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ABSTRACT
We discuss the lack of expressivity in some skeleton-based parallel programming
frameworks. The problem is further exacerbated when approaching irregular problems
and dealing with dynamic data structures. Shared memory programming has been ar-
gued to have substantial ease of programming advantages for this class of problems.
‘We present eskimo library which represents an attempt to merge the two programming
models by introducing skeletons in a shared memory framework.
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1. Introduction

The development of efficient parallel programs is a quite hard task. Besides
coding the algorithm, the programmer must also take care of the details involved
in parallelism exploitation, i.e. concurrent activity set up, mapping and scheduling,
synchronization handling and data allocation. In unstructured, low level parallel
programming approaches these activities are usually fully in charge of the program-
mer and constitute a difficult error prone programming effort. From Cole’s seminal
work [1] skeleton research community has been active in experimenting new tech-
nologies in order to simplify parallel programming by raising the level of abstraction.

In the past decade we designed and developed several skeleton-based parallel
programming environments and we tested their effectivity on a number of real world
applications. Even if the skeletal approach has been proved to be effective for some
of them, the overall feedback we received cannot be considered fully satisfactory.
Actually a lack of expressivity emerged, at least for some complex applications.

In this paper we present eskimo [Easy SKeleton Interface (Memory Oriented)]
a new skeletal programming environment which represents a preliminary attempt
to defeat expressivity lacks emerged in skeletal languages, especially approaching
irregular problems and dealing with dynamic data structures. eskimo is based on
shared address programming model; its run-time is built upon a software DSM.

In the next section we present a brief (self-critical) history of parallel program-
ming frameworks evolution. In section & we present eskimo design principles. In
section 4 we discuss the pay-back we expect from the skeletal approach. The paper
is completed by some experimental results (sec. 5) and the related work (sec. 6).

2. Motivation and Historical Perspective

Historically a couple of works are due particular attention: the P3L project [2]
and the SCL co-ordination language [3]. They sought to integrate imperative code
chunks within a structured parallel framework. As an example, the P3L language
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core includes programming paradigms like pipelines, task farms, iterative and data
parallel skeletons. Skeletons in PL can be used as constructs of an explicitly parallel
programming language, actually as the only way to express parallel computations.

Later on, all experiences assessed with P3L have met into the SKIE language and
its compiler [4]. In SKIE existing sequential codes can be used to instance skeletons
with little or no amendment to the sources; it supports several guest sequential and
parallel languages (C, C++, Fortran, Java, HPF) within the same application. A
SKIE program is basically a composition of skeletons. Also, they are equipped with a
compositional functional semantics. They behave like higher-order functions which
can be evaluated efficiently in parallel. Furthermore, the skeletons functional and
parallel semantics enabled the optimization of programs by means of performance-
driven source-to-source code transformations [5,6,7].

As SKIE concerns, several real world applications*have been used as test-bed to
validate the effectiveness of the programming environment [8]. A lack of expressiv-
ity emerged for some of them. In principle, the skeletal approach is not particularly
targeted towards a class of applications. However, we experienced that some appli-
cations can be straightforwardly formulated in terms of skeleton composition, others
needs a greater design effort. The boundary between the two classes depends on
many factors, among the others, the particular programming environment and the
skeleton set chosen for applications development. Anyway, some common flaws may
be recognized in both SkIE and other research group works (see also [9]):

(i) The selection of skeletons to make available in the language skeleton set is
quite critical design issue. Despite several endeavors to classify and close
the parallel programming skeleton set [10], in many cases during application
development we experienced the need of the “missing skeleton”, or at least
the missing functionality for an existing skeleton.

(ii) Many parallel applications are not obviously expressible as instances of (nested)
skeletons, whether existing or imagined. Some have phases which require the
use of less structured or ad-hoc interaction primitives.

(iii) Although all kind of languages may be equipped with a skeletal super-structure,
skeletal languages has been historically designed in a functional programming
style fashion [4,11]. In this setting non functional code is embodied into the
skeletal framework by providing the language with wrappers acting as pure
functions. Actually, the fully functional view (by its very nature) does not
enhance programmer control over data storage that is a feature that may
happen to be useful in the design of applications managing large, distributed,
randomly accessed data sets.

