
Optimization Techniques for Implementing

Parallel Skeletons in Grid Environments

M. Aldinucci1, M. Danelutto2, and J. Dünnweber3

1 Inst. of Information Science and Technologies – CNR, Via Moruzzi 1, Pisa, Italy
2 Dept. of Computer Science – University of Pisa – Viale Buonarroti 2, Pisa, Italy

3 Dept. of Computer Science – University of Münster – Einsteinstr. 62, Münster, Germany

Abstract. Skeletons are common patterns of parallelism like, e.g., farm, pipeline that
can be abstracted and offered to the application programmer as programming prim-
itives. We describe the use and implementation of skeletons in a distributed grid en-
vironment, with the Java-based system Lithium as our reference implementation. Our
main contribution are optimization techniques based on an asynchronous, optimized
RMI interaction mechanism, which we integrated into the macro data flow (MDF) im-
plementation technology of Lithium. We report initial experimental results that demon-
strate the achieved improvements through the proposed optimizations on a simple grid
testbed.

1 Introduction

Since Cole’s work [6], the term algorithmic skeleton has been used to denote commonly used
patterns of parallel computation and communication. The idea of parallel programming with
skeletons is to use skeletons as ready-to-use components that are customized to a particular
application by supplying suitable parameters (data or code) [14, 12, 7].

This paper deals with the use of parallel skeletons in the emerging grid environments
[10]. An inherent property of grids is a varying latency of communication between involved
machines, i.e. clients and high-performance servers. Also, it is usual in grid environments not
to be able to make any definite assumptions about the load and the availability of the pro-
cessing elements involved. This brings new, challenging problems in the task of implementing
skeletons efficiently on such systems, as compared to traditional multiprocessors.

Our contribution is a set of new optimization techniques that aim at solving some of
the performance problems originating from the latency features of grid architectures. In
particular, we developed the optimizations in the context of Lithium, a full Java skeleton
programming library [4]. As Lithium exploits plain Java-RMI [13] to coordinate and dis-
tribute parallel activities, we are interested in merging new optimizations of RMI [5] into
Lithium. Although the techniques discussed here are described for RMI, they can also be
applied to other structured parallel programming systems. As an example, we are consid-
ering the adoption of these techniques in ASSIST [17], a system that exploits in part the
experiences gained from Lithium and that runs upon different middleware (plain TCP/IP
and POSIX processes/threads [1], CORBA [11] and the Globus Toolkit [9]).

In this work we focus on performance issues. Apart from embarrassingly parallel pro-
grams (i.e., those exploiting task farm parallelism only), distributed applications may involve
certain dependencies that need to be taken into account by an efficient evaluation mech-
anism. Lithium provides, among the others, task farm, divide-and-conquer, and pipeline
skeletal constructs. The latter two actually involve such dependencies. In a pipeline, e.g.,
each stage of a single task evaluation depends on the previous ones, whereas multiple tasks
can be processed independently.

We introduce an asynchronous interaction mechanism that improves the performance of
grid applications, compared to using plain RMI communication. We show how a mechanism

of this kind can be adapted to Lithium and we explain how it helps reducing idle times during
program execution. We discuss how Lithium’s load balancing features can be exploited in
a Grid context, also taking advantage of the RMI optimizations introduced. We also report
a case study, where we compare the performance of an image processing application based
on a pipeline, implemented using both standard Lithium and the new optimized version.

The experimental results discussed in Sec. 5 will compare the effects of the proposed
optimizations with respect to the original Lithium. We do not use any kind of classical grid
middleware, such as Globus[9] or other kind of grid RPC systems [16]. Rather, we fully
exploit Java RMI as middleware, building Lithium implementation and optimizations on
top the of regular Sun JDK 1.4.2 environment [15].

2 The Lithium Skeleton Library

Lithium is a Java skeleton library that provides the programmer with a set of fully nestable
skeletons, modeling both data and task/control parallelism [4]. Lithium implements the
skeletons by fully exploiting a macro data flow (MDF) execution model [8]. According to
this model, the user’s skeleton programs are first compiled into a data flow graph. Each
instruction (i.e. each node) in the resulting graph is a plain data flow instruction. It processes
a set of input tokens (Java Object items in our case) and produces a set of output tokens
(again Java Object items) that are either directed to other data flow instructions in the
graph or directly presented to the user as the computation results. The computation of the
output tokens uses a possibly large portion of code, rather than simple operators or functions
(therefore the term macro data flow) and starts when all the input tokens are available.

