
Parallel Processing Letters
fc World Scientific Publishing Company

eskimo: EXPERIMENTING WITH SKELETONS

IN THE SHARED ADDRESS MODEL

MARCO ALDINUCCI

Inst. of Information Science and Technologies (ISTI) – National Research Council (CNR)
Via Moruzzi 1, I–56124 PISA, Italy

(aldinuc@di.unipi.it)

Received April 2003
Revised July 2003

Communicated by Gaétan Hains and Frédéric Loulergue

ABSTRACT
We discuss the lack of expressivity in some skeleton-based parallel programming

frameworks. The problem is further exacerbated when approaching irregular problems
and dealing with dynamic data structures. Shared memory programming has been ar-

gued to have substantial ease of programming advantages for this class of problems. We
present the eskimo library which represents an attempt to merge the two programming
models by introducing skeletons in a shared memory framework.

Keywords: Skeletons, dynamic data structures, software DSM, cluster of workstations.

1. Introduction

The development of efficient parallel programs is a quite hard task. Besides
coding the algorithm, the programmer must also take care of the details involved
in parallelism exploitation, i.e. concurrent activity set up, mapping and scheduling,
synchronization handling and data allocation. In unstructured, low-level parallel
programming approaches these activities are usually the full responsibility of the
programmer and constitute a difficult and error prone programming effort. From
Cole’s seminal work [1] the skeleton research community has been active in experi-
menting with new technologies in order to simplify parallel programming by raising
the level of abstraction. In the past decade we have designed and developed several
skeleton-based parallel programming environments and have tested their effective-
ness on a number of real world applications. While the skeletal approach has proved
to be effective for some of them, the overall feedback we received cannot be con-
sidered fully satisfactory. Actually a lack of expressivity emerged, at least for some
complex applications.

In this paper we present eskimo [Easy SKeleton Interface (Memory Oriented)], a
new skeletal programming environment which represents a preliminary attempt to
defeat the constraints of expressivity apparent in skeletal languages, especially when
dealing with irregular problems and dynamic data structures. eskimo is based on the
shared address programming model; its run-time is built upon a software DSM. In



Parallel Processing Letters

the next section we present a brief (self-critical) history of the evolution of parallel
programming frameworks. In Section 3 we present the eskimo design principles. In
Section 4 we discuss the pay-back we expect from the skeletal approach. The paper
is completed by some experimental results (Sec. 5 ) and the related work (Sec. 6 ).

2. Motivation and Historical Perspective

Historically a couple of works are due particular attention: the P3L project [2]
and the SCL co-ordination language [3]. They sought to integrate imperative code
chunks within a structured parallel framework. As an example, the P3L language
core includes programming paradigms like pipelines, task farms, iterative and data
parallel skeletons. Skeletons in P3L can be used as constructs of an explicitly parallel
programming language, actually as the only way to express parallel computations.

Later on, all our experiences with P3L have fed into the SkIE language and its
compiler [4]. Existing sequential codes can be used in SkIE to instance skeletons
with little or no amendment at all to the sources; it supports several guest sequential
and parallel languages (C, C++, Fortran, Java, HPF) within the same application.
A SkIE program is basically a composition of skeletons which are equipped with a
compositional functional semantics. They behave like higher-order functions which
can be evaluated efficiently in parallel. Furthermore, the skeletons’ functional and
parallel semantics enable the optimization of programs by means of performance-
driven source-to-source code transformations [5,6,7].

During the SkIE project, several real world applications∗ have been used as a
test-bed to validate the effectiveness of the programming environment [8]. A lack
of expressivity emerged for some of them. In principle, the skeletal approach is not
particularly targeted towards a class of applications. However, we experienced that
some applications can be straightforwardly formulated in terms of skeleton compo-
sition, while others need a greater design effort. The boundary between the two
classes depends on many factors, among the others the particular programming en-
vironment and the skeleton set chosen for applications development. Some common
flaws emerge in both SkIE and other research group works (see also [9]):

(i) The selection of skeletons available in the language skeleton set is a quite crit-
ical design issue. Despite several endeavors to classify and close the parallel
programming skeleton set [10], in many cases during application development
we experienced a need for the “missing skeleton”, or at least missing function-
ality of an existing skeleton.

