cycle does
not include address translation. Both chunks of code read and write in the fastest
processor cache. Depending on the architecture we experienced a 5–20 slowdown
factor of test A with respect to test B, suggesting a non-negligible address trans-
lation overhead. This overhead may unacceptably hight in the case large fraction
of executed code consists in r/rw operations (see also experiments in Section 7.1).
However, consider that r/rw are not reads and writes. These are operations that
link a shared variable address to a private pointers. Actual reads and writes are then
performed by using the private pointer with no further eskimo run-time mediation.
The point here is that eskimo programs ought to be written as test B even if they

8The measure is performed using the hardware “Time-stamp Counter” of PentiumPro class
processors. The counter has resolution of the clock cycle and does not interfere with normal
processor operations [110].

160 CHAPTER 6. ESKIMO: IMPLEMENTATION

can be written also as test A. The argument is quite similar to others in sequen-
tial programming. C programmers arrange programs in such a way that arrays are
visited in row major order when possible; Fortran ones in column major order just
because they know that is more efficient.

Consistency

eskimo run-time keeps the distributed memory consistent according with a DAG
consistency, i.e. a relaxed consistency (see Section 3.3, page 102).

Currently eskimo run-time maintain DAG consistency into the shared memory
by using a version of the BACKER algorithm [41], (see page 103) that has been
originally conceived for the Cilk run-time system [42, 146]. Differences between
the original and our implementation exists but are minimal. One of them regards
the granularity at memory data objects are kept consistent that is the segment
in eskimo. As in the original formulation we adopt a MRMW protocol using the
classical twinning technique [116].

A version of eskimo run-time support exploit Pentium’s streaming extension
(MMX/SSE) to perform all tasks related with diffing operations. Since our current
developing platform (gcc3.2 on Linux RedHat) does not support an easy access9 to
the MMX sub-system we rely on the Intel Performance libraries. These libraries are
neither shareware nor open source, we take them as a black-box. Out of the block
we registered an effective speed-up (up to 800%) with respect to the classic code
for very long stream only. Unfortunately the function call latency (that probably
involve a register re-arrangement) is too high to make the function effective for our
aims. Recently we ported eskimo on MacOS X (Version 10.2.6, Mach 3.0 kernel,
OS services based on 4.4BSD, Berkeley Software Distribution). PowerPC processor
architecture and software development tool (gcc 3.1) seem enabling an easier and
effective usage of the vector co-processor. In particular the processor includes a full-
fledged set of dedicated vector registers (see Figure 6.7) and the gcc compiler is able
to automatically divert some code loops toward the vector unit10. The “functional”
porting of the eskimo library has been immediate. Yet we have no experimental
evaluations of eskimo on this architecture (these are ongoing).

Cache

eskimo cache sub-system is specifically thought for a multithreaded framework;
threads within a processing elements cooperatively manage the cache. Each cached
segment in a processing element may be accessed by all threads (of the processing
element). The consistency model together with scheduling policy ensures that all
threads can access to a shared cached copy concurrently (without any lock in the

9Actually the MMX can be used by inlined asm or by compiler builtins.
10Probably the former issue enables the latter.

6.1. ABSTRACTING THE ARCHITECTURE 161

Figure 6.7: PowerPC Altivec’s Vector Unit. Taken from [130].

run-time support). Moreover any thread may concurrently create/destroy a segment
cached copy without synchronizing with others threads.

In particular each thread in the pool has a private stack of cache slots identifiers.
At the time a faulting r/rw operation is issued the requesting thread gets an identifier
from its stack from its private stack. In case of success, it mallocs the space needed
to hold the whole segment (including the r/rw requested reference) and store the
segment base address starting (machine) address into the segment table. The
process needs no lock at the support level. In case the private stack of identifiers
is empty, the thread tries to get some identifiers from a global11 stack. In case of
success the previously described procedure is activated. In case, for any reason, a
thread cannot find a empty cache slot identifier, a cache flush is performed (thus
the segment is reconciled at the home-node, as described in Section 3.3.2).

The flushing operation is a bit more complex. A cached segment may be con-
currently accessed by many threads. These threads do not grab any lock in order
to access the memory. Therefore, before flushing a segment we must ensure that
the segment is in use to the current thread only. In case the segment is in use to
many threads, the current threads asks to the others to consider the segment as un-
available (for a while). Each thread “hears” other thread requests at each language
primitive. Possible race conditions during the operations are managed by means of

11With respect to all threads in the processing element, and in mutual exclusion.

162 CHAPTER 6. ESKIMO: IMPLEMENTATION

Figure 6.8: A spread tree stored in two different ways: heap (top) and heap+fist-fit
(bottom). Dashed box are heap segments, solid box are first-fit segments. Dark
grey boxes are completely fulfilled. Light grey boxes are incomplete.

atomic operations in memory (an exchange instruction basically). Since each thread
may perform many access to the same cached segment without performing any lan-
guage primitive (see also Figures 6.6 and 5.3), we must also ensure that dynamically
evolving set of segments is not subject to the flush.

The (pretty complex) mechanism ensures that in the majority of cases cache is
managed without any lock, thus in parallel within a SMP node.

6.2 Shared Data Types

As discussed the architectural framework must operate on pretty large grains in
order to mitigate language primitive overheads and to exploit a significant efficiency
in communications. Moreover, we must ensure that SDT typical access patterns
exploit a good spatial locality.

As far as shared regions concern they are simply allocated in segments tailored

6.2. SHARED DATA TYPES 163

for their size. The implementation of spread arrays has been extensively studied
and tested in literature [107]. We adopt the very simple strategy to divide them
in regular segments. Such segments are spread across the architecture accordingly
with a hash function12.

Trees are more interesting from out viewpoint. We have already discussed how
to declare and populate a spread tree in Chapter 5. In summary in order to use a
spread tree the programmer should follow these steps:

1. Instance a spread tree SDT with a C type representing node held data. The
operation is performed by means of the e declare tree.

2. Declare a spread tree shared variable using as type the name given to the SDT
at the previous step (either statically or dynamically via standard malloc).
This phase declares an empty tree.

3. Populate the tree starting from the root using the e add node primitive.

Let us describe now what really happens in the run-time support:

1. Two new types are created. One of them represent the tree, the other its
generic node. Both of them are really are C struct. The former type is
named according to the SDT requested name. It hold few information such
as the number of children and a dummy variable holding a prototype of the
generic node. The latter struct holds the C type used as parameter and some
additional information such as an array of references to children.

2. Nothing happens apart for the allocation of the first struct mentioned above.

3. Starting from the reference to the father the run-time decides if the requested
child must be placed in the same segment or in a new one. This decision is
made according to the mapping policy. Clearly if the father is null a new
segment is created (and the node is the root of the tree).

• In the case the child is placed in the father’s segment it inherits father
segment id. The run-time choose only node displacement within the seg-
ment according to the “internal” mapping policy (heap, first-fit). Some
information are kept within the segment to trace segment current status.

• In the case the child is placed in a new segment a segment id is requested
and a suitable memory room is allocated (via malloc). Then the previous
step is performed to figure out the displacement.

In both cases a reference is composed by using segment id and displacement
then returned.

12Array must be accessed through a language primitive

164 CHAPTER 6. ESKIMO: IMPLEMENTATION

Segments may have different sizes, even in the same tree. Nodes in a segment are
placed according with a customizable strategy. Currently eskimo run-time supports
two strategies: heap and first-fit.

Figure 6.8 (top) sketches a spread tree allocated with heap policy. Starting
from a node, heap strategy maximizes the likely of finding children nodes in the
same segment while visiting the tree (in a random way). Moreover, a segment
holding a heap allocated sub-tree exposes a very uniform fringe with respect to
lower levels of the tree. Let us consider the outer-tree, i.e. the tree obtained by
considering each segment (dashed boxes in the figure) as a node of outer-tree and
all edges among different segments as edges of the outer-tree. The original tree
and the outer-tree have the same shape, thus heap allocation keeps the shape of the
tree. Unfortunately, heap policy suffers from internal fragmentation. As an example
adding a level to the tree in Figure 6.8 lead to creation of 56 additional segments.
These are mostly empty and filling percentage drops from 98% to 25%. Even a
balanced tree cannot effectively stored blocked in this way. Fragmentation has a
great impact both on memory load and performance. A spread tree composed by
mostly empty segments destroys the spatial locality of accesses and pays additional
overheads in communications among processing element.

Aiming of resolving the problem we implemented the first-fit policy. As can
be imagined, the strategy is antithetical with respect to heap one. It offer a good
“compression” of data but may destroy the shape of the tree. In Figure 6.8 (bottom)
the same tree is blocked using first-fit strategy (except for the top part, as discussed
in the following). In this case adding a level to the tree lead to creation of 8 additional
segments and the filling percentage grows from 73% to 80%. In the general case filling
percentage may grow or drop but in a limited way (even though some pathological
cases exists). Moreover, during experiments with eskimo we observed that several
application tend to allocate and visit nodes of a tree following similar paths. In
such a case first-fit strategy works pretty well. The general effect is similar to tree-
threading one, i.e. a technique that enriches the tree with additional edges forming
a chain. The chain is then followed in order to speed up the tree visit. First-fit
policy behaves similarly forming multiple chains during tree allocation, these links
nodes stores in the same segment.

However, also first-fit strategy has its own drawbacks. Those come from the
eskimo parallelism model. In order to limit the number of threads and schedul-
ing actions, eskimo run-time takes scheduling actions during the segments border
crossing only. Since an e-function references data (through r/rw) within the same
segment no scheduling actions are taken, that means that possibly produced e-flows
are sequentialized. This may lead to an unbalanced mapping of e-flows into threads.
As an example consider build and visit program shown in Section 5.3. Let us sup-
pose to use the first-fit strategy to store the tree starting from the root. The will be
stored in a depth-first way. Since eskimo scheduling tries to execute first e-flows ac-
cessing to segments already present in the processing element memory (or cached), a
pretty long path toward the leafs is explored before an e-flow is mapped in another

6.2. SHARED DATA TYPES 165

thread (either in the same processing element or another one).
In order to mitigate the problem eskimo uses a mixed strategy to allocate tree

nodes. It alternates the two kinds of segments (heap and first-fit). In particular it
use heap strategy in two cases:

• every time a node is allocated and the father of the node has another processing
elements as home node;

• for the tree root and its direct children.