The set of Lithium skeletons includes a Farm skeleton, modeling task farm computations,
a Pipeline skeleton, modeling computations structured in independent stages, a Loop and
a While skeleton, modeling determinate and indeterminate iterative computations, an If
skeleton, modeling conditional computations, a Map skeleton, modeling data parallel com-
putations with independent subtasks, and a DivideConquer skeleton, modeling divide and
conquer computations. All the skeletons are provided as subclasses of a JSkeleton abstract
class.

Lithium users can encapsulate sequential portions of code in a sequential skeleton by
creating a JSkeleton subclass1. Objects of the subclass can be used as parameters of other,
different skeletons. All the Lithium skeletons implement parallel computation patterns that
process a stream of input tasks to compute a stream of results. As an example, a farm with
a worker that computes the function f processes an input task stream with data item xi

producing the output stream with the corresponding data item equal to f(xi), whereas a
pipeline with two stages computing function f and g, respectively, processes stream of xi

computing g(f(xi)).
In order to write a parallel application, the Lithium programmer must first define the

skeleton structure. As an example, a three-stage pipeline with a task farm as second stage
requires the following code:

JSkeleton s1 = new s1(...);
JSkeleton w = new w(..);
Farm s2 = new Farm(w);
Jskeleton s3 = new s3(...);
Pipeline main = new
Pipeline();

1 a JSkeleton object is an object having a Object run(Object) method that represents the se-
quential skeleton body

main.addStage(s1);
main.addWorker(s2);
main.addWorker(s3);

Then, the programmer must declare an application controller, possibly specifying the ma-
chines that actually have to be used:

Ske eval = new eval();
eval.setProgram(main);
eval.addHosts(machineNameStringArray);

he can specify the tasks to be computed issuing a number of calls such as:

eval.addTask(objectTask);

and request the parallel evaluation by issuing the following call:

eval.pardo();

After the completion of the call, the program is executed using the machines whose names
were specified in the machineNameStringArray and the programmer can retrieve the results
by issuing a number of calls such as:

Object res = eval.getResult();

As stated before, Lithium exploits the MDF schema for skeletons. Therefore, the eval
Ske object transforms the skeleton program into an MDF graph as a consequence of the
eval.setProgram call. Actually, Lithium implements so-called normal form optimizations.
The normal form of a Lithium program is a semantically equivalent program obtained
from the original program by means of source-to-source transformations. As a rule, it shows
better performance and speedup with respect to the original program (under mild additional
requirements) [2]. The normal form of a Lithium program is proved to exploit the same
functional semantics of the original program (and a different parallel behavior) [3]. Basically,
a Lithium program is in the normal form if it consists of a Farm evaluated on a sequential
program. Any Lithium program can be reduced to the normal form by transforming it to a
sequential program composed of the juxtaposition of parallel parts (in the correct order) and
farming out the result. The normal form can be computed both statically and just-in-time
[4].

Also the normal form production is performed in the eval.setProgram code. Therefore,
in our sample case, the graph obtained is a simple chain of three macro data flow instructions
(MDFi):

S1

S3

w

For each of the input tasks xi computed by the program (i.e., for each one of the Objects
used as argument of a eval.addTask call), an MDF graph such as the one presented before
is instantiated. The skeleton program is then executed setting up a task pool manager on
the local machine and a remote server process on each of the available remote hosts. The

Lithium RMI
Server

Lithium RMI
Server

Lithium RMI
Server

..
.

Control Thread

Lithium Task Pool

Control Thread

Control Thread

...