(ii) Many parallel applications are not obviously expressible as instances of (nested)
skeletons, whether existing or imagined. Some have phases which require the
use of less structured or ad-hoc interaction primitives.

(iii) Although all kind of languages may be equipped with a skeletal super-structure,
skeletal languages have been historically designed in a functional programming
style fashion [4,11]. In this setting the non-functional code is embodied into
the skeletal framework by providing the language with wrappers acting as pure
functions. Actually, the fully functional view (by its very nature) does not
enhance programmer control over data storage. This feature may happen to

∗In the area of massive data mining, computational chemistry, remote sensing, image analysis, etc.



eskimo: Experimenting with Skeletons in the Shared Address Model

be useful in the design of applications managing large, distributed, randomly
accessed data sets.

Indeed, the role of skeletons in the programming language has evolved and matured
over the past decade. Such evolution has been designed to overcome (among other
things) skeletal languages lack of expressiveness while preserving their ease of use.
In particular skeletons lose their “exclusiveness” on parallelism exploitation. The
new skeletons’ role has led to the exploration of several scenarios:

Skeletons as Design Patterns. A design pattern per se is not a programming
construct, as with skeletons. Rather, it can be viewed as “recipe” that can be used
to achieve different solutions to common programming problems. Parallel skeleton
support may be implemented using a layered, OO design [12]. Parallel skeletons
can be declared as members of proper skeletons/patterns. Exploiting standard OO
visibility mechanisms, part of the framework may be made visible to the programmer
to undertake different tasks: fine performance tuning, introduction of new, more
efficient implementation schemes, etc. [8,13].

Skeletons as Extension. Skeletons may be used to extend existing program-
ming languages or programming frameworks (e.g. C + MPI) that are already able
to exploit parallelism. Several recent programming frameworks may be numbered
in this category, such as: SKElib that extends C language with SkIE-like skeletons
and enables the programmer to use standard Unix communication mechanisms [14].
Skil extends C++, providing the programmer with an SPMD environment with
task (pipeline and farm) and data parallel (map, fold, . . . ) skeletons, that are
seen as collective operations [15]. Lithium is the first pure Java structured par-
allel programming environment based on skeletons and exploiting macro data flow
implementation techniques [16]. eSkel is a library which adds skeletal program-
ming features to the C/MPI parallel programming framework . It is a library of C
functions and type definitions which extends the standard C binding to MPI with
skeletal operations [9].

eskimo has been influenced by both previous approaches. eskimo extends C
with “proto-skeletons” or constructs, which represent skeletons’ building blocks.
Skeletons do not really exist in eskimo programs as language elements, they are
instead particular programming idioms.

3. eskimo: A New Skeletal Language

eskimo is a parallel extension of C based on the shared address programming
model. The target architectures for the language are Beowulf class machines, i.e.
POSIX boxes equipped with TCP/IP networks. In this setting eskimo is conceived
to be a framework in which to experiment with the feasibility of the skeletal ap-
proach with dynamic data structures in parallel programming.

The basic idea behind eskimo is that the programmers should concentrate on co-
designing their data structures and their algorithms. Moreover, in order to obtain
a high-performance application, the programmers should structure the application
properly, and eventually suggest to the run-time important information about al-
gorithm data access patterns. The eskimo run-time takes care of all other details
like process scheduling and load balancing. eskimo run-time support is based on a



Parallel Processing Letters

software distributed shared memory. Notably it is not just another DSM, instead
it relies on existing DSM technologies to experiment with the co-design of dynamic
data structures and parallel programming patterns, enforcing locality in the access
to distributed memory. We outline the main features of eskimo as follows:

Abstraction. eskimo is a skeleton based programming language. It aims to
simplify programming by raising the level of abstraction, providing the programmer
with performance and portability for applications. In order to convey this simplicity
to programmers we must be careful not to bundle it with excessive conceptual
baggage. To this end we enriched C in such a way that the language extension raises
the level of abstraction. The main sources of abstraction concern data structures,
the flow of control, and the interaction between them. All abstractions rely on solid
concepts like concurrency and abstract data types.