The strategy has been proven to be effective from fragmentation viewpoint and
from performance viewpoint. Since all scheduling actions in eskimo are taken at the
granularity of segments, the mixed strategy ensures both early scheduling decisions
and a good locality in allocation.

166 CHAPTER 6. ESKIMO: IMPLEMENTATION

Chapter 7

eskimo: experiments

Readers’ road-map. This chapter reports experimental result obtained by using eskimo on a
small test-suite. The test-suite includes some micro-benchmarks in order to test efficiency of
some significant features of the run-time support, as for example address translation overhead.
Test-suite also includes a significant application (a n-body simulation) in order to experiment
both expressiveness and performance of the language on a dynamic application.

In order to assess eskimo performance, we performed a set of experiments on
a Beowulf class Linux cluster operated at our department, as well as on a set of
“production” workstations available at our department.

The cluster based experiments were aimed at demonstrating eskimo performance
features, mainly. The cluster used for the experiments hosts 17 nodes: one node
(backus.cli.di.unipi.it) is devoted to cluster management, code development
and user interface. The other 16 nodes (ten 266Mhz Pentium II and six 400Mhz
Celeron nodes) are exclusively devoted to parallel program execution. All the nodes
are interconnected by a (private, dedicated) switched Fast Ethernet network. backus
is a dual hosted node and provides access to the rest of the cluster node from Internet
hosts. All nodes in the cluster run Linux Red-Hat 7.2 (kernel 2.4.7-10/gcc 2.96).

The production workstations used are a pair of dual 550MHz Pentium III Linux
workstations running Linux Red-Hat 8.0 (kernel 2.4.18-14smp/gcc 3.2). The ma-
chines are interconnected by means of a plain 100Mbit Ethernet network that hap-
pens to be very busy all the time. All presented performance figures are sorted out
by compiling applications with full optimization enabled (-O3 switch).

Moreover, speedup figures are figured out against “real sequential application”,
i.e. the pure C application implementing the same algorithm of the parallel version.
Sequential version does not include eskimo nor any other DSMs or communication
libraries.

168 CHAPTER 7. ESKIMO: EXPERIMENTS

7.1 Building and visiting a tree

In this section we present experimental figures of the application described in Section
5.3. The application builds a spread tree then visits it. In spite of its simplicity, it
is a fairly important test since build and visit are the most common operations on
trees.

Along this section we shall compare eskimo application against a sequential appli-
cation written in pure C language. Both applications implement the same algorithm
and store in the tree the same amount of data. However, it is worth noticing that
the sequential application always writes and reads the local memory while eskimo
application write and read global memory. Moreover, the application can not bene-
fit in any way from temporal locality since read and write each node once. For the
same reason, the application does not exploit spatial locality; however due to the
tree node blocking operated by eskimo run-time support during node allocation the
application can benefit from it.

We measured the overhead of reading/writing global memory with respect to
local memory. Figure 7.1 shows the time needed to allocate a spread tree against
several processing elements. The spread tree is a balanced binary tree holding 4M
nodes, each node of the tree holds just three integers (it can be considered a pretty
small node). A horizontal straight line (seq build) in the figure denotes the time
needed by the sequential version to allocate the same tree. The third line of the
figure shows the ratio between eskimo and sequential applications allocation times.
Since the application does nothing apart from reading and writing the memory, the
test highlights library overheads due to global addresses translation and parallelism
management (multithreading, communications, caching and consistency). As ex-
pected the sequential version is 3–4 times faster than the parallel version. However,
since the ratio line decrease when the number of processing elements grows, we can
conclude that the tree have been really distributed among nodes (the fact can be
also verified consulting statistic information supplied by the library).

Tree visit (Figure 7.2) behave similarly to build. Observe that the complete
tree have a size of 48 MBytes, even assuming the optimal network performance (12
MBytes/sec) and a perfect tree blocking, the time to move the tree among two nodes
is about 4 secs. Since the visit completes in the same time on 12 processing elements,
we can conclude that in the majority of the cases eskimo functions migrates toward
data.

Figure 7.3 shows tree visit time for a 64k nodes balanced binary trees. The visit
function run 37 µsecs (active) dummy load for each node of the tree in order to
simulate a computation on the tree node data. As clear from the figure the applica-
tion can profitably use up to 10 nodes of the cluster. Observe that the application
runs on a single node is slightly slower than the pure sequential version. Figure 7.4
shows application speedup with respect to data plotted in Figure 7.3, the maximum
speedup is reached on the ten processing elements configuration. Figure 7.3 and
7.6 reports application performance and speedup on the same load but on a bigger

7.1. BUILDING AND VISITING A TREE 169

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12
 0

 5

 10

 15

 20

P
ro

ce
ss

in
g

T
im

e
(s

ec
s)

R
at

io

Processing Elements

par_build
seq_build

ratio

Figure 7.1: Overhead in tree building versus #PEs on backus. Balanced binary
tree (depth 22, 4M nodes, 48MBytes).

 0

 5

 10

 15

 20

 0 2 4 6 8 10 12
 0

 5

 10

 15

 20

P
ro

ce
ss

in
g

T
im

e
(s

ec
s)

R
at

io

Processing Elements

par_visit
seq_visit

ratio

Figure 7.2: Overhead in tree visiting versus #PEs on backus. Balanced binary tree
(depth 22, 4M nodes, 48MBytes).

170 CHAPTER 7. ESKIMO: EXPERIMENTS

tree (depth 20, 1M nodes). In this case the application speedup scales up the maxi-
mum number of nodes, proving that eskimo library respects iso-efficiency, i.e. bigger
problems can be parallelized more than little ones.

Figure 7.7 shows the performance of runs on several cluster configuration against
the dummy load associated to each node of the tree. eskimo parallel versions cor-
rectly linearly grows with respect to dummy load.

Exploiting multithreading

In clusters of single processor boxes (e.g backus) parts of eskimo capabilities get
lost. eskimo is able to automatically turn independent e-flows both in parallel mul-
tiprocessing and multithreading. In the case the cluster includes SMP nodes eskimo
support tries to use all processors in the SMP node and tries to keep eskimo func-
tions working on the same data local to the SMP nodes as much as possible in
order to exploit locality. Table 7.8 shows eskimo overhead on a pair of 2-way SMP
nodes. Run-time overhead in this case is pretty high due to several reasons. In
addition to eskimo overhead, the application pays O.S. inefficiencies in this case. As
discussed, Linux pthread implementation is not particularly efficient, and most of
Linux system tasks are really executed in mutual exclusion. Moreover, the memory
bus of our (cheap) dual Pentium boxes are not always able to sustain the pressure
of two processors continuously reading and writing the main memory. As shown in
Table 7.9, performance figures becomes fairly good increasing the (active) load of
the application.

7.2 N-body Barnes-Hut algorithm

As hierarchical techniques are applied to more and more problem domains, and
applications in these domains model more complete and irregular phenomena, build-
ing irregular trees from leaf entries efficiently in parallel becomes more important.
N-body problems are among the most important applications of tree-based simula-
tion methods today. The performance of N-body applications has been well studied
on two kinds of platforms: message passing machines [170, 149] and tightly coupled
hardware cache-coherent multiprocessors [157]. Due to their irregular and dynam-
ically changing nature, a coherent shared address space programming model has
been argued to have substantial ease of programming advantages for them, and to
also deliver very good performance when cache coherence is supported efficiently in
hardware.

Although message passing may have ease of programming disadvantages, it ports
quite well in performance across all these systems. This performance portabil-
ity advantage may overcome the ease of programming advantages of the coherent
shared address space model whether the latter cannot deliver good performance on
commodity-based systems, so users in domains like tree-based N-body applications

7.2. N-BODY BARNES-HUT ALGORITHM 171

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0 2 4 6 8 10 12

P
ro

ce
ss

in
g

T
im

e
(s

ec
s)

Processing Elements

par_visit_16
seq_visit_16

Figure 7.3: Tree visiting time versus #PEs on backus. Balanced binary tree (depth
16, 64k nodes, 768 KBytes, 37 µsecs of computational load per node).

1

2

3

4

5

6

0 2 4 6 8 10 12

S
pe

ed
up

Processing Elements

ideal speedup 16
speedup vs seq 16

Figure 7.4: Tree visiting speedup on backus. Balanced binary tree (depth 16, 64k
nodes, 768 KBytes, 37 µsecs of computational load per node).

172 CHAPTER 7. ESKIMO: EXPERIMENTS

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12

P
ro

ce
ss

in
g

T
im

e
(s

ec
s)

Processing Elements

par_visit_20
seq_visit_20

Figure 7.5: Tree visit time versus #PEs on backus. Balanced binary tree (depth
20, 1M nodes, 12MBytes, 37 µsecs of computational load per node).

1

2

3

4

5

6

0 2 4 6 8 10 12

S
pe

ed
up

Processing Elements

ideal speedup 20
speedup vs seq 20

Figure 7.6: Tree visiting speedup on backus. Balanced binary tree (depth 20, 1M
nodes, 12MBytes, 37 µsecs of computational load per node).

7.2. N-BODY BARNES-HUT ALGORITHM 173

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120

P
ro

ce
ss

in
g

T
im

e
(s

ec
s)

Computational load x node (microsecs)

seq
1 PEs
4 PEs
8 PEs

Figure 7.7: Tree visit time versus computational load on backus. Balanced binary
tree (depth 20, 1M nodes, 12MBytes).

tree depth 16 18 20

nodes 64k 256k 1M
size (MB) 768k 3M 12M

seq (sec) 0.01 0.03 0.15
1 x 2-way SMP (sec) 0.80 0.30 1.50
2 x 2-way SMP (sec) 0.40 0.15 0.70

Figure 7.8: Tree visiting overhead on a SMP cluster (2-way 550MHz PIII).

174 CHAPTER 7. ESKIMO: EXPERIMENTS

comp. load 0 µsec 37 µsec 73 µsec optimal

time seq 0.03 9.55 19.01 –

(sec) 1 x 2-way SMP 0.30 7.03 12.07 –
2 x 2-way SMP 0.15 4.80 8.51 –

speedup 1 x 2-way SMP 0.10 1.35 1.57 2
2 x 2-way SMP 0.20 1.98 2.23 4

efficiency 1 x 2-way SMP 0.05 0.68 0.79 1
2 x 2-way SMP 0.05 0.50 0.58 1

Figure 7.9: Tree visiting time, speedup and efficiency on a SMP cluster (2-way
550MHz PIII). Balanced binary tree (depth 18, 256k nodes, 3MBytes).