Fig. 1. Lithium implementation outline

task pool manager takes care of creating a new MDF graph for each new input task added
via the eval.addTask call and dispatches fireable MDFi (that is MDFi with all the input
tokens available) to the remote servers. The remote servers compute the fireable MDFi in
the graph(s) and dispatch the results back to the task pool manager. In turn, the task pool
manager stores the results in the proper place: if these are intermediate results, they are
delivered to other MDFi (that, as a consequence, possibly become fireable); if these are
final results, then they are stored in such a way that subsequent eval.getResult calls can
retrieve them.

Remote servers are implemented as Java RMI servers[13]. The Lithium scheduler forks
a control thread for each remote server. Such a control thread obtains a reference to one
server, first; then it sends the MDF graph to be executed and eventually enters a loop. In
the loop body, the thread fetches a fireable instruction from the taskpool, asks the remote
server to compute the MDFi and deposits the result in the task pool (see Figure 1).

Lithium is particularly suitable for experimenting with RMI optimizations. All distribu-
tion mechanisms are implemented in the task pool manager, which is centralized in a single
scheduler2, which simplifies the task of adding new features to the system, e.g., concerning
its availability. When network connections are highly transient, the scheduler is the single
starting point where failover procedures need to intervene. The same holds for security, log-
ging and other crosscutting concerns of the system that can not be covered so easily in a
peer-to-peer setting, for example.

3 RMI Optimizations

Using the RMI (Remote Method Invocation, i.e. the object-oriented transposition of remote
procedure call) mechanism in distributed programming in general and on grids in particular,
has the important advantage that the network communication involved in calling methods
on remote servers is transparent for the programmer: remote calls are coded in exactly the
same way as local calls.

2 A distributed version of the scheduler has also been investigated. For the sake of brevity, we
consider the centralized scheduler.

Client

LithiumServer1

LithiumServer2

Client

LithiumServer1

LithiumServer2

a) b)

Fig. 2. Method composition. a) Using plain RMI. b) using future-based RMI.

3.1 The Idea of Optimizations

Since the RMI mechanism was developed for traditional client-server systems, it is not
optimal for systems with several servers where also server/server interaction is required. We
illustrate this with an exemplary Lithium Pipeline application: here, the result of a first call
evaluating one stage is the argument of a second call (lithiumServer1 and lithiumServer2
are remote references):

partialResult = lithiumServer1.evalStage1(input);
overallResult = lithiumServer2.evalStage2(partialResult);

Such a code is not directly produced by the programmer, but rather by the run-time support
of Lithium. In particular, any time a Pipeline skeleton is used, this code will be executed
in the run-time of Lithium to dispatch data computed by stage i (partialResult) to stage
i + 1.

When executing this composition of methods using standard RMI, the result of the
remote method invocations will be sent back to the client. This is shown in the above
example in Fig. 2 a). When evalStage1 is invoked (➀), the result is sent back to the client
(➁), then to LithiumServer2 (➂). Finally, the result is sent back to the client (➃). For
applications consisting of many composed methods like multistage Pipelines, this way of
processing results in a very high time overhead.

To eliminate this overhead, we have developed so-called future-based RMI. As sketched in
Fig. 2 b), an invocation of the first method on a server initiates the method’s execution. The
method call returns immediately (without waiting for the method’s completion) carrying a
future reference to (future) execution result (➁). The future reference can be used as a
parameter for invoking the second method (➂). When the future reference is dereferenced
(➃), the dereferencing thread on the server is blocked until the result is available, i. e. the
first method actually completes. The result is then sent directly to the server dereferencing
the future reference (➄). After completion of the second method, the result is sent to the
client (➅).

Compared with plain RMI, the future-based mechanism can substantially reduce the
amount of data sent over the network, because only a reference to the data is sent to the
client; the result itself is communicated directly between the servers. Moreover, communi-
cations and computations overlap, effectively hiding latencies of remote calls.

Server-to-server communication in RMI programs can also be found in [18], where RMI
calls are optimized using call-aggregation and where a server can directly invoke methods
on another server. While this approach optimizes RMI calls by reducing the amount of data,
the method invocations are not asynchronous as in our implementation. Instead, they are
delayed to find as many optimization possibilities as possible.