Expressiveness. We propose a structured programming environment that allows
the programmer to deal with (dynamic) spread shared data structures. In partic-
ular, the programmer deals with an abstraction of data structures represented as
a single entity (as in [17]). These parts are kept consistent by the run-time sup-
port following a (very) lazy memory consistency model (see Sec. 3.3). The chosen
consistency model enforces the high-level approach of the language since it allows
reading/writing of data objects without the need for explicit low-level synchroniza-
tion primitives (like locks and barriers). In this setting the skeleton is no longer
a ready-made object of the language (e.g. a high-order function), it is rather a
code pattern built directly by the programmer using language primitives. Ad-hoc
parallel pattern may be coded using both eskimo and other libraries primitives.

Framework and design principles. eskimo’s main target architecture class are
Beowulf clusters. Such architectures, that are becoming pretty popular due to their
limited cost, present several difficulties in drawing good steady performance from
applications (particularly dynamic ones). Following the nature of the target archi-
tecture class, eskimo exposes to the programmer a (virtual) shared NUMA address
space. The programmer is required to make decisions about the relationship among
data structures (e.g. locality) but not to deal with all the cumbersome facets of
data mapping. The underlying design principle favors a programming environ-
ment in which performance improves gradually with increased programming effort
(taking advantage of a deep application knowledge) with respect to one capable of
ultimately delivering better performances but that requires an inordinate program-
ming effort. This can consist of either programming each detail of the application
(as in low-level approaches) or expressing the application by using a fixed set of
ready-made parallel paradigms.

In summary eskimo extends the C language with three classes of primitives: flows
of control management (Sec. 3.1/3.2 ); Shared Data Types declaration, allocation
and management (Sec. 3.3 ).

3.1. Exploiting Parallelism in eskimo

Parallelism is exploited through concurrency. The minimal unit for concurrency
exploitation is the C function. Just as in a serial program, an eskimo program
starts as a single control flow. In any part of the program, the programmer may
split the flow of control through the asynchronous call of a number of functions;



eskimo: Experimenting with Skeletons in the Shared Address Model

e-call

C-code C-fun

C-code

C-funC-fun

e-join

e-calle-call

C-code

e-join
e-join

return

C-fun

C-code

main

e-flow2

e-flow3

e-flow1

e-flow4

a)

main

e-call

e-join

e-calle-call

e-join
e-join

return

process
 or thread

process
 or thread

b)

Fig. 1. An eskimo program execution intuitive view. a) Relationship among e-calls, e-joins and
e-flows (grey boxes). b) A possible execution of the program.

such flows must, sooner or later, converge to a single flow of control. The basic
primitives managing program flow of control behave like Dennis’ fork/join; we call
them e-call/e-join. Also, we call e-flows eskimo flows of control. e-flows share the
virtual memory address space. The relationship between e-calls, e-joins and e-flows
is discussed in Section 3.2 and intuitively sketched in Fig. 1 a).

e-call/e-join primitives enable the programmer to set up a dynamic and variable
number of e-flows, an important feature when dealing with dynamic data structures
(in particular linked data structures as lists and trees). Almost all interesting algo-
rithms on these data structures explore them in a recursive fashion, following the
Divide&Conquer (D&C) paradigm and exploiting a variable concurrency availability
during the program run.

Actually D&C has been already present in classical skeleton sets. This skeleton,
as others (e.g. scan and map), has often been interpreted as a collective operation
on a given data structure by the skeleton community [6,19]. In the best case this
inspired a family of variants for each skeleton, each of them optimizing a particular
behavior of the algorithm on the data structure [20]. In other cases, application
programmers have been compelled to match a given shape of the data structure with
a given behavior of the skeleton (which is likely to be a frustrating task). eskimo

approaches the problem from a lower-level viewpoint: it enables the co-design of
algorithms and data structures as in classical sequential programming. There is no
ready-made D&C skeleton in eskimo, there are rather all the ingredients to build it
in such a way that the programmer may express the suitable variant of the skeleton
for its data structure. Then, the language run-time tries to understand from the
ingredients and from the programmer hints what is the expected parallel behavior
for the particular variant. Even if the hints are wrong or missing the program does
not lose its correctness (even if we cannot expect an optimal performance from it).