2) Top-down phase: sys_step_top_dw1) Bottom-up phase: sys_step_bot_up

to be
moved

to be
moved

Figure 7.10: A n-body system step in two phases (force calculation phase, in two
sub-phases: bottom-up and top-down).

7.2. N-BODY BARNES-HUT ALGORITHM 175

sys step bot up

1 eref_t sys_step_bot_up(eref_t anode) {
2 eref_t ret_array[4];
3 eiterator_t it; /* An eskimo iterator */
4 eref_t float_list, sink_list; node_t *np;
5 efun_init(); /* this is an eskimo function */
6 np = (node_t *) rw(anode); /* bind np to anode */
7 if (np->leaf) { /* recursion base case */
8 < Figure out acceleration (visit the tree from root) >
9 < Update bodies position (np->x = ...; np->y = ...;) >

10 if (!within_borders(elem))
11 push(float_list,anode);
12 }
13 else {
14 /* Divide */
15 e_foreach_child(it,np) {
16 e_callit(sys_step_bot_up,it,foo,sizeof(foo));
17 }
18 e_joinall(it,ret_array);
19

20 /* Conquer */
21 for (i=0;i<4;i++)
22 while (elem=pop(ret_array[i]))
23 if (within_borders(elem)) /* read *np */
24 push(sink_list,elem);
25 else
26 push(float_list,elem);
27 < handle chain elimination and other particular cases >
28 }
29 return (float_list);
30 }

Figure 7.11: eskimo pesudo-code of the bottom-up phase, see also Figure 7.10

176 CHAPTER 7. ESKIMO: EXPERIMENTS

may prefer to use the more difficult model.

Barnes-Hut algorithm. Having specified the initial positions and velocities of
the n bodies, the classical N-body problem is to find their positions after a number
of time steps. In the last decade, several O(NlogN) algorithms have been proposed.
The Barnes-Hut method [34] is the one widely used on sequential and parallel ma-
chines today; while the tree building issues and algorithms we discuss apply to all
the methods, we use a 2-dimensional Barnes-Hut galaxy simulation as an example
application. The sequential Barnes-Hut method has three phases in each time step
of a simulation. In the first tree-building phase, a quad-tree is built to represent the
distribution of all the bodies. This is implemented by recursively partitioning the
space into eight sub-spaces until the number of particles in the subspace is below a
threshold value. The lowest level cells contain bodies, and higher level cells contain
the summary effect of the bodies in their rooted sub-trees. The root cell represents
the whole computational space. The second phase computes the force interactions.
In this phase, each body traverses the tree starting from the root. If the distance
between the body and a visited cell is large enough, the whole sub-tree rooted at
it will be approximated by that cell; otherwise, the body will visit all the children
of the cell, computing their effect individually and recursively in this way. In the
third phase each body updates its position and velocity according to the computed
forces. The sequentially dominant phase is the force calculation phase (97%).

Barnes-Hut application is a good example to study because it presents non-trivial
performance challenges, and it is relatively small and manageable.

7.2.1 Barnes-Hut experiments

We developed three different versions of the Barnes-Hut algorithm:

• The sequential version (seq), implemented in C language. It is a reduction to
the bare bones of the original Barnes-Hut code in the bidimensional space.

• The eskimo version. It is obtained from the sequential version substituting
recursive calls with recursive e-foreaches. Body information is stored directly
in the tree instead of in an array. The n-body system evolves through two
phases: (references to) bodies leaving their current quadrant are first lifted
to the smallest quadrant including both source and target positions (bottom-
up phase), then they are pulled down to target quadrant (top-down phase).
Algorithm behavior is sketched in Figure 7.10. A snippet of the eskimo pseudo-
code of the bottom-up phase is shown in Figure 7.11

• The C+MPI version. The body data is partitioned among nodes. The hierar-
chical relationship among bodies is maintained in a forest of trees. Each tree
of the forest is linked to a “root” tree replicated in each PE. The structure

7.2. N-BODY BARNES-HUT ALGORITHM 177

simulates a spread tree with the top part cached in each PE for a faster ac-
cess. A processing element maintains the top part of the tree coherent and
reads/writes other parts by exchanging messages with other processing ele-
ments.

We tested the three application versions on two different datasets: cross and
ellipse. The two dataset have the same peculiarities of the classical plummer and
uniform distribution models respectively. The two data distribution are represented
in Figures 7.12 and 7.13. The two distribution may be hierarchically represented
by a strongly-unbalanced and fairly-balanced trees respectively. These trees are
depicted in the bottom parts of the two figures (in both cases the dataset includes
30 bodies, that are the leafs of the tree). In all cases, we use θ = 0.5 as acceptance
criterion1

Table 7.1 shows the performance figures of the three versions of the algorithm on
the SMP cluster for four different datasets. Tables 7.2 and 7.3 reports the speedup
(S = tseq/tpar) and efficiency (E = tseq/(#PE ∗ tpar)) figures respectively relative to
the same runs. The eskimo version of the code result as fast as the MPI version for the
ellipse dataset and slightly but significantly better for the cross dataset (highlighted
in the tables). The point here is that the performance MPI version does not scale up
with the number of processing elements for the cross dataset. The tree unbalanced
leads to a heavy load imbalance in the MPI version. Our version of the MPI code
does not include a dynamic load balancing strategy but fixes the data distribution
during the first iteration. It is certainly possible add a dynamic balancing strategy
in the MPI code (even if not so easy), but it has to be explicitly programmed by
the application programmer and specifically tailored for the problem. eskimo code
instead can be written without any concern for load balancing and data mapping.
As matter of facts the sequential version is just 300 lines of code, the eskimo version
500 and the MPI version 850.

1The value of θ has a strong impact on the performance of the algorithm, we refer back to the
literature any other detail.

178 CHAPTER 7. ESKIMO: EXPERIMENTS

dataset x #bodies cross x 10k cross x 20k ellipse x 10k ellipse x 20k

seq 6.47 14.53 4.80 2.34

MPI 1 x 2-way SMP 6.60 14.36 2.54 1.27
MPI 2 x 2-way SMP 6.64 14.58 1.50 0.75

eskimo 1 x 2-way SMP 5.30 13.20 2.45 1.33
eskimo 2 x 2-way SMP 4.10 8.10 1.55 0.77

Table 7.1: Barnes-Hut performance (secs) on several ellipse and cross datasets for
Barnes-Hut application (sequential, MPI and eskimo) on a SMP cluster (2-way
550MHz PIII).

dataset x #bodies cross x 10k cross x 20k ellipse x 10k ellipse x 20k optimal

MPI 1 x 2-way SMP 0.9 1.0 1.9 1.8 2
MPI 2 x 2-way SMP 0.9 1.0 3.2 3.1 4

eskimo 1 x 2-way SMP 1.2 1.1 1.9 1.8 2

eskimo 2 x 2-way SMP 1.6 1.8 3.1 3.0 4

Table 7.2: Barnes-Hut speedup on several ellipse and cross datasets for Barnes-Hut
application (sequential, MPI and eskimo) on a SMP cluster (2-way 550MHz PIII).

dataset x #bodies cross x 10k cross x 20k ellipse x 10k ellipse x 20k optimal

MPI 1 x 2-way SMP 0.45 0.50 0.97 0.90 1
MPI 2 x 2-way SMP 0.22 0.25 0.80 0.77 1

eskimo 1 x 2-way SMP 0.60 0.55 0.95 0.90 1

eskimo 2 x 2-way SMP 0.40 0.45 0.77 0.75 1

Table 7.3: Barnes-Hut efficiency on several ellipse and cross datasets for Barnes-Hut
application (sequential, MPI and eskimo) on a SMP cluster (2-way 550MHz PIII).

7.2. N-BODY BARNES-HUT ALGORITHM 179

-600

-500

-400

-300

-200

-100

0

100

200

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

cross dataset

���

�
��

���

��
��

��
��

��
��

��
��

��
��

��
��

��
�

���

��
��

��
��

��
��

��
��

�

���

��
��

��
��

��
��

��
��

�

���
���������������������������

���
���������������������������������

��
��������������������

��

��
��

��
��

��
��

��

� ��
�� �

��
�� �	

��

���
�

��
�� ��
��
���

�
��

��

��
��

��
��

��
��

�
�����

��

��
���

�������������������

��
���

�������������� ����
��

� ��
��	�� �

��

����

��

��
��

��
��

��
��

��
��

��
��

�

��

��
��

��
��

��
��

��

��
��

��
��

��
��

�
����������������������

��

��
��

��
��

��
��

��
��

�

�	

��

Figure 7.12: Cross dataset for the Barnes-Hut application and its hierarchical repre-
sentation. Positive numbers represents leafs while negative numbers represents the
number of leafs dominated by the node.

180 CHAPTER 7. ESKIMO: EXPERIMENTS

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

ellipse dataset

���

��
���

��

����������������������

��

������������������������������

��
��

��

��
��

��
��

�

��

��������������� ��

��
��

��
��

��
��

��
��

��
��

��
��

��
���������������

��

��
��

��

��
��

��

��
��

��
��

�
��

��
��

��
��

��
��

��
��

��
��

��
��

��
���������������

��

��
��

��
��

�

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��

��
��

��
��

��
��

�

��

��
��

��
��

��
��

��
��

��

��
��

�	
���������������

��

��
��

��
��

��
���������

��

���������

��

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

�

��

��������������� ��

��

�
��

��
��

��
�

�
����������������

��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�

��

��
��

��
��

��
��

�

��

��
��

��
��

��
��

��
��

��

��
��

��
���������������

��
���������

��

��
��

�	

��
��

��
��

� ��

��
��

��
��

��
��

��
��

��
��

��
��

��
���������������

��

��
��

��
��

�
��

��

��

��
��

��
��

��
���������

��

��������� ��

���������������

��

���

��
����������������������

��
������������������������������

��

��
��

��
��

��
��

��
��

��
��

��
��

��

��
��

��
��

�
��

��
�

�
��������� �

���������������� ��

��
��

��
��

��
��

��
��

��
��

��
��

�

��
��

��
��

�

��

���������������

�
��

��
�

�

��
��

�

��

��

�
����������������

	
��

��
��

��
�

Figure 7.13: Ellipse dataset for the Barnes-Hut application and its hierarchical
representation. Positive numbers represents leafs while negative numbers represents
the number of leafs dominated by the node.