3.2 Implementation of Future-Based RMI

Using future-based RMI, a remote method invocation does not directly return the result
of the computations. It rather returns an opaque object representing a (remote, future)
reference to the result. The opaque object has type RemoteReference, and provides two
methods:

public void setValue(Object o) ...;
public Object getValue() ...;

Let us suppose fut is a RemoteReference object. The fut.setValue(o) method call trig-
gers the availability and binds Object o to fut, which has been previously returned to the
client as result of the execution of a remote method. The fut.getValue() is the comple-
mentary method call. It can be issued to retrieve the value that has been binded to fut
(o in this case). A call to getValue() blocks until a matching setValue() has been issued
assigning a value to the future reference.

The getValue()method can be issued either by the same host that executed setValue()
or by a different host, therefore RemoteReference cannot be implemented as remote (RMI)
class. It is rather implemented as a standard class acting as a proxy. If matching methods
setValue() and getValue() are called on different hosts, the binded value is remotely
requested and then sent over the network. In order to remotely retrieve the value, we in-
troduce the class RemoteValue (having the same methods as RemoteReference), accessible
remotely. Each instance of RemoteReference has a reference to a RemoteValue instance,
which is used to retrieve an object from a remote host if it is not available locally. The
translation of remote to local references is handled automatically by the RemoteReference
implementation.

If, otherwise, matching methods setValue() and getValue() are called on the same
host, no data is sent over the network to prevent unnecessary transmissions of data over
local sockets. The getValue() implementation achieves this behaviour by checking if the
requested object is locally available. If that is the case, getValue() returns a local reference.
Therefore, RemoteReference instances contain the IP address of the object’s host and the
(standard Java) hashvalue of the object, thus uniquely identifying it. When getValue() is
invoked, it first checks if the IP address is the address of the local host where getValue()
is invoked. If so, it uses the hashvalue as a key for a local hashtable (which is static for class
RemoteReference) to obtain a local reference to the object. This reference is then returned
to the calling method.

4 Optimization Techniques Applied to Lithium

In this section, we describe three optimization techniques which are based on the RMI-
optimizations presented in the previous section. All three enhancements are transparent
to the application programmer, i.e., an existing Lithium application does not require any
changes to use them.

4.1 Task Lookahead on RMI servers

We call our first optimization technique “task lookahead”, which means that a server will
not have to get back to the task pool manager every time it is ready to process a new task.
The immediate return of a remote reference enables the task manager to dispatch multiple
tasks instead of single tasks. When a server is presented with a new set of tasks, it starts a
thread for every single task that will process this task asynchronously, producing a future
result. This is particularly important if we use parallel machines for remote computation,

because the multithreaded implementation will exploit all available processors to compute
the future results. However, even a single-processor server benefits from look-ahead, because
transferring multiple tasks right at the beginning avoids idle times between consecutive tasks.

A Lithium program starts execution by initializing the available servers and binding
their names to the local rmiregistry. Then the servers wait for RMI calls. In particular,
two kinds of calls can be issued to a server:

– A setRemoteWorker call is used to send a macro data flow graph to a server. The
information in the graph is used to properly execute the MDFi that will be assigned
later to the server for execution.

– An execute call is used to force the execution of MDFi on a remote node.

In the original Lithium version, each Lithium control thread performs the following loop [4]:

while (!taskPool.isEmpty() && !end) {
tmpVal = (TaskItem[])taskPool.getTask();
taskPool.addTask(Ske.slave[im].execute(tmpVal));

}

that is, it looks for a fireable instruction (a task according to Lithium terminology), invokes
the execute method on the remote server and puts the resulting task back to the task
pool for further processing. Actually, each control thread and its associated server work in
sequence; the behavior is sketched in Fig. 3. Therefore, each Lithium server has an idle time
between the execution of two consecutive tasks.

get task
from TP

execute

add task
to TP

get task
from TP

execute

RMI comm RMI comm RMI comm

Lithium Application (Control Thread)

Lithium Server

time

...

...

idle time (overhead)

Fig. 3. Server’s idle time in original Lithium implementation.