3.2. Concurrency and Flows of Control



Parallel Processing Letters

Actually e-flows do not necessarily match any concrete entity at the eskimo

run-time support level or its underlying run-time layers (for example threads or
processes). In particular an e-call should be considered as the declaration of a “con-
currency capability” with respect to a given function instance: an e-called function
instance might be both concurrently executed or sequentialized with respect to the
caller function. In the former case, the matching e-join represents the point along
the execution unfolding where a called e-flow must converge into the caller e-flow.

The two e-flows coming out from an e-call may be executed in parallel, inter-
leaved or serialized in any order depending on the algorithm, the input data and
the system status. Since e-call/e-join primitives denote algorithm points where it
is possible to proceed in more than one way, even for the same input data set, they
are non-deterministic primitives. As an example, the eskimo program sketched in
Fig. 1 a) exploits four e-flows that represent its top concurrency degree. However,
as shown in Fig. 1 b) the language run-time might choose to halve the concurrency
degree and project the four e-flows into two real concurrent entities. Serialized
e-flows do not lead to any overhead related to parallelism exploitation (thread cre-
ation, activation, synchronization).

As might be expected, e-flows have to be mapped to concrete concurrent en-
tities (i.e. processes or threads) at the language run-time level. This mapping is
sketched on-the-fly, step by step (in a distributed fashion) by the eskimo run-time;
corresponding to an e-call the calling e-flow maps the new e-flow. Actually, the
mapping process must answer two key questions:

1 Must the new e-flow really be concurrently executed (either in parallel or
interleaved) or must it be serialized with respect to the calling one?

2 In the case of concurrent execution, must the fresh e-flow be locally or re-
motely spawned?

In both cases the language run-time looks for a trade-off between contrasting needs.
In the former case, it tries to keep the amount of concurrent flows in the system
within acceptable bounds: enough to exploit the potential speedup of the system
but not too much, in order to avoid unnecessary overheads (in time and memory
space) due to parallelism management. In the latter case, the run-time tries to
balance workload across PEs while maintaining data locality as much as possible.

We highlight that the relationship among e-flows is slightly more abstract than
concurrency. Different e-flows encompass parts of an application which might be
concurrent, but in some cases are not. Consider some e-flows called in a sequence
that establish a (direct or indirect) precedence relation of one over another; or some
e-flows sequentialized within the same concurrent entity. In both cases e-flows do
not correspond to any actual concurrent code.

eskimo e-call/e-join are the basic primitives to create and destroy an e-flow.
In addition to them, eskimo provides the programmer with their generalization, i.e.
e-foreach/e-joinall. They work basically in the same way but, as shown in Fig. 2 b),
they can create and destroy an arbitrary number of e-flows. Since e-flows created
by means of e-foreach have no data dependencies one each other, they can be non-
deterministically executed. Complementary e-joinall non-deterministically waits
for the completion of all e-flows created by the matching e-foreach. e-foreach/e-



eskimo: Experimenting with Skeletons in the Shared Address Model

a)

Run1
Run2

C-fun
C-funC-fun

return

C-code

main

C-code

e-joinall

e-foreach

b)

process
 or threadprocess

 or thread

process
 or thread

process
 or thread

c)

C-code

1

main

e-foreach

e-joinall

return

main

e-foreach

e-joinall

return

2 3 4
process

 or thread

Fig. 2. An eskimo program resulting in different mapping and scheduling in different runs.

joinall have an additional degree of freedom with respect to a sequence of e-call/e-
join: the order in which e-flows are mapped/scheduled and joined. This produces
some additional advantages with respect to the simple case from the run-time view-
point. In particular, at e-foreach time the language run-time knows how many and
which e-flows have to be executed, and may choose their execution order depending
on data availability. The eskimo run-time uses this possibility to enhance locality
of data accesses by running first tasks that are likely to have needed data (or a
part of them) already present (or cached) in the PE. In the same way, the run-time
non-deterministically joins e-flows in the order they complete. Therefore, the same
program may be subjected to different mapping and scheduling decisions on differ-
ent runs (even on the same input data). As an example, Fig. 2 a) and c) sketch
two runs of the same program that have been subjected to different mapping and
scheduling decisions.