Chapter 8

Discussion and concluding remarks

Readers’ road-map. The chapter summarizes the materials contained in the previous chapters
and discusses the conclusions of the thesis. The extent to wish the goals of the thesis have
been met is discussed. Finally the future work related to the thesis is introduced.

Our research experience at computer architecture and high-performance comput-
ing lab of Pisa Computer Science Dept. embraces several years of activity. Along
these years, the parallel computing is rapidly evolved, and along with our research
projects. We shortly presents main results achieved in these years by framing them
in thesis chapters and published papers. These should be considered as snapshots
taken from a continuously evolving process, currently focused at eskimo program-
ming framework, but still underway. eskimo assessments are enumerated in Section
8.1 then discussed in Section 8.2. Eventually, we propose eskimo planned evolutions
and future wishes.

Summary. I participated to the design or development of the following program-
ming environments:

• the SkIE programming environment and its compiler [7, 14]. Section 2.1.

• FAN, a functional skeletal parallel programming framework [18].

• Lithium, a Java parallel programming environment. Section 2.3 [15, 16, 17].

• The ASSIST programming environment. Section 2.4 [11, 12, 13].

also, I designed and developed the following programming platforms:

• the Meta optimization tool for skeleton-based languages and the Skel-BSP
skeletal language and its run-time. Section 2.2 [8, 9].

• The eskimo language and its run-time support. Chapters 4, 5 and 6 [10].

182 CHAPTER 8. DISCUSSION AND CONCLUDING REMARKS

8.1 Assessments

The original contribution of the thesis can be summarized in the following elements:

• We designed and developed eskimo: a parallel extension of the C language
based on the shared address model and running on cluster of workstations.
We showed that irregular parallel applications using dynamic data structures
can be handily coded in eskimo. These applications exploit a good performance
even when compared with their hand-tuned MPI versions.

• eskimo supports dynamic shared data structures in a parallel framework. Those
spring from the instantiation of simple parametric types including trees, arrays
and regions. Shared variables can be dynamically and incrementally allocated.
These are managed in segments in order to match target architecture working
grain. The eskimo programming model enables different processing elements
to allocate different parts of the same data structures without synchronizing
one another.

• eskimo introduces data/task co-scheduling. Both shared variables and function
calls may be moved one towards the processing element holding the other or
vice-versa depending on system the status and according to a configurable
scheduling policy.

• eskimo programming model frames skeletal programming in the shared address
space. It abstracts the programming model with a specific concern for shared
memory programming in a distributed framework by seeking efficiency through
locality of memory accesses. It can spring from programmer hints, scheduling
policy, data mapping, data caching, and eventually from the orchestration
of above-mentioned issues. To the best of our knowledge this is an original
interpretation of the skeletal approach in parallel programming.

These assessments are further discussed in the following section.

8.2 Discussion

The thesis deals with two facets of parallel programming that at first glance seem
pretty distant one another: Structured programming (in particular in skeleton-based
languages) and shared address programming (in particular in DSMs, that are sur-
veyed and discussed in Chapter 3).

eskimo is a parallel extension of C language based on the shared address program-
ming model. C programming model is extended with distributed data structures
(i.e. Shared Abstract Data Types) and flows of control (i.e. e-flows) in a paral-
lel/distributed framework. These are actually abstractions of the classic concepts
of concurrent programming. In turn, these abstractions enable the programmer to

8.2. DISCUSSION 183

design programs for loosely coupled distributed platforms by relying on concurrent
programming pragmatical experience, i.e. the experience in designing programs
exploiting fork/join-like primitives and the shared memory concept.

We designed three kinds of Shared Abstract Data Types: spread k-trees, spread
arrays, and shared regions. They are simple parametric types that can be instanced
with a C type to obtain shared variables. These are spread across the eskimo virtual
architecture and may grow beyond the limit of the single processing element (and
beyond its logical address space). Nevertheless shared variables are conveniently
presented to the programmer as single entities. Moreover, they can be statically
or dynamically allocated. In particular trees can be dynamically allocated node-by-
node (as usual in C programs). Shared variables may be reached through references,
i.e. addresses in the shared space. Using references and k-trees a non-native form
of graphs may be also represented in the shared memory (by enriching their span-
ning tree with additional edges implemented as references in the node body). Lists
are actually 1-trees. The language run-time decouples the fine-grain programmer’s
view of shared variables from the target architecture representation. It dynamically
groups data-items in order to reach a suitable (coarse) working grain for the target
architecture. The grouping is performed (in segments) in a pragmatically-significant
manner in order to enhance locality in typical access patterns of each data type.

eskimo provides the programmer with the e-flow concept and the primitives to
split and join e-flows, i.e. the e-call/e-join constructs and their n-way extensions
e-foreach/e-joinall. These primitives work on data collections exploiting data par-
allelism, thus they are skeleton themselves. In addition these can be composed in
simple code patterns to build many variants of data-parallel and control-parallel
skeletons (as sometimes Divide&Conquer is considered [120]), or either interleaved
with external communication primitives (e.g. POSIX pipes, sockets, ...).

It is worth observing that eskimo is a skeletal language even without e-foreach/e-
joinall. As discussed in Sections 1.2.2, 2.1 and 4.1, skeletal programming would
simplify programming by raising the level of abstraction, providing the programmer
with performance and portability for their applications. But skeletal programming is
not functional programming, even though it may be concisely explained and expressed
as such. Skeletal programming is not object oriented programming, even though this
may be a similarly attractive vehicle. eskimo raises C programming model level
of abstraction by introducing e-flows and shared variables. They do not directly
match any entity at underlying implementation level. These are entities playing
scheduling/mapping game: they can be moved one towards the other or vice-versa
according to current system status with the aim of improving data accesses locality.
Programmer insight on the algorithm play a major role in the game. In order to
obtain an efficient code the programmer ought to design the algorithm along these
guidelines:

• A considerable amount of independent e-flows should be exploited both during
data allocation and data access. In the former case the best bet consist in using

184 CHAPTER 8. DISCUSSION AND CONCLUDING REMARKS

e-foreach/e-joinall primitives.

• Data items exploiting a medium/strong temporal correlation in the access
(read or write) should be allocated along the same e-flow. This boosts the
likely that accesses following the first one will pay a short latency access time.

• The first parameter of e-functions should be used to refer the shared variable
mostly accessed along the function. The eskimo run-time use this information
to make e-flow scheduling decisions. In the case this parameter is E NULL

the run-time uses a heuristic scheduling policy based on system statistics (like
workload and memory status on the processing element in the system).

In addition the skilled programmer may experiment his own scheduling policy
by modifying the scheduling function (in the top tier of eskimo run-time).

eskimo tries to manage tasks scheduling and data/processeses/threads mapping
in an efficient way. These aspirations are common to a number of models which have
proved very successful within the wider world of software DSM, software engineering,
object oriented programming and design patterns. Indeed eskimo is pretty similar
to Cilk and Athapascan at the language level. Despite specific differences (dis-
cussed along Chapters 4, 5, 6) in memory consistency model, target architectures,
implementation technique, the differences between eskimo and the others mentioned
research works can be summarized as follows:

• It has dynamic data structures. These can be dynamically and incrementally
allocated.

• It has a configurable scheduling policy. It does not rely on work stealing (as
Cilk and Athapascan). Work stealing has load balancing as first target. es-
kimo tries to exploit a mapping/scheduling policy that takes in account also
shared memory speed access (thus network latency and bandwidth) and mem-
ory usage distribution (in term of data item and their cached copies). These
targets are pursued by trying to exploit data accesses locality by means of the
co-scheduling of shared data and e-flows(relying on programmer hints).

• It offers a slightly higher-level constructs with respect to others environments
(such as e-foreach/e-joinall). These constructs abstract the implicit nonde-
terminism in the execution order of independent e-flows.

• It is a skeletal language. It applies the skeletal abstraction to the shared
memory model by proposing skeletons as medium to take care of data accesses
efficiency, that ultimately springs from a suitable data allocation and tasks
scheduling. To the best of our knowledge the first one relying on the shared
address space.

8.3. FUTURE WORKS 185

Overall, programs exploiting recursive algorithms (e.g. Divide&Conquer) on
dynamic data structures (e.g. k-tree) can be written in eskimo and run on a cluster
of workstations. This class of application can hardly be written by using our previous
programming frameworks (or not written at all). Yet eskimo has a fairly efficient
run-time support: eskimo Barnes-Hut application (surely an application in the class)
runs with an equal or better performance than the hand-tuned MPI version. The
eskimo source code is more compact than MPI code and has no lines of code dedicated
to load and memory space balancing.

8.3 Future works

As discussed eskimo is an experiment. There are a lot of points that can be improved:

The language engineering.

• The syntax. Almost the half of Barnes-Hut code are initializations (e-functions,
shared variables, handlers, iterators).

• Type checking. The language heavily relies on void pointers. These are mainly
used to overcome the C lack of polymorphism.

• The scheduling configuration. In order to change the scheduling policy the
programmer must change and recompile the library.

These points may be addressed by moving to an OO framework. Initialization
may be included in the class constructors and we can rely on the native ability of the
language to cope with parametric types. Eventually, scheduling configuration hooks
may be exposed to the programmer exploiting OO class visibility mechanisms.

The language support engineering. eskimo programs does not rely on any
compiling phase. Almost all choices are taken at run-time. This choice comes from
the wish to make eskimo a C library. However, as shown also by some experiments,
this choice has a heavy impact on programs performance. The problem may be
partially addressed by moving to an object oriented language as C++. C++ tem-
plates may enable the migration of some of run-time choices at compile time (as an
example leveraging on ad-hoc polymorphism). Some function calls may be statically
replaced with their “fast” versions, i.e. pure sequential versions with any concern for
scheduling and mapping. Clearly, the adoption of an OO language does not resolve
all the problems by itself. A clearer decoupling between static and dynamic aspects
of the run-time must be performed.