The lookahead-optimization aims at avoiding idle times at the Lithium servers. Servers
are made multithreaded by equipping them with a thread pool. As soon as a server receives
a task execution request, the server selects a thread from its pool and starts it on the
task. After this invocation (and before the thread completes the task), the server returns a
handle to its control thread, thus completing the RMI call. In this way, the control thread
may continue to run, possibly extracting another task from the task pool and delivering it
to the same server. During this time, some of the server’s threads may be still running on
some previous tasks.

As a result, we can have many threads running at the same time in a single server, thus
exploiting the parallelism of the server. In any case, we eliminate control thread idle time
by overlapping useful work in each Lithium server and its control thread. Task lookahead is
an optimization that improves both normal form and non-normal form program execution
times, provided that the machine hosting the task pool (and therefore the control threads)
does not become the bottleneck.

y←f(x)y←f(x)

Task Pool

. . .

Task Pool

. . .
LithiumServer LithiumServer

LithiumServer
(multithreaded)

LithiumServer
(multithreaded)

f(...)
g(...)

f(...)
g(...)

f(...)
g(...)

f(...)
g(...)

MDFMDFMDF MDF

y←f(x) yi
z←g(y) y←f(x) z←g(y)

↑f(xi) ↑g(↑yi)

↑yi

〈↑yi, ϕj〉 〈↑zi, ψj〉

↑f(xi)

yi

↑g(yi)

zi

a) b)

Fig. 4. Communications among Lithium Task Pool and Lithium Servers. a) Original Lithium imple-
mentation. b) Optimized Lithium implementation.

4.2 Server-to-Server Lazy Binding

Our second optimization technique is called “lazy binding”: a remote server will only bind
a new MDFi from the graph if necessary, and analogously the task pool manager will not
wait for a remote reference to produce the future result unless it is needed. Here, we use
remote references in order to avoid unnecessary communications between task pool control
threads and remote servers. Our implementation of remote references uses hash-tables as
local caches, which leads to the caching of intermediate results of the MDF evaluation.
The system may identify sequences of tasks that depend on previous ones and make sure
that such sequences will be dispatched to a single remote machine. Thus, a sequence of
dependent tasks can be processed locally on one server which leads to a further reduction
of communication. We will show that the lazy binding technique can be compared to the
normal form mechanism.

Normal Form Computation Let us consider the evaluation of the sequence of two func-
tions, f and g, on a stream of data. In Lithium, the program can be expressed by a two-stage
Pipeline, whose stages evaluate f and g, respectively. The behavior of the original Lithium
implementation on this program is shown in Fig. 4 a):

1. the control thread fetches a fireable MDF-instruction and sends it to the associated
server (➀). The MDF-instruction includes a reference to the function ↑f and the input
data xi.

2. The Lithium server computes the instruction and sends the resulting data yi back to the
control thread (➁).

3. The control thread deposits the result in the task pool that makes another MDF-
instruction ↑g(yi) fireable. It will be then fetched by either the same or another control
thread and sent to the server (➂).

4. After the evaluation, the whole execution zi = g(f(xi)) is completed by (➃).

The goal of the optimization is reducing the size of communications ➁ and ➂. These com-
munications carry both the reference to the function to be executed and its input data, the
latter being the large part. Since the input data might be computed in a previous step by
the same server, we can communicate a handle (the RemoteReference) for the input/output
data instead of their actual values. In this way, each server retains computed values in its
cache until these values are used. If they are used by the same server, we greatly reduce
the size of round trip communication with the control thread. If they are used by another
thread, we move the values directly between servers, thus halving the number of large-size

communication by throwing away the task pool from the path. The optimized behavior is
sketched in Fig. 4 b):

1. A control thread fetches a fireable MDF-instruction and sends it to its associated server
(➊). The MDF-instruction includes a reference to the function ↑f and an input data xi.

2. The Lithium server assigns the work to a thread in the pool and, immediately, sends
back the result handle ↑ yi (➋). The message may be extended with the completing
token ϕ for a previously generated handle in order to make the control thread aware of
the number of ongoing tasks.

3. The control thread deposits the result in the task pool that makes another MDF-
instruction ↑g(↑yi) fireable. This will be fetched by either the same or another control
thread and sent to its associated server (➌). Let us suppose the instruction is fetched by
another control thread.