Indeed, the role of skeletons in the programming language is evolved and matured
along past decade. Such evolution yearning to defeat (among the others) described
lacks in skeletal languages expressiveness while preserving their ease of use. In
particular skeletons loose their “exclusiveness” on parallelism exploitation. The
new skeletons’ role has led to the exploration of several scenarios:

*In the area of massive data mining, computational chemistry, remote sensing and image analysis,
visual and numerical computing.
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Skeletons as Design Patterns. A design pattern per se is not a programming
construct, as happened for the skeletons. Rather, it can be viewed as “recipe” that
can be used to achieve different solutions to common programming problems. The
parallel skeleton support may be implemented using a layered, OO design [12]. Par-
allel skeletons can be declared as members of proper skeletons/patterns. Exploiting
standard OO visibility mechanisms, part of the framework may be made visible to
the programmer in such a way he can perform different tasks: fine performance
tuning, introduction of new, more efficient implementation schemes, etc. [13,14].

Skeletons as FExtension. Skeletons may be used to extend existing program-
ming languages or programming frameworks (e.g. C + MPI) that are already able
to exploit parallelism. Several recent programming frameworks may be numbered
among this category, among the others: SKE1lib [15] that extends C language with
SkIE-like skeletons and enable the programmer to use standard Unix communi-
cation mechanisms. Skil [16] extend C++ language providing the programmer a
SPMD environment with task (pipeline and farm) and data parallel (map, fold, ...)
skeletons, that are seen as collective operations. Lithium [17] is the first pure Java
structured parallel programming environment based on skeletons and exploiting
macro data flow implementation techniques [18]. eSkel [9] is a library which adds
skeletal programming features to the C/MPI parallel programming framework. It
is a library of C functions and type definitions which extend the standard C binding
to MPI with skeletal operations.

eskimo has been influenced by both previous approaches. eskimo extends the C
language with “proto-skeletons” or constructs, which represent skeletons’ building
blocks. Skeletons does not really exist in eskimo program as language elements,
rather they are particular programming idioms.

3. eskimo: A New Skeletal Language

eskimo is a parallel extension of C language based on shared address program-
ming model. The target architectures for the language are Beowulf class machines,
i.e. POSIX boxes equipped with TCP/IP networks. In this setting, eskimo is con-
ceived to be a framework to experiment the feasibility of the skeletal approach with
dynamic data structures in parallel programming.

The basic idea behind eskimo is that a programmer should concentrate on co-
designing his data structures and his algorithms. Moreover, in order to obtain
a high-performance application, the programmer would structure its application
properly, and eventually suggest to run-time important information about algorithm
data access patterns. eskimo run-time takes care of all other details like process
scheduling and load balancing. eskimo run-time support is based on a software
distributed shared memory. Notably it is not yet another DSM, rather it relies
on DSM already known technologies to experiments the co-design of dynamic data
structures and parallel programming patterns enforcing locality in the distributed
memory access. We outline the main features of eskimo as follows:

Abstraction. eskimo is a skeleton based programming language. It aims to sim-
plify programming by raising the level of abstraction, providing to the programmer
performance and portability for its applications. In order to convey this simplicity
to programmers we must be careful not to bundle it with an excessive conceptual
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baggage. At this end we enriched C language in such a way the language extension
fairly raises the level of abstraction. The main sources of abstraction regard data
structures, the flow of control, and the interaction between them. All abstractions
rely on solid concepts like concurrency and abstract data types.

Ezxpressiveness. We propose a structured programming environment that allows
the programmer to deal with (dynamic) spread shared data structures. In particu-
lar, the programmer deals with an abstraction of data structures represented as a
single entity (as in [19]). These parts are kept consistent by the run-time support
following a (very) lazy memory consistency model (see sec. 3.3). The chosen con-
sistency model enforces the high-level approach of the language since it enables to
read/write data objects avoiding the need of explicit low-level synchronization prim-
itives (like locks and barriers). In this setting the skeleton is no longer a ready-made
object of the language (e.g. an high-order function), rather it is a code pattern build
directly by the programmer using language primitives. Ad-hoc parallel pattern may
be coded using both eskimo and other libraries primitives.

