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Abstract. We describe the implementation of ASSIST, a programming
environment for parallel and distributed programs. Its coordination lan-
guage is based of the parallel skeleton model, extended with new features
to enhance expressiveness, parallel software reuse, software component
integration and interfacing to external resources. The compilation pro-
cess and the structure of the run-time support of ASSIST are discussed
with respect to the issues introduced by the new characteristics, present-
ing an analysis of the first test results.

1 Introduction

The development of parallel programs to be used in the industrial and commer-
cial fields is still a difficult and costly task, which is worsened by the current
trend to exploit more heterogeneous and distributed computing platforms, e.g.
large NOW and Computational Grids.

In our previous research [1,2] we focused on structured parallel programming
approaches [3], and the ones based on parallel algorithmic skeletons in particular.
We exploited skeletons as a parallel coordination layer of functional modules,
eventually made up of conventional sequential code. Our experience is that this
kind of skeleton model brings several advantages, but does not fulfill all the
practical issues of efficient program development and software engineering.

In this paper we discuss the implementation of ASSIST [4], a general-purpose
parallel programming environment. Through a coordination language approach
we aim at supporting parallel, distributed and GRID applications. ASSIST eases
software integration also by exploiting the software component paradigm.

In ASSIST, the skeleton approach is extended with new ideas to allow for
(1) sufficient expressiveness to code more complex parallel solutions in a modular,
portable way, (2) the option to write skeleton-parallel applications interacting
with, or made up of components, and (3) the option to export parallel programs
as high performance software components.
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Sect. 2 summarizes the motivation and main features of the ASSISTcl co-
ordination language. We describe in Sect. 3 the structure and implementation
of the first prototype compiler, and in Sect. 4 the compilation process and the
language run-time, with respect to the constraints and the issues raised by the
language definition. First results in verifying the implementation are shown in
Sect. 5, Sect. 6 discusses related approaches in the literature, and Sect. 7 draws
conclusions and outlines future development.

2 The ASSIST Approach, Motivation, and Features

Our previous research about structured parallelism and skeleton-based coordi-
nation has verified several advantages of the approach. However, our experience
is that data-flow functional skeletons are not enough to express in a natural,
efficient way all parallel applications, especially those that (i) involve irregu-
lar or data-driven computation patterns, (ii) are data-intensive in nature (I/O
bound or memory constrained), (iii) are complex and multidisciplinary, hence
require access to specific external resources and software modules by means of
mandated protocols and interfaces. Stateless, isolated modules linked by simple
and deterministic graphs can lead to inefficient skeleton compositions in order
to emulate state-dependent or concurrent activities in a parallel program.

Moreover, the approach did not allow us the reuse of parallel programs as
components of larger applications, nor to easily exploit dynamically varying com-
putational resources. These are major issues in view of the affirmation of high
performance, large-scale computing platforms (from huge clusters to Computa-
tional Grids), which require us both to promote cooperation of software written
within different frameworks, and to exploit a more informed management of
computational resources.

The ASSIST environment has been designed with the aim of providing
– high-level programmability and productivity of software development
– performance and performance portability of the resulting applications
– enhanced software reuse, and easier integration between ASSIST programs

and other sequential/parallel applications and software layers.
These requirements have a visible impact on the structure of the coordination

language. While pipeline, farm and map parallel skeletons are still supported by
ASSISTcl, new, more expressive constructs are provided by the language. The
language support has been designed to more easily interact with heterogeneous
program modules and computational resources (e.g. different communication
supports and execution architectures). Due to lack of space, we can only sum-
marize here the distinguishing features of ASSIST, which are detailed in [5,4].

Coordination Structure. A module is either a unit of sequential code, or a
skeleton construct coordinating more sequential or parallel modules. In ad-
dition to the older skeletons, a generic graph container is available, that
specifies arbitrary connections among modules, allowing multiple input and
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output channels per module. This implies a radical departure from the sim-
pler and more restrictive notion of module coordination we adopted in past
research.

Parallel Expressiveness. The ParMod skeleton [4] is introduced, which ex-
ploits increased programmability. A ParMod coordinates a mixed task/data
parallel computation over a set of virtual processors (VP), to be mapped
to real processing units. The set of VPs has a topology, data distribution
policy, communications and synchronization support. The ParMod allows
managing multiple, independent streams of data per VP, different compu-
tations within a VP being activated in a data-driven way. It is possible to
manage nondeterminism over input streams, using a CSP-like semantics of
communication, as well as to explicitly enforce synchronous operation of all
the VPs. When needed, data structures from the streams can be broadcast,
distributed on-demand, or spread across the VPs, according to one of the
available topologies. With respect to the topology, fixed and variable stencil
communications are allowed, as well as arbitrary, computation dependent
communication patterns.