4. Similarly to 2, the server immediately returns the handle to the control thread (➍).
5. To evaluate ↑g(↑yi), the server invokes a getValue() method on ↑yi (➎).
6. The value yi arrives at the server as the result of getValue() RMI invocation (➏), thus

enabling the evaluation of g(yi).

Note that if f and g are evaluated on the same server, then the communications ➎ and ➏

do not take place at all, since references are resolved locally.
The described process can be viewed as a dynamic, runtime version of the normal form

optimization. Normal form transforms sequences of calls into an equivalent, single MDFi.
With the proposed optimization, we recognize such sequences at the remote server and
perform the computations locally.

Data-Parallel Computation Lazy binding is an optimization helping to reduce network
traffic, which affects multistage task parallel programs, such as pipelines, and also simple
data parallel computations.
Data-parallel computations are carried out by Lithium as follows:

– a task (data item) x is divided into a set of (possibly overlapping) n subsets x1 · · · xn;
– each subset is assigned to a remote server;
– the results of the computation of all the subsets are used to build the overall result of

the data-parallel computation.

...split

build ...

f f f f f f

build ...

...split

x

y

x

↑y1 ↑y2 ↑yn

x1 x2 xnx1 x2 xn

y2 yny1

a) b)

Fig. 5. Execution of a Data Parallel skeleton. a) Original Lithium implementation. b) Optimized
Lithium implementation.

This implies the following communication overhead in the Lithium implementation (see
Fig. 5 a):

– n communications from the task pool control thread to the remote servers are needed
to dispatch subsets;

– n communications from the remote servers to the task pool control threads are needed
to collect the subsets of the result;

– one communication from the control thread to a remote server is needed to send the
subsets in order to compute the final result;

– one communication from the remote server to the task pool control thread is needed to
gather the final result of the data-parallel computation.

The suggested optimization is as follows (see Fig. 5 b):

– each time a data-parallel computation is performed, the task pool control thread gen-
erates and dispatches all “body” instructions, i.e., instructions that compute a subset
of the final result to the remote servers. The remote servers immediately return han-
dles (RemoteReferences) representing the value (in the subset) that will eventually be
computed ↑y1 · · · ↑yn;

– as soon as all the handles have been received, the task pool control thread dispatches the
“gather” MDFi (i.e., the instruction packing all the sub-results into the final result data
structure) to the remote server hosting the major amount of references to sub-results.
When this instruction is eventually computed, the final result will be sent back to the
task pool.

In this way, we avoid moving the intermediate results back and forth between the task pool
threads and the remote servers.

4.3 Load Balancing

In this section, we describe how we adapted the load-balancing mechanism of Lithium to
the optimized evaluation mechanisms, in order to achieve a stable level of parallelism on all
servers. This is accomplished by measuring the number of active threads on the servers.

Our asynchronous communication strategy leads to a multithreaded task evaluation on
the servers. The scheduler can dispatch a task by sending it to a server, which is already
evaluating other tasks. This server will start evaluating the new task in parallel. We im-
plemented this server-side multithreading using a thread pool, which is more efficient than
spawning a new thread for each task. However, tasks may differ in size and we also need to
take into account that machines in a Grid are usually heterogeneous. So, the tasks on the
distributed servers differ in time costs which will lead to an awkward partitioning of work
without a suitable load-balancing strategy.

To balance the load in the system, we need a method to measure the current load
of each server. One possibility would be to use a new remote method, which, however, is
inefficient since it implies more remote communication. Instead, we exploit the fact that
the scheduler already communicates frequently with the remote servers by sending tasks,
i.e., data records holding a reference that is used to retrieve a future value. For our new
load-balancing strategy, we extend each data record by a number that reports the actual
work-load on the server back to the scheduler. So, every time the scheduler sends a task
to a server, it gets the number of threads currently running on that server. Before sending
a new task, the scheduler can re-check this number and, if there is already much load on
this server, it can decide to release the task again and wait instead. Accordingly, another
scheduler thread will process the task by sending it to another server. So, dispatching tasks
and measuring work-load can be done in one remote communication like shown in Fig. 6:
Here, we exemplarily assume a maximum number of 6 active threads per server. As can be
seen, dispatching tasks to server 1 and server n also yields the actual work-load (5 active

Control Thread 2

Control Thread n

Control Thread 1

... ...