The language run-time exploits two kinds of mechanisms for data exchange and
synchronizations: POSIX TCP/IP stack for inter-node communications and POSIX
threads for intra-node sharing. These mechanism must be generalized, especially

186 CHAPTER 8. DISCUSSION AND CONCLUDING REMARKS

in the light of the ever increasing role of intelligent/communication boards. A core
of functionalities must be selected and wrapped into a proper layer providing the
needed decoupling from communication and synchronization mechanisms and the
language run-time. Functionalities may include event handling and thread pool
management also (as for example in the ACE library [1]).

The language programming model. eskimo is based on DAG memory consis-
tency model. As discussed in Section 3.3.2 is a “memory centric” very lazy consis-
tency model. As shown in Chapters 4 and 5 it enables the programmer to write a
parallel program without any concern for processing elements but for the algorithm
only. But it prevents the exploitation of some common behavior a programmer
typically expects from a shared memory. Actually the DAG consistency semantics
seems to give us a data model which is in one sense on the very fringe of what might
be considered “shared memory”. Other memory consistencies have similar prob-
lems (as for example entry release consistency adopted by Athapascan). It would
interesting to see how the implied extra effort from the programmer trades off with
performance achieved in comparison to one of the more conventional DSM models.
It would interesting also if it is possible to change the memory consistency while
maintaining the e-flow concept. From a preliminary evaluation an object-based
memory consistency may be well suited for that (even better if this consistency may
be finely tuned, or its behavior may be co-designed with abstract data types).

Currently, the e-flows scheduling is just intuitively described and implemented.
The implementation relies on several run-time constants to manage fall-back heuris-
tic scheduling. A more formal description of the programming model is needed. This
should enable the formalization of the scheduling (and in turn of an execution cost
model). Currently a cost model does not exist for eskimo. The Cilk programming
model is close enough, but the scheduling completely differs (thus the cost model).
Malleable Task model is also close enough to eskimo programming model. For the
“Malleable Task” model a good scheduling formalizations exists [125, 126] that can
be used as starting point (even if some assumptions often made on this model are
hardly satisfied in eskimo, as an example the “monotonus penalty assumptions”
[39]).

8.4 The ASSIST perspective

Currently, our research group efforts are mainly focused to refining and testing
ASSIST design. Current ASSIST version [13] includes a software DSM not supporting
dynamic data structures (DVSA [31], a non-coherent non-consistent DSM). A re-
engineered version of eskimo should replace DVSA, thus introducing dynamic data
structures as native objects into ASSIST. Currently the integration process is in
progress. The re-engineering takes in account the ASSIST framework (that has its
communication/synchronization layer) and takes advantages of ASSIST compiler in

8.4. THE ASSIST PERSPECTIVE 187

order to transfer some run-time operation at compile time.
Moreover, a brand new version of ASSIST in under design within the just started,

three years, FIRB project Grid.it. This new version has the ambitious aim to design
a high-performance environment to develop programs running on the GRID.

In general, the applicability of DSM to large-scale grids is rather disputable
(even if it has been argued that providing a shared memory abstraction can offer
new services and capabilities to GRID programming environments. For instance
fault tolerance (by means of data replication and/or checkpointing), and persistence
could be handled transparently at the DSM level [141]). Anyway, as a limited extent,
shared memory model can be thought as part of the bulk of technologies needed to
extract high-performance (in the widest meaning of processors performance, memory
room, network bandwidth smart usage, etc.) from the GRID. A first step toward
this end may consist in:

• Enclosing shared data into objects (as an example CORBA objects as in [142]).
This solution may also benefit from object DSM experience.

• Consider the shared data confined within a group of processing elements ex-
ploiting particular properties in the GRID world such as: clusters of trusted
processing elements logically running a given component or service.

We believe that some of the features exploited by eskimo might have interesting
developments in the GRID world. In particular, the programming model and the
very lazy memory consistency force the programmer to think to the algorithm as
a collection of almost independent tasks (we envision this programmer as the run-
time support designer not as the application programmer). These tasks are split
in a completely distributed fashion (typically in a DAG fashion), without any cen-
tralization point. Moreover, eskimo programs never assumes to deal with processing
elements, but rather with the pretty abstract concept of the e-flow. e-flows are
neither fixed in number nor a priori bound to any processing element. The program
unfolding is step-by-step mapped on the concrete architecture. This mapping may
easily support a dynamic, reconfigurable architecture platforms. Nowadays nobody
probably known what the GRID will be exactly, but everybody agree that it will be
a dynamic world.

188 CHAPTER 8. DISCUSSION AND CONCLUDING REMARKS

Bibliography

[1] The ACE team. The Adaptive Communication Environment home page, 2003.
(http://www.cs.wustl.edu/∼schmidt/ACE.html).

[2] Advanced Micro Device Inc. AMD AthlonTM Processor Architecture, white
paper edition. (Available at http://www.amd.com/).

[3] S. V. Adve and K. Gharachorloo. Shared memory consistency models: A
tutorial. IEEE Computer, 29(12):66–76, 1996.

[4] S. V. Adve, V. S. Pai, and P. Ranganathan. Recent advances in memory
consistency models for hardware shared-memory systems. Proc. of the IEEE,
special issue on distributed shared-memory, 1999.

[5] A. Agarwal, G. D’Souza, K. Johnson, D. Kranz, J. Kubiatowicz, K. Kurihara,
B.-H. Lim, G. Maa, D. Nussbaum, M. Parkin, and D. Yeung. The MIT
alewife machine: A large-scale distributed-memory multiprocessor. In Proc.
of Workshop on Scalable Shared Memory Multiprocessors. Kluwer Academic,
1991.

[6] J. Ahrens, P. Beckman, and K. Keahey. Ligature: component architecture
for high performance applications. The International Journal of High Perfor-
mance Computing Applications, 14(4):347–356, 2000.

[7] M. Aldinucci. Design and validation of sequential, pipe & farm SkIE templates.
Technical report, PQE2000 Project – Consorzio Pisa Ricerche, December 1997.

[8] M. Aldinucci. The Meta transformation tool for skeleton-based languages. In
S. Gorlatch and C. Lengauer, editors, Proc. of the 2nd International Workshop
on Constructive Methods for Parallel Programming (CMPP2000), pages 53–
68. Fakultät für mathematik und informatik, Uni. Passau, Germany, July
2000.

[9] M. Aldinucci. Automatic program transformation: The Meta tool for skeleton-
based languages. In S. Gorlatch and C. Lengauer, editors, Constructive Meth-
ods for Parallel Programming, Advances in Computation: Theory and Prac-
tice, chapter 5, pages 59–78. Nova Science Publishers, NY, USA, 2002.

190 CHAPTER 8. BIBLIOGRAPHY

[10] M. Aldinucci. eskimo: experimenting with skeletons in the shared address
model. Parallel Processing Letters, 13(3), 2003.

[11] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. A framework
for experimenting with structured parallel programming environment design.
Proc. of the International Conference ParCo2003 (to appear), 2003.

[12] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. ASSIST demo: a
high level, high performance, portable, structured parallel programming envi-
ronment at work. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors,
Proc. of the Euro-Par 2003, number 2790 in Lecture Notes in Computer Sci-
ence, pages 1295–1300. Springer, August 2003.

[13] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi,
L. Potiti, R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. The
implementation of ASSIST, an environment for parallel and distributed pro-
gramming. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of
the Euro-Par 2003, number 2790 in Lecture Notes in Computer Science, pages
712–721. Springer, August 2003.

[14] M. Aldinucci, M. Coppola, and M. Danelutto. Rewriting skeleton programs:
How to evaluate the data-parallel stream-parallel tradeoff. In S. Gorlatch,
editor, Proc of the 1st International Workshop on Constructive Methods for
Parallel Programming (CMPP’98), pages 44–58. Fakultät für mathematik und
informatik, Uni. Passau, Germany, May 1998.

[15] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In
Proc. of the 11th IASTED International Conference on Parallel and Dis-
tributed Computing and Systems (PDCS’99), pages 955–962, Cambridge, Mas-
sachusetts, USA, November 1999. IASTED/ACTA press.

[16] M. Aldinucci and M. Danelutto. An operational semantics for skeletons. Proc.
of the International Conference ParCo2003 (to appear). Draft available as
University of Pisa Tech. Rep. TR-02-13.
(ftp://ftp.di.unipi.it/pub/Papers/aldinuc/TR-02-13.ps.Z), 2003.

[17] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment support-
ing structured parallel programming in Java. Future Generation Computer
Systems, 19(5):611–626, 2003.

[18] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Towards paral-
lel programming by transformation: The FAN skeleton framework. Parallel
Algorithms and Applications, 16(2–3):87–122, 2001.

8.4. BIBLIOGRAPHY 191

[19] G. Antoniu and L. Bougé. DSM-PM2: A portable implementation platform
for multithreaded DSM consistency protocols. In Proc. of the 6th International
Workshop on High-Level Parallel Programming Models and Supportive Envi-
ronments (HIPS ’01), number 2026 in Lecture Notes in Computer Science,
pages 55–70. Springer-Verlag, April 2001.

[20] G. Antoniu, L. Bougé, P. Hatcher, M. MacBeth, K. McGuigan, and R. Namyst.
Compiling multithreaded Java bytecode for distributed execution. In A. Bode,
T. Ludwig, W. Karl, and R. Wismüller, editors, Proc. of Euro-Par 2000, num-
ber 1900 in Lecture Notes in Computer Science, pages 1039–1052. Springer-
Verlag, September 2000.

[21] G. Antoniu, L. Bougé, R. Namys, and C. Pérez. Compiling data-parallel pro-
grams to a distributed runtime environment with thread isomigration. Parallel
Processing Letters, 10(2–3):201–214, June 2000.

[22] G. Antoniu, L. Bougé, and R. Namyst. An efficient and transparent thread
migration scheme in the PM2 runtime system. In Proc. of the 3rd Workshop
on Runtime Systems for Parallel Programming (RTSPP ’99), number 1586
in Lecture Notes in Computer Science, pages 496–510. Springer-Verlag, April
1999.