3.3. Sharing Memory among Flows of Control

The eskimo language is specifically designed for distributed memory architec-
tures. These architectures naturally supply a very efficient memory access to local
memory and a more expensive access to remote memory. The language abstracts
these memory categories, but it does not obscure the differences between them. es-

kimo language exposes to the programmer two memory spaces: private and shared.
Private and shared variables are distinguished by their types. Shared variables

must have a Shared Data Types (SDT). SDTs are obtained by instancing a fixed set
of Shared Abstract Data Types (SADT), i.e. parametric types, including arrays k-
trees and regions (containers for any C type). All variables with a different type are
private. However, not all C variables are allowed as private variables, in particular
C global variables are (with some exceptions) forbidden in eskimo programs. These
must be replaced with shared variables. The relationship between e-flows and
memory classes is the following:

• Each e-flow has its private address space; thus private variables are always



Parallel Processing Letters

bound to the e-flow where they have been declared. Private variables can be
accessed without any eskimo (neither static nor run-time) mediation.

• All e-flows can access the shared address space, that is spread across the
system. Therefore shared variables might be subjected to concurrent/parallel
accesses. These accesses are regulated by the eskimo run-time.

Overall, SADTs and their constructors provide a device to make any C data type
sharable. These are data structure containers allowing access to contained data
(i.e. private or shared variables) by several e-flows. In case of trees and arrays the
container is structured and holds many data items; such data are spread across the
virtual architecture and their total size may exceed the memory size of the single
PE. Shared variables (or part of them) may be referenced across e-flows by using
references, i.e. void pointers into shared address space. References are the basic
mechanism to pass shared variables across e-calls. Pragmatically, eskimo references
and shared variables provide globally addressable data structures matching the same
relation between C pointers and variables.

All SDTs are designed to be concurrently accessed by e-flows. SDTs may be stat-
ically or dynamically (and incrementally) allocated, in particular k−tree nodes must
be dynamically allocated by means of a language primitive (e node add). Shared
data items are transparently blocked into segments at allocation time; a segment’s
size may be configured to match a suitable working size for the PEs/network power
tradeoff. Beyond trees, the programmer may build any shared linked data struc-
ture by using references. Shared variables obey DAG consistency [18] and can be
accessed through eskimo primitives. This basically means that two different e-flows
may have a non coherent view of a given address in the shared memory space; the
coherence is then reconciled at e-join time. Pragmatically it means that different
e-flows must write different shared address locations.

Most software DSMs rely on MMU and operating system traps in order to
make the access of remote data transparent. However the interrupt cost, associated
with receiving a message, has been proved to be the largest component of remote
latency, not the actual wire delay in the network or the software implementing
the protocol [21]. We followed a different approach: shared variables, in contrast
to private ones, cannot be read and written directly. In order to access a shared
variable the programmer must explicitly bind it to a private pointer (see Fig. 3
line 4). This technique avoids the use of operating system traps. In addition it has
a pragmatic importance: since accessing a shared variable may be expensive the
programmer is required to evaluate really needed accesses†. eskimo provides a pair
of language primitives enabling access to a shared variable: r (for read-only) and
rw (for read/write). Both r and rw get a reference and return a void pointer that
can be used (after a suitable type cast) to access the shared variable value.