Module State. Program modules are no longer restricted to be purely func-
tional, they can have a local state. A shared declaration allows ASSIST vari-
ables to be accessed from all the modules of a skeleton. Consistency of shared
variables is not rigidly enforced in the language, it can be ensured (i) by al-
gorithmic properties, (ii) by exploiting the synchronization capabilities of
the ParMod skeleton, or (iii) by a lower-level implementation of the data
types as external objects.

External Resources. The abstraction of external objects supports those cases
when module state includes huge data, or unmovable resources (software lay-
ers or physical devices, databases, file systems, parallel libraries). External
objects are black-box abstract data types that the ASSIST program can com-
municate with, sequentially and in parallel, by means of object method calls.
As an essential requirement, external objects are implemented by a separate
run-time tool, which must avoid hidden interactions with the execution of
parallel programs. The approach is being used to develop a run-time sup-
port of module state which handles out-of-core data structures as objects in
virtual shared memory, and is independent from ASSIST shared variables.

Software Components. ASSIST can both use and export component inter-
faces (e.g. CORBA). The new features of the language and the improvements
in the run-time design make it possible to use external, possibly parallel
software components as ASSIST program modules, and to export an ASSIST
application as a component in a given standard.

The expressive power of the graph and ParMod constructs encompasses that
of conventional skeletons1 and allows the expression of combinations of task and
data parallelism not found in other skeleton-based languages or in data-parallel
models (e.g. systolic computations and large/irregular divide and conquer al-
gorithms). The new features, and the management of dynamic, heterogeneous
1 In principle we can exploit VPs to write low-level, unstructured parallel programs.
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Fig. 1. Compilation steps in ASSIST

resources, lead to new open issues in the implementation, in particular w.r.t.
compile-time optimizations and run-time performance models.

3 Implementation of the ASSIST Compiler

The ASSISTcl compiler (Fig. 1) has been designed to be modular and extendable.
In particular, (i) the compilation process is divided into completely separate
phases, (ii) portable file formats are used for the intermediate results, (iii) the
compiler exploits object-oriented and design pattern techniques (e.g. visitor and
builder patterns are consistently used from the Front-End to the Back-End of
the compiler). The intermediate formalisms of all compilation phases have been
designed with great care for the issues of portability and compatibility of the
compilation process with heterogeneous hardware and software architectures.

Front end. The compiler front-end is based on a fairly standard design, in
which the high-level source code is parsed, turned into an abstract syntax tree
and type-checked. Host language source code (C, C++, Fortran) is extracted
from ASSIST program modules and stored separately, gathering information
about all sequential libraries, source files and compilation options used.

Middle End. The middle-end compilation (the Module Builder unit) employs
an intermediate representation called Task Code, described in Sect. 3.1. Con-
trary to the high-level syntax, Task Code represents a materialized view of
the process graph used to implement the program, with each skeleton com-
piled to a subgraph of processes that can be thought of as its implementation
template (Fig. 2b). It is actually a mixed-type process network, as some of
the graph nodes represent internally parallel, SPMD activities. Global opti-
mizations can then be performed on the whole Task Code graph.

Back End. The compiler Back-End phase contains two main modules.
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The Code Builder module compiles Task Code processes to binary executa-
bles, making use of other (sequential) compilers and tools as appropriate
for each module. Most of the run-time support code is generated from the
Task-Code specification and the sources of the C++ AssistLib library.
In the same compilation phase, the Configuration Builder module generates
a program configuration file, encoded in XML, from the abstract syntax tree
and Task Code information. This assist out.xml file describes the whole
program graph of executable modules and streams, including the informa-
tion needed by the run-time for program set-up and execution (machine
architecture, resources and a default process mapping specification).

3.1 Program Representation with Task Code and Its Run-Time
Support

Task Code (Fig. 2b) is the intermediate parallel code between the compiler
Front-End and its Middle-End. It is a memory resident data structure, with full
support for serialization to, and recovery from a disk-resident form. This design
choice enhances compiler portability, and allows intermediate code inspection
and editing for the sake of compiler engineering and debugging. The Task Code
definition supports sequential and SPMD parallel “processes”, each one having
– a (possibly empty) set of input and output stream definitions, along with

their data distribution and collection policy
– sequential code information previously gathered
– its parallel or concurrent behaviour as defined by the high-level semantics