[23] Y. Aridor, M. Factor, and A. Teperman. cJVM: A single sys-
tem image of a JVM on a cluster. In Proc. of the Interna-
tional Conference on Parallel Processing, September 1999. (see also
http://www.haifa.il.ibm.com/projects/systems/cjvm/index.html).

[24] D. Arlia and M. Coppola. Experiments in parallel clustering with DBSCAN. In
Proc. of Euro-Par 2001, number 2150 in Lecture Notes in Computer Science.
Springer-Verlag, August 2001.

[25] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, and B. Smolinski. Toward a common component architecture for
high performance scientific computing. In Proc. of the 8th International Sym-
posium on High Performance Distributed Computing (HPDC’99), 1999.

[26] P. Au, J. Darlington, M. Ghanem, Y. Guo, H.W. To, and J. Yang. Co-
ordinating heterogeneous parallel computation. In L. Bouge, P. Fraigniaud,
A. Mignotte, and Y. Robert, editors, Proc. of Euro-Par 1996, pages 601–614.
Springer-Verlag, 1996.

[27] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:
A Structured High level programming language and its structured support.
Concurrency Practice and Experience, 7(3):225–255, May 1995.

192 CHAPTER 8. BIBLIOGRAPHY

[28] B. Bacci, M. Danelutto, S. Pelagatti, S. Orlando, and M. Vanneschi. Un-
balanced computations onto a transputer grid. In Proc. of the 1994 Trans-
puter Research and Application Conference, pages 268–282. IOS Press, Octo-
ber 1994.

[29] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous
environment for HPC applications. Parallel Computing, 25(13–14):1827–1852,
December 1999.

[30] J. Backus. Can programming be liberated from the von Neumann style? a
functional style and its algebra of programs. Communications of the ACM,
21(8), August 1978.

[31] F. Baiardi, D. Guerri, P. Mori, L. Moroni, and L. Ricci. Two layers distributed
shared memory. In Proc. of High Performance Computing and Networking
Europe (HPCN2001), number 2110 in Lecture Notes in Computer Science,
2001.

[32] F. Baiardi and M. Vanneschi. Linguaggi per la programmazione concorrente.
Franco Angeli, 1992.

[33] H. E. Bal and M. Heines. Approaches for integrating task and data parallelism.
IEEE Concurrency, 6(3):74–84, 1998.

[34] J. Barnes and P. Hut. A hierarchical o(nlogn) force calculation algorithm.
Nature, 324, 1986.

[35] P. Becuzzi, M. Coppola, S. Ruggieri, and M. Vanneschi. Parallelisation of C4.5
as a particular divide & conquer computation. In Proc. of the 3rd Workshop on
High Performance Data Mining, number 1800 in Lecture Notes in Computer
Science. Springer-Verlag, May 2000.

[36] R. Belli and M. Cappagli. Il multithreading nei sistemi a parallelismo massic-
cio. Master’s thesis, Computer Science Department, University of Pisa, Italy,
Italy, October 1999. (In italian).

[37] B. N. Bershad, M. J. Zekauskas, and W. A. Sawdon. The Midway distributed
shared memory system. In Proc. of the 38th International Computer Confer-
ence (COMPCON’93), pages 528–537. IEEE, February 1993.

[38] R. S. Bird. Lectures on constructive functional programming. In Manfred
Broy, editor, Constructive Methods in Computing Science. NATO ASI Series,
1988.

[39] E. Blayo, L. Debreu, G. Mounié, and D. Trystram. Dynamic load balancing
for ocean circulation with adaptive meshing. In Proc. of Euro-Par’99, number

8.4. BIBLIOGRAPHY 193

1685 in Lecture Notes in Computer Science, pages 303–312. Springer-Verlag,
1997.

[40] R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis,
Department of Electrical and Computer Science, Massachusetts Institute of
Technology, U.S.A., September 1995. MIT/LCS/TR-677.

[41] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Ran-
dall. An analysis of dag-consistent distributed shared-memory algorithms. In
Proc. of the 8th Annual Symposium on Parallel Algorithms and Architectures
(SPAA’96), pages 297–308. SIGARCH, ACM, June 1996.

[42] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall.
Dag-consistent distributed shared memory. In Proc. of the 10th International
Parallel Processing Symposium (IPPS’96). IEEE, April 1996.

[43] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall,
and Y. Zhou. Cilk: An efficient multithreaded runtime system. In Proceedings
of the 5th Symposium on Principles and Practice of Parallel Programming,
July 1995.

[44] O. Bonorden, N. Hüppelshäuser, B. Juurlink, and I. Rieping. PUB Li-
brary. User Guide and Function Reference (release 7.0). University of
Paderborn, Fürstenallee 11, 33102 Padeborn, Germany, December 1999.
(http://www.uni-paderborn.de/∼pub).

[45] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic
skeletons for efficient distributed programming. In Proc. of the 5th Interna-
tional Symposium on High Performance Distributed Computing (HPDC’96),
pages 243–252. IEEE Computer Society Press, 1996.

[46] D. Burger, J. R. Goodman, and A. Kägi. Memory bandwidth limitations
of future microprocessors. In Proc. of the 23rd International Symposium on
Computer Architecture (ISCA’96). SIGARCH, ACM, May 1996.

[47] H. Burkhart and S. Gutzwiller. Steps towards reusability and portability
in parallel programming. In K. M. Decker and R. M. Rehmann, editors,
Programming Environment for Massively Parallel Distributed Systems, pages
147–157. Birkhäuser, April 1994.

[48] G. Carletti and M. Coppola. Structured parallel programming and shared
objects: experiences in data mining classifiers. In G. R. Joubert, A. Murli,
F. J. Peters, and M. Vanneschi, editors, Parallel Computing: Advances and
Current Issues. Proceedings of the International Conference ParCo2001, pages
409–416. Imperial College Press, 2002.

194 CHAPTER 8. BIBLIOGRAPHY

[49] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and per-
formance of Munin. In Proc. of the 13th Symposium on Operating Systems
Principles (SOSP’91), pages 152–164. ACM, October 1991.

[50] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Techniques for reduc-
ing consistency-related communication in distributed shared memory systems.
ACM Trans. on Computer Systems, 13(3):205–243, August 1995.

[51] G. Cavalheiro, M. Doreille, F. Galilee, T. Gautier, and J.-L. Roch. Schedul-
ing parallel programs on non-uniform memory architectures. In Proc. of the
Workshop on Parallel Computing for Irregular Applications (WPCIA1), Or-
lando, USA, January 1999.
(http://www-id.imag.fr/Laboratoire/Membres/Roch Jean-Louis/

perso.html/publications.html).

[52] R. Chandra, K. Gharachorloo, V. Soundararajan, and A. Gupta. Performance
eval of hybrid hardware and software distributed shared memory protocols. In
Proc. of the 8th International Conference on Supercomputing, pages 274–288.
IEEE, July 1994.

[53] M. Chandy, I. Foster, K. Kennedy, C. Koelbel, and C.-W. Tseng. Integrated
support for task and data parallelism. The International Journal of Super-
computer Applications, 8(2):80–98, Summer 1994.

[54] W. H. Chou, C. T. King, and L. M. Ni. Pipelined data-parallel algorithms:
Part I – Concept and Modeling. IEEE Transactions on Parallel and Dis-
tributed Systems, 1(4), October 1990.

[55] W. H. Chou, C. T. King, and L. M. Ni. Pipelined data-parallel algorithms:
Part II - Design. IEEE Transactions on Parallel and Distributed Systems,
1(4), October 1990.

[56] S. Ciarpaglini, M. Danelutto, L. Folchi, C. Manconi, and S. Pelagatti. ANA-
CLETO: a template-based P3L compiler. In Proc. of the PCW’97, 1997.

[57] J. Cohen. Non-deterministic algorithms. ACM Computing Surveys, 11(2):79–
94, June 1979.

[58] M. Cole. eSkel library home page.
(http://www.dcs.ed.ac.uk/home/mic/eSkel).

[59] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computa-
tions. Research Monographs in Parallel and Distributed Computing. Pitman,
1989.

8.4. BIBLIOGRAPHY 195

[60] M. Cole. Bringing skeletons out of the closet. Technical report, Institute
for Computing Systems Architecture, Division of Informatics, University of
Edinburgh, 2002.
(http://www.dcs.ed.ac.uk/home/mic/eSkel/eSkelmanifesto.ps).

[61] M. Cole, S. Gorlatch, J. Prins, and D. Skillicorn, editors. High Level Paral-
lel Programming: Applicability, Analysis and Performance. Dagstuhl-Seminar
Report 238, Schloß Dagstuhl, 1999.

[62] Computer Science Dept., University of Pisa. Lithium home page, 2001.
(http://www.di.unipi.it/∼marcod/Lithium).

[63] M. Coppola and M. Vanneschi. High performance data mining with skeleton-
based structured parallel programming. Parallel Computing, 28(5):793–813,
May 2002.

[64] S. Crocchianti, A. Laganà, L. Pacifici, and V. Piermarini. Parallel skeletons
and computational grain in quantum reactive scattering calculations. In G. R.
Joubert, A. Murli, F. J. Peters, and M. Vanneschi, editors, Parallel Comput-
ing: Advances and Current Issues. Proceedings of the International Conference
ParCo2001, pages 91–100. Imperial College Press, 2002.

[65] D. E. Culler, J. P. Singh, and A. Gupta. Parallel computer architecture. A
hardware/software approach. Morgan Kaufmann, 1999.

[66] P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna. Advanced envi-
ronments for parallel and distributed applications: a view of current status.
Parallel Computing, 28(12):1637–1662, December 2002.

[67] P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna. Integrating MPI-
based numerical software into an advanced parallel computing environment. In
Proc. of the 11th Euromicro Conference on Parallel, Distributed and Network-
Based Processing, pages 283–291. IEEE, 2003.

[68] M. Danelutto. Dynamic run time support for skeletons. In E. H. D’Hollander,
G. R. Joubert, F. J. Peters, and H. J. Sips, editors, Proc. of the International
Conference ParCo99, volume Parallel Computing Fundamentals & Applica-
tions, pages 460–467. Imperial College Press, 1999.

[69] M. Danelutto. Task farm computations in Java. In Buback, Afsarmanesh,
Williams, and Hertzberger, editors, High Performance Computing and Net-
working Europe (HPCN2000), number 1823 in Lecture Notes in Computer
Science, pages 385–394. Springer-Verlag, May 2000.