Framework and design principles. eskimo main target architecture class are Be-
owulf class clusters. Such architectures, that are becoming pretty popular due to
their limited cost, presents several difficulties in drawing good steady performance
from applications (particularly dynamic ones). Following the nature of target ar-
chitecture class, eskimo exposes to the programmer a (virtual) shared NUMA ad-
dress. The programmer is required to make decisions about the relationship among
data structures (e.g. locality) but not to deal with all cumbersome facets of data
mapping. The underlying design principle consists in considering preferable a pro-
gramming environment on which performance improves gradually with increased
programming effort (taking advantage from a deep application knowledge) with re-
spect to one that is capable of ultimately delivering better performances but that
requires an inordinate programming effort. This can consist in either program-
ming each detail of the application (as in low-level approaches) or expressing the
application attempting to use a fixed set of ready-made parallel paradigms.

In summary eskimo extends the C language with three classes primitives: flows
of control management (sec. 3.1/3.2); Shared Data Types declaration, allocation
and management (sec. 3.3); shared variables management (sec. 3.4).

3.1. Exploiting Parallelism in eskimo

The parallelism is exploited through concurrency. The minimal unit for concur-
rency exploitation is the C function. Just as in a serial program, an eskimo program
starts as a single control flow. In any part of the program, the programmer may
split the flow of control through the asynchronous call of a number of functions;
such flows must, sooner or later, converge to a single flow of control. The basic
primitives managing program flow of control behave like Dennis’ fork/join, we call
them e-call/e-join. Also, we call e-flows eskimo flows of control. e-flows share the
virtual memory address space. The relationship among e-calls, e-joins and e-flows
is discussed in section 3.2 and intuitively sketched in Fig. 1 a).

e-call/e-join primitives enable the programmer to set up a dynamic and vari-
able number of e-flows, that is a pretty important feature dealing with dynamic
data structures (in particular linked data structures as lists and trees). Almost all
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Fig. 1. An eskimo program execution intuitive view. a) Relationship among e-calls, e-joins and
e-flows (grey boxes). b) A possible execution of the program.
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interesting algorithms on these data structures explore them in a recursive fashion,
following the Divide&Conquer (D&C) paradigm exploiting a variable concurrency
availability along the program run lifespan.

Actually D&C has been already present in classical skeleton sets. This skeleton,
as others (e.g. scan and map), has been often interpreted as a collective operation
on a given data structure by the skeleton community [6,21]. In the best case this
originated a family of variants for each skeleton, each of them optimizing a particular
behavior of the algorithm on the data structure [22]. In other cases, application
programmers have been compelled to match a given shape of the data structure
with a given behavior of the skeleton (that is likely to be a frustrating task). eskimo
approaches the problem from a lower-level viewpoint: it enables the co-design of
algorithms and data structures as in the very classical sequential programming.
There is no ready-made D&C skeleton in eskimo, rather there are all ingredients
to build it in such a way the programmer may express the suitable variant of the
skeleton for its data structure. Then, the language run-time tries to understand
from the ingredients and from the programmer hints what is the expected parallel
behavior for the particular variant, and even in case hints are wrong or missing the
program does not loose its correctness (even if we cannot expect from it an optimal
performance).

3.2. Concurrency and Flows of Control

Actually e-flows do not necessarily match any concrete entity at eskimo run-time
support level or its underneath run-time layers (as for example threads or processes).
In particular an e-call has to be considered as the declaration of a “concurrency
capability” with respect to a given function instance: an e-called function instance
might be both concurrently executed or sequentialized with respect to the caller
function. In the former case, the matching e-join represents the point along the
execution unfolding where a called e-flow must converge in to the caller e-flow.



HLPP 2003

The two e-flows coming out from an e-call may be executed in parallel, inter-
leaved or serialized in any order depending on the algorithm, the input data and
the system status. Actually, as e-call/e-join primitives denote in the algorithms
points where it is possible to proceed in more than one way, even for the same input
data set, they are non-deterministic primitives. As an example, eskimo program
sketched in Fig. 1 a) exploits four e-flows that represents its top concurrency de-
gree. However, as shown in Fig. 1 b) the language run-time might choose to halve
the concurrency degree and project the four e-flows in two really concurrent entities.
Serialized e-flows do not lead to any overhead related to parallelism exploitation
(thread creation, activation, synchronization).

As might be expected, e-flows have to be mapped on concrete concurrent en-
tities (i.e. processes or threads) at the language run-time level. This mapping is
sketched on-the-fly, step by step (in a distributed fashion) by eskimo run-time; in
correspondence of an e-call the calling e-flow map the new e-flow. Actually, the
mapping process must answer to two key questions:

1 Does the new e-flow be really concurrently executed (either in parallel or
interleaved) or it has to be serialized with respect to the calling one?