(e.g. nondeterminism, shared state management information).
Task Code supports all of the features of ParMod semantics. Different parts of
the abstract machine that supports these functions are implemented at compile
time, at load-time and at run-time. The parallel primitives we have mentioned
so far are mainly provided in the AssistLib library. The Task Code graph is
also a target for performance modelling and optimization. While results about
the classical skeletons can be applied to simple enough subgraphs, in the general
case approximate or run-time adaptive solutions will be required to deal with the
increased complexity of the ASSIST coordination model, and the more dynamic
setting of heterogeneous resources.
AssistLib is a compile-time repository of object class definitions and method
implementations. Heavy use is made of C++ templates and inline code in order
to reduce the run-time overhead in the user code. AssistLib comprises:
– routines for communication and synchronization
– implementation of stream data distribution policies
– implementation of the SMU (state management unit)
– interface to shared data structures handled by the SMU
– interface to “external object” resources.

Most of the concurrency and communication handling is currently performed
by Reactor objects of the ACE library (see Sect. 4). Template and inline code
implements communications exploiting the information statically available about
communication channels (data types, communication policy).
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Fig. 3. ASSIST program execution scheme.

The SMU code encapsulates shared state management within the user code,
mapping shared variables to data that is replicated or distributed across VPs
according to the declarations in the ASSIST program. The SMU core essentially
becomes part of the user code (Fig. 2c), providing the run-time methods to access
shared data, and to ensure state coherence among the VPs when required by
ParMod semantics. Optimizations are performed if multiple VPs run as threads
in the same process, and owner-initiated communications are employed if the
shared data access pattern is easily predictable (e.g. a fixed stencil).

The AssistLib library uses communication and resource management prim-
itives provided by the run-time support. In the current implementation, some
functionalities are provided by the ACE library, and their implementation is
chosen at compile-time, while other ones can still be changed at run-time.

4 Run-Time Architecture

The current prototype of the ASSIST environment has been developed on a clus-
ter of LINUX workstations, exploiting the communication and O.S. abstraction
layers of the ACE library [6] (Fig. 2c). The use of the ACE object-oriented
framework to interface to primary services (e.g. socket-based communications,
threads), besides symplifying the run-time design, ensures a first degree of porta-
bility which includes all POSIX compliant systems.

The communication support provided by ACE relies on standard UNIX sock-
ets and the TCP/IP stack, which are ubiquitous, but cannot fully exploit the
performance of modern communication hardware. The language run-time is ex-
pandable either by extending the ACE classes to use new communication li-
braries, or by rewriting part of the communication primitives of AssistLib.
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The standard ASSIST loader assistrun uses the XML configuration file to
set-up the process net when running the program (Fig. 3). Manual, automatic
and visual tool assisted editing of program configuration is also possible, enhanc-
ing the flexibility of the compiled application. The collected executable modules
are designed to run with the help of CLAM, the coordination language ab-
stract machine. The CLAM is indeed no complete virtual machine, it provides
run-time services (resource location and management, computation monitoring)
within heterogeneous and dynamically configurable architectures. To accomplish
this goal, the CLAM either implements its own configuration services (current
version) or interfaces to existing ones, e.g. [7].

A CLAM master process monitors the computation and manages the global
configuration, interfacing to a set of CLAM slave processes that run on the
available computing nodes. CLAM slaves can load code in the form of dynam-
ically linked libraries (DLL), and they can act as intermediaries between the
executable modules and the communication software layer. The CLAM master
“executes” the assist out.xml file by assigning the slaves a proper mapping of
executable modules in the program. CLAM support processes react to changes
in the program and in machine configuration. They communicate using a simple
and portable internal protocol, while application communications are performed
according to CLAM internal process mapping information. When several VPs
are mapped to the same phisycal node, CLAM slaves execute their DLL either
as separate processes, or as threads. The first method is more robust, as separa-
tion of the user and support code is complete, while the second introduces less
run-time overheads. A third executable form, useful for testing and for statically
configured programs and architectures, simply bypasses the CLAM and employs
ACE processes and primitives.

Interoperability with standards like CORBA is currently supported in two ways.

– ASSIST programs can access CORBA functions from within the user code
sections by gaining access to an external ORB. The ORB reference can be
provided in the application configuration file.

– CORBA services can be implemented by ASSIST modules, for instance by
activating a CORBA servant within a program module. Exporting CORBA
services at the user code level is a blocking operation, so the module becomes
unavailable as long as the ORB is alive, and the servant must actually be a
sequential module.

A different, compiler-supported solution, which we are currently developing, al-
lows using as a servant a generic parallel ASSIST subprogram f with unique
input and output. The compiler inserts into the program a support process p
(actually a ParMod with a single virtual processors) that runs ORB code as a
thread. Process p forwards external CORBA requests to f and gets back answers
on the ASSIST internal interfaces.