[70] M. Danelutto. Efficient support for skeletons on workstation clusters. Parallel
Processing Letters, 11(1):41–56, March 2001.

196 CHAPTER 8. BIBLIOGRAPHY

[71] M. Danelutto. On skeletons and design patterns. In G. R. Joubert, A. Murli,
F. J. Peters, and M. Vanneschi, editors, Parallel Computing: Advances and
Current Issues. Proceedings of the International Conference ParCo2001, pages
425–432. Imperial College Press, 2002.

[72] M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. Parallel functional
programming with skeletons: the OCAMLP3L experiment. In ACM Sigplan
Workshop on ML, pages 31–39, 1998.

[73] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for data parallelism
in P3L. In C. Lengauer, Griebl, and S. Gorlatch, editors, Proc. of the Euro-
Par 1997, number 1300 in Lecture Notes in Computer Science, pages 619–628.
Springer-Verlag, 1997.

[74] M. Danelutto, S. Pelagatti, and M. Vanneschi. High level languages for easy
massively parallel programming. Technical Report HPL–PSC–91–16, Hewlett
Packard Laboratories, Pisa Science Center (Italy), 1991.

[75] M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons
in C. In A. Bode, T. Ludwing, W. Karl, and R. Wismüller, editors, Proc.
of Euro-Par 2000, number 1900 in Lecture Notes in Computer Science, pages
1175–1184. Springer-Verlag, September 2000.

[76] J. Darlington, A. J. Field, P.G. Harrison, P. H. J. Kelly, D. W. N. Sharp,
R. L. While, and Q. Wu. Parallel programming using skeleton functions. In
A. Bode, M. Reeve, and G. Wolf, editors, Proc. of the Parallel Architectures
and Langauges Europe (PARLE’93), number 694 in Lecture Notes in Com-
puter Science. Springer-Verlag, June 1993.

[77] J. Darlington, Y. Guo, Y. Jing, and H. W. To. Skeletons for structured parallel
composition. In Proc. of the 15th Symposium on Principles and Practice of
Parallel Programming, 1995.

[78] P. J. Denning. Virtual memory. ACM Computing Surveys, 1996.

[79] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3), March 1966.

[80] E. W. Dijkstra. The structure of the THE multiprogramming system. Com-
munications of the ACM, 11(5), May 1968.

[81] U. Drepper and I. Molnar. The Native POSIX Thread Library for Linux. Red
Hat, Inc, January 2003.
Available at http://people.redhat.com/drepper/nptl-design.pdf.

8.4. BIBLIOGRAPHY 197

[82] M. Dubois, C. Scheurich, and F. Briggs. Memory access buffering in multi-
processors. In Proc. of the 13th International Symposium on Computer Ar-
chitecture (ISCA’86), pages 434–442. SIGARCH, ACM, June 1986. Published
as Proc. 13th Annual International Symposium on Computer Architecture,
Computer Architecture News, volume 14, number 2.

[83] R. W. Floyd. Nondeterministic algorithms. Journal of the ACM, 14(4):636–
644, October 1967.

[84] S. Frank, H. Burkhardt, III, and J. Rothnie. The KSR1: Bridging the gap
between shared memeory and MPPs. In Proc. of International Computer
Conference (COMPCON’93), pages 285–294, February 1993.

[85] M. Frigo. The weakest reasonable memory. Master’s thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, U.S.A., 1998.

[86] M. Frigo and V. Luchangco. Computation-centric memory models. In Proc.
of the 10th Annual Symposium on Parallel Algorithms and Architectures
(SPAA’98), pages 240–249. SIGARCH, ACM, June 28–July 2, 1998.

[87] F. Gallilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille. Athapascan-1:
On-line building data flow graph in a parallel language. In Proceedings of
the 1998 International Conference on Parallel Architectures and Compilation
Techniques (PACT ’98), pages 88–95, Paris, October 1998. IEEE Computer
Society Press.

[88] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison Wesley, 1994.

[89] D. Gannon and K. Keahey. PARDIS: a parallel approach to CORBA. In
Proc. of the 6th International Symposium on High Performance Distributed
Computing (HPDC’97), pages 31–39. IEEE, 1997.

[90] K. Gharachorloo. Memory consistency models for shared-memory multiproces-
sor. PhD thesis, Computer Science Laboratory, Stanford University, December
1995.

[91] K. Gharachorloo, A. Gupta, and J. L. Hennessy. Performance evaluation of
memory consistency models for shared-memory multiprocessors. In Proc. of
the 4th symposium on Architectural Support for Programming Languages and
Operating Systems, pages 245–257, April 1991.

[92] A. Giancaspro, L. Candela, E. Lopinto, V. A. Lorè, and G. Milillo. SAR
images co-registration parallel implementation. In Proc. of the International
Geoscience and Remote Sensing Symposium and the 24th Canadian Sympo-
sium on Remote Sensing (Igarss 2002). IEEE, June 2002.

198 CHAPTER 8. BIBLIOGRAPHY

[93] S. Gorlatch. Send-Recv considered harmful? Myths and truths about parallel
programming. In Proc. of PaCT 2001, number 2127 in Lecture Notes in
Computer Science, pages 243–257. Springer-Verlag, 2001.

[94] S. Gorlatch, C. Lengauer, and C. Wedler. Optimization rules for programming
with collective operations. In Proc. of the 13th International Parallel Pro-
cessing Symposium & 10th Symposium on Parallel and Distributed Processing
(IPPS/SPDP’99), IEEE Computer Society Press, pages 492–499, 1999.

[95] S. Gorlatch and S. Pelagatti. A transformational framework for skeletal pro-
grams: Overview and case study. In J. Rohlim, editor, Proc. of Parallel and
Distributed Processing, number 1586 in Lecture Notes in Computer Science,
pages 123–137. Springer-Verlag, 1999.

[96] M. W. Goudreau, J. M. D. Hill, K. Lang, B. McColl, S. B. Rao, D. C. Ste-
fanescu, T. Suel, and T. Tsantilas. A proposal for the BSP worldwide standard
library. Technical report, Oxford University Computing Laboratory, April
1996.

[97] E. Hagersten, A. Landin, and S. Haridi. DDM — A cache-only memory ar-
chitecture. Computer, 25(9):44–54, September 1992.

[98] M. Hamdan, P. King, and G. Michaelson. A scheme for nesting algorithmic
skeletons. In K. Hammond, T. Davie, and C. Clack, editors, Proc. of the
10th International Workshop on the Implementation of Functional Languages
(IFL’98), pages 195–211. Department of Computer Science, University College
London, 1998.

[99] J. L. Hennessy and D. A. Patterson. Computer organization & design. The
hardware/software interface. Morgan Kaufmann, 1994.

[100] J. L. Hennessy and D. A. Patterson. Computer architecture. A quantitative
approach. Morgan Kaufmann, 2nd edition, 1996.

[101] C. A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer
Recursion. PhD thesis, Fakultät für Mathematik und Informatik, Uni. Passau,
Germany, 2001.

[102] High Performance Fortran Forum. High Performance Fortran Language Spec-
ification (Version 2.0), January 1997.

[103] H. Hillis and G. Steele. Data parallel algorithms. Communications of the
ACM, 29(12):1170–1183, December 1986.

[104] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiling Fortran D for
MIMD distributed-memory machines. Communications of the ACM, 35(8):66–
80, August 1992.

8.4. BIBLIOGRAPHY 199

[105] C. A. R. Hoare. Communicating Sequential Processes. Communications of
ACM, 21(8):666–677, August 1978.

[106] C. M. Hoffmann and M. J. O’Donnell. Pattern matching in trees. Journal of
the ACM, 29(1):68–95, January 1982.

[107] W. Hu, W. Shi, and Z. Tang. JIAJIA: An SVM system based on a new
cache coherence protocol. In Proc. of the High Performance Computing and
Networking Europe (HPCN’99), pages 463–472, April 1999.

[108] D. C. Hyde. Java and different flavors of parallel programming models. In
R. Buyya, editor, High Performance Cluster Computing, pages 274–290. Pren-
tice Hall, 1999.

[109] L. Iftode, J. P. Singh, and K. Li. Scope consistency: A bridge between release
consistency and entry consistency. In Proc. of the 8th Annual Symposium on
Parallel Algorithms and Architectures (SPAA’96), pages 277–287. SIGARCH,
ACM, June 1996.

[110] Intel Corporation. Intel Architecture Software Delevoper’s Manual. Volume 2:
Instruction Set Reference, 1999.

[111] JavaGrande. The Java Grande home page, 2002.
(http://www.javagrande.org).

[112] C. F. Joerg. The Cilk System for Parallel Multithreaded Computing. PhD the-
sis, Department of Electrical and Computer Science, Massachusetts Institute
of Technology, U.S.A., January 1996.

[113] jPVM. The jPVM home page, 2001.
(http://www.chmsr.gatech.edu/jPVM/).

[114] H. Kasahara, H. Honda, M. Iwata, and M. Hirota. A compilation scheme for
macro-dataflow computations in hierarchical multiprocessor systems. In Proc.
of the 1990 International Conference on Parallel Processing, pages II–294 –
II–295, 1990.

[115] S. R. Kasaraju. Efficient tree pattern matching. In Proc. of the 30th Annual
Symposium on Foundations of Computer Science, pages 178–183. IEEE, 1989.

[116] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. An evaluation of
software-based release consistent protocols. Journal of Parallel and Distributed
Computing, 29(2):126–141, September 1995.

[117] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy release consistency for soft-
ware distributed shared memory. In D. Abramson and J.-L. Gaudiot, editors,
Proc. of the 19th Annual International Symposium on Computer Architecture
(ISCA’92), pages 13–21. SIGARCH, ACM, May 1992.

200 CHAPTER 8. BIBLIOGRAPHY

[118] P. Keleher, S. Dwarkadas, A. Cox, and W. Zwaenepoel. Treadmarks: Dis-
tributed shared memory on standard workstations and operating systems. In
Proc. of the 1994 Winter Usenix Conference, pages 115–131, January 1994.