2 In case of concurrent execution, does the fresh e-flow be locally or remotely
spawned?

In both cases the language run-time looks for a tradeoff between opposite needs.
In the former case, it tries to maintain the amount of concurrent flows in the system
within acceptable bounds: enough to exploit the potential speedup of the system,
but not to much in order to avoid unnecessary overheads (in time and memory
space) due to parallelism management. In the latter case, the run-time tries to
balance workload on PEs while keeping data locality as much as possible.

We highlight that the relationship among e-flows is slightly more abstract than
concurrency. Actually different e-flows encompasses parts of an application which
might be concurrent each other, but in some cases they are not. Consider some
e-flows called in a sequence that establish a (direct or indirect) precedence relation
of one over another; or some e-flows sequentialized in to the same concurrent entity.
In both cases e-flows do not correspond to actual concurrent code.

eskimo e-call/e-join are the basic primitives to create and destroy an e-flow.
In addition to them, eskimo provides the programmer with their generalization,
i.e. e-foreach/e-joinall. They work basically in the same way but, as shown in
Fig. 2 b), they can create and destroy an arbitrary number of e-flows. Since e-flows
created by means of e-foreach have no data dependencies one each other, they can
be non-deterministically executed. Complementary e-joinall non-deterministically
waits the completion of all e-flows created by the matching e-foreach. e-foreach/e-
joinall have an additional freedom degree with respect to a sequence of e-call/e-join:
the order in which e-flows are mapped/scheduled and joined. From the run-time
viewpoint, this turns in some additional advantages with respect to the basic case.
In particular, at e-foreach time the language run-time knows how many and which
e-flows have to be executed, and may choose their execution order depending on
data availability. eskimo run-time uses this possibility to enhance locality of data
accesses by running first tasks that are likely to have needed data (or a part of
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Fig. 2. An eskimo program resulting in two different mapping and scheduling in different runs.

them) already present (or cached) in the PE. In the same way, the run-time joins
e-flows in the order they complete instead than the program order. Therefore, the
same program may be subjected to different mapping and scheduling decisions on
different runs (even on the same input data). As an example, in Fig. 2 a) and c¢)
are sketched two runs of the same program that have been subjected to different
mapping and scheduling decisions.

3.3. Sharing Memory among Flows of Control

eskimo language is specifically thought for NUMA parallel computing frame-
works, in particular for distributed memory architectures. These architectures nat-
urally supply a very efficient memory access to local memory and a more expensive
access to remote memory. The language abstracts these memory categories, but
it does not obscure the differences between them. eskimo language exposes to the
programmer two memory spaces: private and shared.

Private and shared variables are distinguished by their types. Shared variables
must have a Shared Data Types (SDT). SDTs are obtained by instancing a fixed
set of Shared Abstract Data Types (SADT), i.e. parametric types, including arrays,
k-trees and regions! All variables with a different type are private. However, not
all C variables are allowed as private variables, in particular C global variables are
(with some exception) forbidden into eskimo programs. These must be substituted
with shared variables. The relationship between e-flows and memory classes is the
following:

e Each e-flow has its private address space; thus private variables are always
bound to the e-flow where they have been declared. Private variables be
accessed without any eskimo mediation.

e All e-flows can access the shared address space, that is spread across the
system. Shared variables may be accessed by several e-flows, thus might be

TA contiguous region of memory that is shared but not spread.
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subjected to concurrent accesses. These accesses are regulated by the eskimo
run-time.

Overall, SADTs and their constructors provide a device to make sharable any C
data type by building SDTs. These are data structure containers allowing the access
to contained data (i.e. private or shared variables) by several e-flows. In case of
trees and arrays the container is structured and holds many contained data in a
lattice; such data is distributed across the virtual architecture thus it may have
a total size greater than memories of the single PE. Shared variables (or part of
them) may be referenced across e-flows by using references, i.e. void pointers into
shared address space. References, are the basic mechanism to pass shared variables
across e-calls. Pragmatically, eskimo references and shared variables would provide
globally addressable data structures matching the same relation between C pointers
and variables.

All SDTs are designed to be concurrently accessed by e-flows. SDTs may be
statically or dynamically (and incrementally) allocated, in particular k—tree nodes
must dynamically allocated by means of a language primitive (e_node_add). Beyond
trees, the programmer may build any shared linked data structure by using refer-
ences. Shared variables obey to DAG consistency [20] and can be accessed through
eskimo primitives (see next section). That basically means two different e-flows
may have a non coherent view of a given address in the shared memory space; the
coherence is then reconciled at e-join time. Pragmatically it means different e-flows
must write different shared address locations.