4. Skeletons and their Expected Pay-back

eskimo provides the programmer with a family of constructs that specialize
e-foreach. Each of them run through elements of a given type of shared variables.
Currently there are three types of e-foreach constructs:

†Anyway, transparency may be achieved by preprocessing/instrumenting the user code.



eskimo: Experimenting with Skeletons in the Shared Address Model

1) Bottom-up phase: sys_step_bot_up

2) Top-down phase: sys_step_top_dw

to be
moved

to be
moved

1 eref_t sys_step_bot_up(eref_t anode) {
2 eref_t ret_array[4]; e_handler_t e_handler;
3 eref_t float_list, sink_list; node_t *np;
4 np = (node_t *) rw(anode); /* bind np to anode */
5 if (np->leaf) { /* recursion base case */
6 <Figure out acceleration (visit the tree from root)>
7 <Update bodies position (np->x = ...; np->y = ...;)>
8 if (!within_borders(elem)) push(float_list,anode);}
9 else { /* Divide */

10 e_foreach_child(e_handler,sys_step_bot_up,np);
11 e_joinall(e_handler,ret_array);
12 /* Conquer */
13 for (i=0;i<4;i++)
14 while (elem=pop(ret_array[i]))
15 if (within_borders(elem)) /* read *np */
16 push(sink_list,elem);
17 else
18 push(float_list,elem);
19 <handle chain elimination and other particular cases>}
20 return (float_list); }

Fig. 3. An n-body system step in two phases and the eskimo pseudocode of the first phase.

e foreach child runs through non-null children of a spread tree node;
e foreach cell runs through cells of a spread array;
e foreach refset runs through a given set of references to shared variables or

elements of them (as for example the set of tree leafs, or array cells).

The e-foreach constructs introduce a form of data parallelism, which is based on
the domain decomposition principle. eskimo allows the programmer to dynamically
define and decompose the domain. In fact, the parallel application of a function to
(sub)set of children in a tree may be interpreted as a form of data parallelism (where
the dynamic domain of children is decomposed). As a result, the D&C paradigm
may be interpreted as a special (dynamic, recursive) case of data parallelism. As
an example consider the Barnes-Hut application code fragment shown in Fig. 3.

eskimo allows the programmer to store data using a flat (arrays) or hierarchical
(trees) structure, then offers two standard parallelization paradigms for the two
cases: forall (or map) and D&C. The two paradigms may be freely interleaved and
are both introduced at the language level by just one primitive (family), namely
the e-foreach. If the application is not obviously expressible as instances of the
proposed paradigms or their interleaving, the programmer may ad-hoc parallelize
it by using the standard C language enriched with e-calls/e-joins.

The basic idea under eskimo is to abstract both (dynamic) data structures and
application flow of control in such a way that they are orthogonalized. Creating an
e-flow, either an e-called function may be migrated to the PE holding the data it
needs or vice-versa. Clearly, the principal decision is to evaluate which is the better
choice in each case. In such a task, the run-time takes account of a number of ele-
ments: the system status (load balancing), the shared memory space status and the
programmer hints. Several policies may be implemented by using such information.
Since a Beowulf class cluster exploits an unbalanced communication/computation
power tradeoff, the run-time tries to schedule an e-flow on the same PE as the



Parallel Processing Letters

data it needs and takes in account load-balancing only as secondary constraint.
Clearly, the key issue here is to know in advance which data a function will access.
The run-time uses two kind of information: (i) The data blocking. The run-time
makes scheduling decisions only when a function parameter crosses the current data
segment boundary. As a result e-flows accessing the data in segment are sequential-
ized, enhancing locality and coarsening computation grain. (ii) The programmer
hints. We assumed that the first parameter of each e-called function (that must be
a reference) is considered as a dominant factor, the run-time expects the majority
of data to be allocated “close” to data referenced by it. A wrong/missing hint has
no impact on program correctness but a great impact on performance.

5. Implementation and Experiments

A prototype implementation of eskimo already runs on Linux clusters. It has a
layered implementation design: each layer provides mechanisms and policies to solve
some of parallel programming support issues. In particular mapping and scheduling
of e-flows, as well as shared data structure mapping are implemented within the
top tier. At this level a lot of information about the system status may be accessed
(e.g. PEs load, memory load). These data are maintained by a lower level tier
that basically wraps the communication stack (currently the TCP stack). System
status information is exchanged among PEs with no additional communications
with respect to those required by the algorithm synchronizations. The run-time
exploits both multiprocessing (inter-PEs) and multithreading (intra-PEs).