[119] C. W. Keßler. Pattern-driven automatic program transformation and par-
allelization. In Proc. of the 3rd EUROMICRO Workshop on Parallel and
Distributed Processing. IEEE, January 1995.

[120] H. Kuchen. A skeleton library. In B. Monien and R. Feldmann, editors, Proc.
of Euro-Par 2002, number 2400 in Lecture Notes in Computer Science, pages
620–629. Springer-Verlag, 2002.

[121] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The stanford FLASH multiprocessor. In Proc. of the 21st
International Symposium on Computer Architecture (ISCA’94), pages 302–
313. SIGARCH, ACM, April 1994. Published as Proc. of the 21st Symp. on
Computer Architecture (21st ISCA’94), Computer Architecture News, volume
22, number 2.

[122] L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Trans. on Computers, C-28(9):690–691, January
1979.

[123] J. Laudon and D. Lenoski. The SGI origin: A ccNUMA highly scalable server.
In Proc. of the 24th Annual International Symposium on Computer Architec-
ture (ISCA’97), pages 241–251. SIGARCH, ACM, June 1997. Published as
Proc. of the 24th Symp. on Computer Architecture (24th ISCA’97), Computer
Architecture News, volume 25, number 2.

[124] D. Lenoski, J. Laudon, K. Gharachorloo, W.-D. Weber, A. Gupta, J. Hennessy,
M. Horowitz, and M. S. Lam. The Stanford Dash multiprocessor. Computer,
25(3):63–79, March 1992.

[125] R. Lepère, G. Mounié, and D. Trystram. An approximation algorithm for
scheduling trees of malleable tasks. European Journal of Operational Research.
(to appear, http://www-id.imag.fr/Laboratoire/Membres/
Trystram Denis/publis malleable/).

[126] R. Lepère, D. Trystram, and G. J. Woeginger. Approximation algorithms
for scheduling malleable tasks under precedence constraints. Lecture Notes in
Computer Science, 2161, 2001.

[127] X. Leroy. The LinuxThreads library. INRIA, Rocquencourt, France.
(http://pauillac.inria.fr/∼xleroy/linuxthreads/).

8.4. BIBLIOGRAPHY 201

[128] K. Li. IVY: A shared virtual memory system for parallel computing. In Proc.
of the International Conference on Parallel Processing, volume II, Software,
pages 94–101, August 1988.

[129] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Systems.
ACM Trans. on Computer Systems, 7(4):321–359, November 1989.

[130] R. Low and C. Corley. High performance host microprocessor family, today
and tomorrow. Smart Networks Developer Forum 2003, Paris, France, June
2003.
(http://e-www.motorola.com/collateral/SNDF2003 EUROPE H1101.pdf).

[131] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Tan.
From patterns to frameworks to parallel programs. Parallel Computing,
28(12):1663–1683, December 2002.

[132] S. MacDonald, D. Szafron, J. Schaeffer, and S. Bromling. Generating parallel
program frameworks from parallel design patterns. In A. Bode, T. Ludwing,
W. Karl, and R. Wismüller, editors, proc of Euro-Par 2000, number 1900 in
Lecture Notes in Computer Science, pages 95–105. Springer-Verlag, September
2000.

[133] E. Mäkinen. On the subtree isomorphism problem for ordered trees. Informa-
tion Processing Letters, 32:271–273, September 1989.

[134] MpiJava. The MpiJava home page, 2001.
(http://www.npac.syr.edu/projects/pcrc/mpiJava/).

[135] W. A. Najjar, E. A. Lee, and G. R. Gao. Advances in the dataflow computa-
tional model. Parallel Computing, 25:1907–1929, 1999.

[136] C. Nester, R. Philippsen, and B. Haumacher. A more efficient RMI for Java.
In Proc. of the Java Grande Conference, pages 152–157. ACM, June 1999.

[137] D. L. Parnas. On the design and development of program families. IEEE
Trans. on Software Engineering, SE-2(1):1–9, March 1976.

[138] P. J. Parsons and F. A. Rabhi. Generating parallel programs from paradigm
based specifications. Journal of Systems Architecture, 45(4):261–283, 1998.

[139] S. Pelagatti. A methodology for the development and the support of massively
parallel programs. PhD thesis, Computer Science Department, University of
Pisa, Italy, 1993.

[140] S. Pelagatti. Structured Development of Parallel Programs. Taylor&Francis,
1998.

202 CHAPTER 8. BIBLIOGRAPHY

[141] T. Priol. A Grid programming model based on shared memory abstraction.
Document distributed during the GF5 meeting, Boston, USA, October 2000.

[142] T. Priol. Programming the Grid with distributed objects. In Proc. of Work-
shop on Performance Analysis and Distributed Computing (PACD 2002).
Schloss Dagstuhl, Germany, 2002.
(found at http://www.irisa.fr/orap/Forums/Forum12/Priol.pdf).

[143] J. Protić, M. Tomašević, and V. Milutinović. Distributed shared memory:
Concepts and systems. IEEE parallel and distributed technology: systems and
applications, 4(2):63–79, Summer 1996.

[144] F. A. Rabhi and S. Gorlatch, editors. Patterns and Skeletons for Parallel and
Distributed Computing. Springer-Verlag, 2002.

[145] Z. Radović and E. Hagersten. Removing the overhead from software-based
shared memory. In Proc. of Supercomputing 2001. ACM, November 2001.

[146] K. H. Randall. Cilk: Efficient Multithreaded Computing. PhD thesis, Depart-
ment of Electrical and Computer Science, Massachusetts Institute of Technol-
ogy, U.S.A., 1998.

[147] T. Rauber and G. Rünger. A coordination language for mixed task and data
parallel programs. In Proc. of the 3rd Annual Symposium on Applied Com-
puting (SAC’99), pages 146–155. ACM Press, 1999.

[148] M. Rinard. The design, implementation and evaluation of Jade: a portable,
implicitly parallel programming language. PhD thesis, Stanford University,
USA, September 1994.

[149] J. K. Salmon. Parallel Hierarchical N-body Methods. PhD thesis, California
Institute of Technology, U.S.A., 1990.

[150] G. Sardisco and A. Mach̀ı. Development of parallel paradigms templates for
semi-automatic digital film restoration algorithms. In G. R. Joubert, A. Murli,
F. J. Peters, and M. Vanneschi, editors, Parallel Computing: Advances and
Current Issues. Proceedings of the International Conference ParCo2001, pages
498–509. Imperial College Press, 2002.

[151] D. J. Scales and M.S. Lam. The design and evaluation of a shared object
system for distributed memory machines. In Proc. of the 1st Symposium on
Operating System Design and Implementation, pages 101–114, November 1994.

[152] Semiconductor Industry Association. International Technology Roadmap for
Semiconductors: Overall Roadmap Technology Characteristics & Glossary,
1999 edition. (Available at http://www.semichips.org/).

8.4. BIBLIOGRAPHY 203

[153] J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview
of the SKiPPER project. Parallel Computing, 28(12):1685–1708, December
2002.

[154] J. Sérot, D. Ginhac, R. Chapuis, and J. Derutin. Fast prototyping of parallel-
vision applications using functional skeletons. Machine Vision and Applica-
tions, 12:217–290, 2001.

[155] L. M. Silva. Web-based parallel computing with Java. In R. Buyya, editor,
High Performance Cluster Computing, pages 310–326. Prentice Hall, 1999.

[156] J. P. Singh, A. Gupta, and W. D. Weber. SPLASH: the Stanford ParalleL
Applications for SHared memory. ACM SIGARCH Computer Architecture
News, 20(1):5–44, January 1992.

[157] J. P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. L. Hennessy. Load balancing
and data locality in adaptive hierarchical n-body methods: Barnes-hut, fast
multipole, and radiosity. Journal of Parallel and Distributed Computing, June
1995.

[158] D. B. Skillicorn and W. Cai. A cost calculus for parallel functional program-
ming. Journal of Parallel and Distributed Computing, 28:65–83, 1995.

[159] M. Südholt. Data distribution algebras — a formal basis for programming
using skeletons. In E.-R. Olderog, editor, Programming Concepts, Methods
and Calculi (PROCOMET’94), pages 19–38. Elsevier, 1994.

[160] Sun Microsystems. The Java home page, 2002. (http://java.sun.com).

[161] P. Teti. Lithium: a Java skeleton environment. Master’s thesis, Computer
Science Department, University of Pisa, Italy, October 2001. in italian.

[162] Thinking machines. Getting started in CM Fortran, November 1991.

[163] M. Tomašević, J. Protić, and V. Milutinović. A survey of distributed shared
memory systems. In T. N. Mudge and B. D. Shriver, editors, Proc. of the
28th Annual Hawaii International Conference on System Sciences. Volume 1:
Architecture, pages 74–84. IEEE Computer Society Press, January 1995.

[164] Top500.org. Top500 supercomputers sites, 2002. (http://www.top500.org).

[165] L. G. Valiant. A bridging model for parallel computation. Communications
of the ACM, 33(8):103–11, August 1990.

[166] M. Vanneschi. Heterogeneous HPC environments. In D. Pritchard and
J. Reeve, editors, Proc. of Euro-Par 1998 (invited paper), number 1470 in
Lecture Notes in Computer Science, pages 21–34. Springer-Verlag, September
1998.

204 CHAPTER 8. BIBLIOGRAPHY

[167] M. Vanneschi. PQE2000: HPC tools for industrial applications. IEEE Con-
currency. Parallel, distributed & mobile computing, 6(4):68–73, October 1998.

[168] M. Vanneschi. Parallel paradigms for scientific computing. In Proc. of the Eu-
ropean School on Computational Chemistry (1999, Perugia, Italy), number 75
in Lecture Notes in Chemistry, pages 170–183. Springer-Verlag, 2000.

[169] M. Vanneschi. The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing, 28(12):1709–1732,
December 2002.

[170] M. Warren and J. Salmon. A parallel hashed oct-tree n-body algorithm. In
Proc. of Supercomputing’93. IEEE, 1993.

[171] N. Wirth. Algorithms + data structures = programs. Prentice-Hall, 1976.

[172] A. Zavanella. Skeletons and BSP: Performance portability for parallel pro-
gramming. PhD thesis, Computer Science Department, University of Pisa,
Italy, March 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /ENU <FEFF004d006100720063006f00200041006c00640069006e0075006300630069>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