Lithium Server 1

Lithium Server 2

Lithium Server n

dispatch new task

6 threads active

wait ...

dispatch new task4 threads active

5 threads active

Lithium Task
Pool Scheduler

idle thread active thread

Fig. 6. Communication schema for the load balancing mechanism.

threads at server 1, 6 active threads at server n), which means that the scheduler can
continue to dispatch tasks to these servers. But for a server that has already reached the
maximum number of active threads (server 2 in the figure), the scheduler waits until the
number of active threads has fallen below a lower limit again.

With many remote servers and, correspondingly, control threads running in the sched-
uler, the measured value may already be obsolete when we send the next task. However,
since asynchronous communication causes tasks to be dispatched with a high frequency, the
suggested technique is precise enough for an efficient load balancing. This has also been
proved by our experiments that included checkpointing.

5 Experiments

For the evaluation of our optimizations, we did some performance measurements using a
dedicated Linux cluster at the University of Pisa, and a set of widely distributed heteroge-
neous servers (spread across Pisa, Münster and Berlin). The dedicated cluster in Pisa hosts
24 nodes: one node devoted to cluster administration, and 23 nodes (800Mhz Pentium III)
exclusively devoted to parallel program execution. The distributed execution environment
includes Linux and Sun SMP boxes. All the experiments have been performed using the
J2SE Client VM SDK version 1.4.1.

The image processing application we used for the tests documented here uses the Lithium
Pipeline skeleton, which applies two filters in sequence to 30 input images. All input images
are true-color images (24 bit color depth) of 640x480 pixels size. We used filters that add
a blur effect and an oil effect to the images, based on the MeanFilter and the OilFilter
tools from the Java Imaging Utilities available at http://jiu.sourceforge.net. The filters were
configured to involve 5 neighboring pixels in each calculation. The load-balancing setting
for the future-based version was chosen at the maximum of 6 concurrent threads per node.
The lower limit was set to 2 threads. So, the number of concurrent threads running on a
server had to fall below 2, before the server was supplied with new tasks. Accordingly to
these settings, the thread-pools were configured to hold 6 threads initially.

Fig. 7 (left) shows the measured time in milliseconds, for both the original Lithium and
the optimized version running in the dedicated cluster in Pisa. The speedup, shown in the
right part of the figure, is figured out with respect to the sequential version of the application
running in the same cluster. Since both input and output data are stored in permanent
files, execution times include data I/O time for both sequential and parallel version of the
application. The plots show that the future-based version performed approximately twice as

 0

 100

 200

 300

 400

 500

 600

 700

 0 2 4 6 8 10 12 14 16

T
im

e
[s

ec
]

Cluster nodes (including 1 client node)

opt. Lithium
orig. Lithium

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Cluster nodes (including 1 client node)

opt. Lithium
orig. Lithium

ideal

Fig. 7. Measured execution times and speedup on the Pisa cluster.

fast as standard Lithium. Observe the large gain enabled by proposed optimizations for 2
cluster nodes (1 client + 1 server). Despite the whole number crunching work is performed
by the server, the application reaches 2 as overall speedup: task lookahead enables the
client and the server to overlap communication, computation, and data I/O time, while lazy
binding ensures that all data transfer between the stages of the Pipeline take place on the
server side without client interaction. The optimized version maintains a clear advantage
over the standard version along all tested configurations.

0

50000

100000

150000

200000

250000

300000

1 2 3 4

T
im

e
[m

s]

Number of Servers

orig. Lithium
opt. Lithium

Fig. 8. Times measured using heterogeneous high-performance grid servers.

Some preliminary results for 4 different multiprocessor servers processing the same tasks
are shown in Fig. 8. Also these tests documented an increase in performance due to pro-
posed optimizations. However, for different server types the lookahead degree and the load-
balancing needs to be adapted for each server separately and dynamically. As an example,
an excessive lookahead degree may turn in the overload of a slow/heavy-loaded server which
may become a performance bottleneck. We are planning to focus more on these adaptations
and publish detailed results for a broad variety of servers in our future work.