We tested eskimo on a Barnes-Hut application. It presents non-trivial perfor-
mance challenges due to the irregular and dynamically changing nature of data
structures. We developed three different versions of the Barnes-Hut algorithm: 1)
The sequential version (seq), implemented in C. It is a reduction to the bare bones
of the original Barnes-Hut code in the bidimensional space. 2) The eskimo version.
It is obtained from the sequential version by substituting recursive calls with recur-
sive e-foreaches. The n-body system evolves through two phases: (references to)
bodies leaving their current quadrant are first lifted to the smallest quadrant includ-
ing both source and target positions, then they are pulled down to target quadrant
(see Fig. 3 left). The main data structure is a spread quad-tree. 3) The C+MPI
version. The body data is partitioned among nodes. The hierarchical relationship
among bodies is maintained in a forest of trees. Each tree of the forest is linked to
a “root” tree replicated in each PE in order to speed up the accesses to frequently
accessed items (i.e. an ad-hoc cache). Each PE keeps the replicated part of the
forest coherent by exchanging messages with other PEs.

We tested the three application versions on two different datasets: plummer
and uniform. The two distributions may be hierarchically represented by strongly-
unbalanced and fairly-balanced trees respectively. Table 1 shows the performance
and speedup figures of the three versions of the algorithm on the SMP cluster
for four different datasets. The eskimo version of the code was as fast as the MPI
version for the uniform dataset, and slightly but significantly better for the plummer
dataset (highlighted in the table). The point here is that the performance of the
MPI version does not scale up with the number of PEs for the plummer dataset.
The unbalanced tree leads to a heavy load imbalance in the MPI version. Our



eskimo: Experimenting with Skeletons in the Shared Address Model

������������	�� 
���� 
���� ����� ����� 
���� 
���� ����� ����� ���	���

�	�� �������

��� ���� ����� ��� ���� � � � � �

�
 �!�"#�$%�
 ��� ����� ���� ���� �& �� ��& ��� �
�
 �!�"#�$%�
 ���� ����� ��� ��� �& �� ��� ��� �

���	���!�"#�$%�
 ��� ���� ���� ���� ��� ��� ��& ��� �
���	���!�"#�$%�
��� ��� ���� ��� ��� ��� ��� �� �

Table 1. Barnes-Hut performances (secs) and speedups on several Plummer (Pl) and uniform (Un)
datasets on a SMP cluster (2-way 550MHz Pentium III).

version of the MPI code does not include a dynamic load balancing strategy but
fixes the data distribution during the first iteration. It is certainly possible to add
a dynamic balancing strategy in the MPI code (even if not so easy), but it has to
be explicitly programmed by the application programmer and specifically tailored
for the problem. In contrast, eskimo code can be written without any concern for
load balancing and data mapping. As a matter of fact the sequential version is just
300 lines of code, the eskimo version 500 and the MPI version 850.

6. Conclusions, Related Work and Acknowledgments

The eskimo programming framework was designed and developed from scratch
but it has several analogies with a number of well-known research works. Among
the others it is worth mentioning Cilk [22] and Athapascan [23]. In particular, es-

kimo inherits its memory consistency model from Cilk. The layered implementation
design and the idea to make customizable the scheduling are quite similar to Atha-
pascan. Nevertheless, eskimo differs from them in a number of design issues. It does
not use work stealing (which has load-balancing as main target); it tries to exploit
the combined mobility of data and computations with the aim of reducing network
traffic by using programmer insight on frequent data access patterns. It implements
dynamically allocatable dynamic data structures (trees). These are designed to be
blocked in order to reach an acceptable working grain for the target architecture
class in a transparent way. It is conceived for loosely coupled architectures. It does
not rely on any shared stack for function calls: the stack never moves across PEs
and may be optimized by the standard C compiler (e.g. in-lining). Last but not
least, it abstracts flow of control and data management in a skeletal perspective.