3.4. Reading and Writing Shared Variables

Most software DSMs rely on MMU and operating system traps in order to make
transparent the access of remote data. However, the interrupt cost, associated with
receiving a message has been proved to be the largest component of the slow remote
latency, not the actual wire delay in the network or the software implementing the
protocol [23]. We followed a different approach, shared variables, differently from
private ones, can not be read and written directly. In order to access to a shared
variable the programmer must explicitly bind it to a private pointer (see Fig. 3
line 4). The technique avoid the use of operating system traps. In addition it has
a pragmatic importance: since accessing a shared variable may be expensive the
programmer is required to evaluate really needed accessest eskimo provides a pair
of language primitives enabling the access to a shared variable: r (for read-only)
and rw (for read/write). Both r and rw take as argument a reference and return
a void pointer that can be used (after a suitable type cast) to access the shared
variable value.

4. Skeletons and their expected pay-back

eskimo provides the programmer with a family of constructs that specialize
e-foreach. Each of them run through elements of a given type of shared variables.
Currently there are three types of e-foreach constructs:

¥ Anyway, transparency may be achieved by preprocessing/instrumenting the user code.
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e_foreach_child run through non-null children of a spread tree node;

e_foreach_cell run through cells of a spread array;

e_foreach refset run through a given set of references to shared variables or ele-
ments of them (as for examples the set of tree leafs, or array cells).

The e-foreach constructs introduce a form of data parallelism, which is based on
on domain decomposition principle. eskimo allows the programmer to dynamically
define and decompose the domain. In fact, the parallel application of a function to
(sub)set of children in a tree may be interpreted as a form of data parallelism (where
the dynamic domain of children is decomposed). As result, also D&C paradigm
may be interpreted as a special (dynamic, recursive) case of data parallelism. As
an example consider the Barnes-Hut application code fragment shown in Fig. 3.

eskimo offers to the programmer the possibility to store data using a flat (arrays)
or hierarchical (trees) structure, then offers two standard parallelization paradigms
for the two cases: forall (or map) and D&C. The two paradigms may be freely
interleaved and are both introduced at the language level by just one primitive
(family), namely the e-foreach. In case the application is not obviously expressible
as instances of proposed paradigms or their interleaving, the programmer may ad-
hoc parallelize it by using the standard C language enriched with e-calls/e-joins.

The basic idea under eskimo is to abstract both (dynamic) data structures and
application flow of control in such a way they result orthogonalized. Creating an e-
flow either an e-called function may be migrated to the PE holding the data it need
or vice-versa. Clearly, the principal decision is to evaluate which is the better choice
in each case. In such task the run-time takes in account a number of elements: the
system status (load balancing), the shared memory space status and the program-
mer hints. Several policies may be implemented using such informations. Since
Beowulf class cluster exploits an unbalanced communication/computation power
tradeoff, the run-time tries to schedule an e-flow on the same PE of the data it
needed and takes in account load-balancing only as secondary constraint. Clearly,
the key issue here is to know in advance what data a function will access. The
run-time uses two kind of informations: (i) The data blocking. The run-time makes
scheduling decisions only when a function parameters cross the current data seg-
ment boundary. As result e-flows accessing to data in segment are sequentialized
enhancing locality and coarsening computation grain. (ii) The programmer hints.
We assumed that the first parameter of each e-called function (that must be a refer-
ence) is considered as a dominant factor, the run-time expect the majority of data
allocated “close” to data referenced by it. A wrong/missing information has no
impact on program correctness but a great impact on its performance.

5. Implementation and Experiments

A prototypal implementation of eskimo already runs on Linux clusters. It has
a layered implementation design: each layer provides mechanisms and policies to
solve some of parallel programming support issues. In particular e-flows mapping
and scheduling as well as shared data structure mapping is implemented in the top
tier. At this level many informations about the system status may be accessed (e.g.
PEs load, memory load, etc.). These information are maintained by a lower level
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1 eref_t sys_step_bot_up(eref_t anode) {
2 eref_t ret_array[4]; e_handler_t e_handler;

3 eref_t float_list, sink_list; node_t *np;