6 Conclusions

We have described optimization techniques aimed at an efficient implementation of parallel
skeletons in distributed grid environments with high communication latencies. As a reference

implementation, we took the Lithium system and studied the effects of three different opti-
mizations based on the asynchronous, future-based RMI mechanism:
(1) dispatching batches of tasks, rather than single tasks, to remote servers (“task looka-
head”); (2) caching intermediate results on the remote servers, thus allowing to reduce the
communication overhead (“lazy binding”); (3) adapting the load-balancing strategies to the
multithreaded evaluation mechanism initiated by the “task lookahead” and implementing
it without an increase in remote communication.

Note that all three techniques have been integrated into Lithium transparently to the
user, i.e., Lithium applications developed on top of the original framework can directly use
the optimized version without any changes in the code.

The presented optimization techniques can easily be applied to grid environments other
than Lithium. Furthermore, they are not restricted to RMI as a communication mechanism.

Acknowledgments. This work has been supported by a travel grant from the German-Italian
exchange programme VIGONI.

References

[1] The ACE team. The Adaptive Communication Environment home page.
(http://www.cs.wustl.edu/∼schmidt/ACE.html).

[2] M. Aldinucci and M. Danelutto. Stream parallel skeleton optimization. In Proc. of the
11th IASTED International Conference on Parallel and Distributed Computing and Systems
(PDCS’99), pages 955–962, Cambridge, Massachusetts, USA, November 1999. IASTED/ACTA
press.

[3] M. Aldinucci and M. Danelutto. An operational semantics for skeletons. In Proc. of the
International Conference ParCo 2003: Parallel Computing, Dresden, Germany, September 2003.

[4] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured
parallel programming in Java. Future Generation Computer Systems, 19(5):611–626, July 2003.

[5] M. Alt and S. Gorlatch. Future-based RMI: Optimizing compositions of remote method calls
on the grid. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of the Euro-Par
2003, number 2790 in LNCS, pages 427–430. Springer, August 2003.

[6] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations. Research
Monographs in Parallel and Distributed Computing. Pitman, 1989.

[7] M. Cole. Bringing skeletons out of the closet: A pragmatic manifesto for skeletal parallel
programming. Parallel Computing, 30(3):389–406, 2004.

[8] M. Danelutto. Efficient support for skeletons on workstation clusters. Parallel Processing
Letters, 11(1):41–56, March 2001.

[9] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed system inte-
gration. Computer, 35(6):37–46, June 2002.

[10] Ian Foster and Carl Kesselmann, editors. The Grid: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 1998.

[11] The CORBA & CCM home page. http://ditec.um.es/∼dsevilla/ccm/ .
[12] H. Kuchen. A skeleton library. In B. Monien and R. Feldmann, editors, Proc. of Euro-Par 2002,

number 2400 in Lecture Notes in Computer Science, pages 620–629. Springer-Verlag, 2002.
[13] C. Nester, R. Philippsen, and B. Haumacher. A more efficient RMI for Java. In Proc. of the

Java Grande Conference, pages 152–157. ACM, June 1999.
[14] S. Pelagatti. Structured Development of Parallel Programs. Taylor&Francis, 1998.
[15] Sun Microsystems. The Java home page. (http://java.sun.com).
[16] S. Vadhiyar, J. Dongarra, and A. YarKhan. GrADSolve - RPC for high performance computing

on the Grid. In H. Kosch, L. Böszörményi, and H. Hellwagner, editors, Proc. of the Euro-Par
2003, number 2790 in LNCS, pages 394–403. Springer, August 2003.

[17] M. Vanneschi. The programming model of ASSIST, an environment for parallel and distributed
portable applications. Parallel Computing, 28(12):1709–1732, December 2002.

[18] K. C. Yeung and P. H. J. Kelly. Optimising Java RMI programs by communication restructuring.
In D. Schmidt and M. Endler, editors, Middleware 2003: ACM/IFIP/USENIX International
Middleware Conference, pages 324–343. Springer-Verlag, 2003.