A variant of this scheme has been used to run Java bytecode inside VPs,
by starting Java virtual machines as separate processes and forwarding them
the tasks to compute. Building on these integration experiences, we plan to
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Fig. 4. Speed-up results. (left) Computation of a function with stencil access over an
array of 1600x1600 points, computation is 470 ns per point. — (right) Farm load-
balancing computation over the same array, Mandelbrot function at 1K, 4K and 8K
iterations per point, computation grain is 1280 points per packet.

fully integrate high performance components in more effective ways in the next
versions of the ASSIST run-time.

5 First Results

We are currently running simple tests on a small Beowulf cluster in order to
test compiler and support functionalities. We have verified that the ParMod im-
plementation can efficiently handle both geometric algorithms (data parallelism
with stencil access to non-local data, Fig. 4-left) and dynamic load balancing
farm computations, already at a small computation grain (470 ns is 30-300 ma-
chine instructions on the Pentium II platform used), Fig. 4-right. Although some
support optimization are still missing, test results in Fig. 4-left show that the
SMU support for dynamically computed stencil patterns is almost as efficient as
that of static (unchanging) stencils.

These results are confirmed by preliminary tests on a computational ker-
nel of molecular dynamic simulation, developed using the ASSIST technology
(AssistLib) as part of the ASI-PQE2000 Research Program. More results are
found in [8]. To verify the feasibility of mixing data parallelism and task paral-
lelism within the same application kernel, we are currently implementing with
ASSIST the C4.5 decision-tree classifier described in [4]. Decision tree classifiers
are divide and conquer algorithms with an unbalanced, irregular and data-driven
computation tree, and require using data and control-parallel techniques in dif-
ferent phases of the execution, while at the same time managing out-of-core
data structures. This kind of applications can be written only with low-level,
unstructured programming models (e.g. MPI), and clearly show the limits of
pure data-parallel programming models. In [4] we propose a solution based on
two ParMod instances and external object support to shared memory data.
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6 Related Work

In [9] an extensive comparison of the characteristics of several parallel program-
ming environments is reported, including ASSIST, and developing standards for
High Performance and Grid components (CCAFFEINE, XCAT) are referenced.
Another notable example reported is CO2P3S, a language based on parallel de-
sign patterns. CO2P3S is aimed at SMP multithreaded architectures, and its
expressive power comes in part from exposing the implementation of patterns
to the application programmer. The Ligature project [10] also aims at designing
a component architecture for HPC, and an infrastructure to assist multicompo-
nent program development. Kuchen [11] describes a skeleton-based C++ library
which supports both data and task parallelism using a two tier approach, and
the classical farm and map skeletons. As a closer approach, we finally mention
the GrADS project [12]. It aims at smoothing Grid application design, deploy-
ment and performance tuning. In GrADS the emphasis is much stronger on the
dynamic aspects of program configuration, including program recompilation and
reoptimization at run-time, and thus performance models and contracts issues.
Indeed, in the GrADS project the programming interface is a problem solving
environment which combines components.

7 Conclusions

We have presented a parallel/distributed programming environment designed to
be flexible, expandable and to produce efficient and portable applications. Pri-
mary features of language are the ease of integration with existing applications
and resources, the ability to mix data and control parallelism in the same ap-
plication, and the ability to produce application for heterogeneous architectures
and Computing Grids. By design, it is possible to exploit different communica-
tion support methods by extending the CLAM or the ACE library. Key resources
in this direction are libraries for faster communication on clusters (e.g. active
messages) and Computational Grid support libraries like Nexus [7].

Future improvements will be the result of a multidisciplinary work, in collab-
oration with several other research groups. We already made efforts to integrate
the ASSIST environment with existing parallel numerical libraries [13], and a
tool has been developed to help run ASSIST applications over Grid Computing
Environments [14].

The support of the language has been verified on Beowulf clusters. At the
time of this writing, we are developing more complex applications to stress the
environment and tune performance optimization in the compiler. Among the
“heavyweight” applications in development there are data mining algorithms for
association rule mining and supervised classification; earth observation applica-
tions using SAR interferometry algorithms; computational geometry kernels.

The parallel cooperation model of ASSIST allows consideration of a mod-
ule, especially a ParMod, as a software component. It is already possible to use
CORBA sequential objects, and to export a CORBA interface from an ASSIST
program. In a more general setting, ASSIST modules can be seen as parallel
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software components. Thus, future development of the ASSIST environment will
interact with the development of parallel and high-performance component in-
terfaces, exploiting them to connect program modules.
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