4 np = (node_t *) rw(anode); /* bind np to anode */

5 if (np->leaf) { /* recursion base case */

6 <Figure out acceleration (visit the tree from root)>
7 <Update bodies position (mp->x = ...; np=>y = ...;)>

8 i f (<anode outside borders>) push(float_list, anode);
o else { /* Divide */

10 e_foreach_chil d(e_handl er, sys_step_bot _up, np);
11 e_joinall _it(e_handler,ret_array);

12 /* Conquer */

13 for (i=0;i<4;i++)

14 whil e (el emrpop(ret_array[i]))

15 if (within_borders(elem) /* read *np */

16 push(body_down_|ist, el em;

17 el se

18 push(sink_list,elem;

19 <handle chain elimination and other particular cases>}

2) Top-down phase: sys_step_top_dw
P P

20 return (float_list); }

Fig. 3. A n-body system step in two phases and the eskimo pseudocode of the first phase.

tier that basically wrap the communication stack (currently the TCP stack). The
run-time exploits both multiprocessing (inter-PEs) and multithreading (intra-PEs).

We tested eskimo against Barnes-Hut application. It is a good example to study
because present non-trivial performance challenges due to irregular and dynamically
changing nature of data structures, and it is relatively small and manageable. We
developed three different versions of the Barnes-Hut algorithm: 1) The sequential
version (seq), implemented in C language. It is a reduction to the bare bones of
the original Barnes-Hut code in the bidimensional space. 2) The eskimo version. It
is obtained from the sequential version substituting recursive calls with recursive e-
foreaches. The n-body system evolves in two phases: (references to) bodies leaving
their current quadrant are first lifted to the smallest quadrant including both source
and target positions, then they are pulled down to target quadrant (see Fig. 3 left).
The main data structure is a spread quad-tree. 3) The C+MPI version. The body
data is partitioned among nodes. The hierarchical relationship among bodies are
maintained in a forest of trees. Each tree of the forest is linked to a “root” tree
replicated in each PE. The structure simulates a spread tree with the top part
cached in each PE for a faster access. A PE maintains coherent the top part of the
tree and read/write other parts of the tree by exchanging messages with other PEs.

We tested the three application versions on two different datasets: plummer
and uniform. The two distribution may be hierarchically represented by a strongly-
unbalanced and fairly-balanced trees respectively. Table 1 shows the performance
and speedup figures of the three versions of the algorithm on the SMP cluster
for four different datasets. The eskimo version of the code results as fast as the
MPI version for the uniform dataset and slightly but significantly better for the
plummer dataset (highlighted in the table). The point here is that the performance
MPI version does not scale up with the number of PEs for the plummer dataset.
The tree unbalanced leads to a heavy load imbalance in the MPI version. Our
version of the MPI code does not include a dynamic load balancing strategy but
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dataset-#bodies Pl-10k  PI-20k Un-10k Un-20k PI-10k PI-20k Un-10k Un-20k Optimal

time speedup
seq 6.47 14.53 4.80 2.34 - - - - -
MPI 1x2-way SMP 6.60 14.36 2.54 1.27 09 1.0 19 18 2
MPI 2x2-way SMP 6.64 1458 1.50 0.75 0.9 1.0 3.2 31 4
eskimo 1x2-way SMP  5.30  13.20 2.45 1.33 1.2 11 1.9 1.8 2
eskimo 2x2-way SMP  4.10 8.10 155 0.77 16 18 31 3.0 4

Table 1. Barnes-Hut performances (secs) and speedups on several Plummer (P1) and uniform (Un)
datasets on a SMP cluster (2-way 550MHz Pentium III).

fixes the data distribution during the first iteration. It is certainly possible to add
a dynamic balancing strategy in the MPI code (even if not so easy), but it has to
be explicitly programmed by the application programmer and specifically tailored
for the problem. eskimo code instead can be written without any concern for load
balancing and data mapping. As matter of fact the sequential version is just 300
lines of code, the eskimo version 500 and the MPI version 850.

6. Conclusions, Related Work and Acknowledgements

eskimo programming framework is designed and developed from scratch but it
has several analogies with a number of well known research works. Among the
others it is worth to mention Cilk [24] and Athapascan [25]. In particular, eskimo
inherits memory consistency model from Cilk. The layered implementation design
and the idea to make customizable the scheduling is quite similar to Athapascan.