eskimo exhibits good performance on a non-trivial problem using dynamic data
structures. However, this is preliminary work and a number of features remains to be
fixed. We believe that the adoption of an OO (as in [17,16]) host language should
greatly simplify the SADT definition and implementation, the language syntax,
and eventually enforce program correctness by suitable type checking. Also, we
ought rethink eskimo in terms of mainstream memory models. The adoption of an
object-based memory is likely to preserve the eskimo “memory centric” viewpoint,
thus preserving the ability to enable an easy design of recursive algorithms without
bundling in many cumbersome synchronization details.
Acknowledgements. I wish to thank M. Danelutto and M. Vanneschi for many fruitful dis-

cussions. This research has been partially supported by the Italian Space Agency under ASI-

PQE2000 Project, by CNR under Agenzia2000 Project, by Italian MIUR under Strategic Project



Parallel Processing Letters

“legge 449/97” year 2000 No. 02.00640.ST97 and FIRB Project “GRID.it” No. RBNE01KNFP.

References

[1] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

[2] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured
High level programming language and its structured support. Concurrency Practice

and Experience, 7(3), May 1995.
[3] J. Darlington, Y. Guo, Y. Jing, and H. W. To. Skeletons for structured parallel com-

position. In Proc. of 15th PPoPP, 1995.
[4] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SkIE: a heterogeneous envi-

ronment for HPC applications. Parallel Computing, 25(13–14), Dec. 1999.
[5] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of

11th PDCS. IASTED/ACTA press, Nov. 1999.
[6] M. Aldinucci, S. Gorlatch, C. Lengauer, and S. Pelagatti. Towards parallel program-

ming by transformation: The FAN skeleton framework. Parallel Algorithms and Appli-

cations, 16(2–3), 2001.
[7] M. Aldinucci. Automatic program transformation: The Meta tool for skeleton-based

languages. In Constructive Methods for Parallel Programming, Advances in Computa-
tion: Theory and Practice, chapter 5. Nova Science Publishers, 2002.

[8] G. R. Joubert, A. Murli, F. J. Peters, and M. Vanneschi, ed. Parallel Computing:

Advances and Current Issues. Proc. of ParCo2001. Imperial College Press, 2002.
[9] M. Cole. Bringing skeletons out of the closet. Technical report, Uni. Edinburgh, 2002.

[10] S. Pelagatti. Structured Development of Parallel Programs. Taylor&Francis, 1998.
[11] J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview of the

SKiPPER project. Parallel Computing, 28(12), Dec. 2002.
[12] S. MacDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Tan. From

patterns to frameworks to parallel programs. Parallel Computing, 28(12), Dec. 2002.
[13] F. A. Rabhi and S. Gorlatch, ed. Patterns and Skeletons for Parallel and Distributed

Computing. Springer-Verlag, 2002.
[14] M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons in C. In

Proc. of Euro-Par 2000, LNCS n. 1900, Sep. 2000.
[15] G. H. Botorog and H. Kuchen. Skil: An imperative language with algorithmic skeletons

for efficient distributed programming. In Proc. of 5th HPDC. IEEE, 1996.
[16] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting struc-

tured parallel programming in Java. Fut. Generation Computer Systems, 19(5), 2003.
[17] H. Kuchen. A skeleton library. In Proc. of Euro-Par 2002, LNCS n. 2400, 2002.
[18] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. An analysis

of dag-consistent distributed shared-memory algorithms. In Proc. of 8th SPAA, 1996.
[19] S. Gorlatch. Send-Recv considered harmful? Myths and truths about parallel program-

ming. In Proc. of PACT 2001, LNCS n. 2127, 2001.
[20] C. A. Herrmann. The Skeleton-Based Parallelization of Divide-and-Conquer Recursion.

PhD thesis, FMI Uni. Passau, Germany, 2001.
[21] Z. Radović and E. Hagersten. Removing the overhead from software-based shared

memory. In Proc. of Supercomputing 2001. ACM, Nov. 2001.
[22] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y.

Zhou. Cilk: An efficient multithreaded runtime system. In Proc. of 5th PPoPP, 1995.
[23] F. Gallilée, J.-L. Roch, G. G. H. Cavalheiro, and M. Doreille. Athapascan-1: On-line

building data flow graph in a parallel language. In Proc. of PACT ’98. IEEE, 1998.