Nevertheless, eskimo differs from them in a number of design issues. It does
not use work stealing, that has load-balancing as main target; it tries to exploit
the combined mobility of data and computations with the aim of reducing network
traffic by using programmer insight on frequent data access patterns. It implements
dynamically allocable dynamic data structures (trees). These are designed to be
blocked in order to reach an acceptable working grain for the target architecture
class in a transparent way. It does not rely on any preprocessing; it is simply a C
library. It is conceived for loosely coupled architectures. It does not rely on any
shared stack (e.g. cactus task) for function calls: the stack never moves across PEs
and may be optimized by the standard C compiler (e.g. in-lining). Last but not
least, it abstract flow of control and data management in a skeletal perspective.

eskimo exploits a good performance on a non-trivial problem using dynamic data
structures. However, it is a preliminary work and a number of features remain to
be fixed. In particular, we believe that the adoption of an OO (as in [19,17]) host
language would greatly simplify the SADT definition and implementation as well
as the language syntax.

This work has been partially supported by the Italian Space Agency (ASI-
PQE2000 Project) and by the National Research Council (Agenzia 2000 Project).

References

[1] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.
[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured



HLPP 2003

High level programming language and its structured support. Concurrency Practice
and Ezperience, 7(3), May 1995.

J. Darlington, Y. Guo, Y. Jing, and H. W. To. Skeletons for structured parallel com-
position. In Proc. of 15th PPoPP, 1995.

B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous envi-
ronment for HPC applications. Parallel Computing, 25(13-14), Dec. 1999.

M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of
11th PDCS. IASTED/ACTA press, Nov. 1999.

M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Towards parallel program-
ming by transformation: The FAN skeleton framework. Parallel Algorithms and Appli-
cations, 16(2-3), 2001.

M. Aldinucci. Automatic program transformation: The Meta tool for skeleton-based
languages. In Constructive Methods for Parallel Programming, Advances in Computa-
tion: Theory and Practice, chapter 5. Nova Science Publishers, 2002.

G. R. Joubert, A. Murli, F. J. Peters, and M. Vanneschi, ed. Parallel Computing:
Advances and Current Issues. Proc. of ParCo2001. Imperial College Press, 2002.

M. Cole. Bringing skeletons out of the closet. Technical report, Uni. Edinburgh, 2002.
(http://wuw.dcs.ed.ac.uk/home/mic/eSkel/eSkelmanifesto.ps).

S. Pelagatti. Structured Development of Parallel Programs. Taylor&Francis, 1998.

J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview of the
SKIPPER project. Parallel Computing, 28(12), Dec. 2002.

S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Tan. From
patterns to frameworks to parallel programs. Parallel Computing, 28(12), Dec. 2002.
M. Danelutto. On skeletons and design patterns. In Parallel Computing: Advances and
Current Issues. Proc. of ParCo 2001. Imperial College Press, 2002.

F. A. Rabhi and S. Gorlatch, ed. Patterns and Skeletons for Parallel and Distributed
Computing. Springer-Verlag, 2002.

M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons in C. In
Proc. of Euro-Par 2000, LNCS n. 1900, Sep. 2000.

G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic skeletons
for efficient distributed programming. In Proc. of 5th HPDC. IEEE, 1996.

M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting struc-
tured parallel programming in Java. Future Generation Computer Systems, 19(5),
2003.

M. Danelutto. Efficient support for skeletons on workstation clusters. Parallel Process-
ing Letters, 11(1), Mar. 2001.

H. Kuchen. A skeleton library. In Proc. of Euro-Par 2002, LNCS n. 2400, 2002.

R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An analysis
of dag-consistent distributed shared-memory algorithms. In Proc. of 8th SPAA. ACM,
Jun. 1996.

S. Gorlatch. Send-Recv considered harmful? Myths and truths about parallel program-
ming. In Proc. of PACT 2001, LNCS n. 2127, 2001.

C. A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer Recursion.
PhD thesis, FMI Uni. Passau, Germany, 2001.

Z. Radovi¢ and E. Hagersten. Removing the overhead from software-based shared
memory. In Proc. of Supercomputing 2001. ACM, Nov. 2001.

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y.
Zhou. Cilk: An efficient multithreaded runtime system. In Proc. of 5th PPoPP, 1995.
F. Gallilée, J.-L.. Roch, G. G. H. Cavalheiro, and M. Doreille. Athapascan-1: On-line
building data flow graph in a parallel language. In Proc. of PACT ’98. IEEE, 1998.



