A framework for experimenting with structured parallel programming environment
design*

M. Aldinucci?, S. CampaP, P. Ciullo®, M. Coppola®, M. Danelutto®, P. Pesciullesi®, R. Ravazzolo®,
M. Torquati®, M. Vanneschi’and C. Zoccolo®

*Institute of Information Science and Technologies (ISTT) — National Research Council (CNR),
Via Moruzzi 1, I-56124 Pisa, Italy

bDepartment of Computer Science, University of Pisa,
Via Buonarroti 2, I-56127 Pisa, Italy

ASSIST is a parallel programming environment aimed at providing programmers of complex parallel
application with a suitable and effective programming tool. Being based on algoritmical skeletons and
coordination languages technologies, the programming environment relieves the programmer from
a number of cumbersome, error prone activities that are required when using traditional parallel
programming environments. ASSIST has been specifically designed to be easily customizable in order
to experiment different implementation techniques, solutions, algorithms or back-ends any time new
features are required or new technologies become available. In this work we discuss how this goal
has been achieved and how the current ASSIST programming environment has been already used to
experiment solutions not implemented in the first version of the tool.

1. Introduction

Our research group recently developed a structured parallel programming environment based on
the skeleton and coordination language technology. The programming environment (ASSIST, A Soft-
ware development System based on Integrated Skeleton Technology [13,14]) is intended to solve some
of the problems we had in the past, while designing other structured parallel programming environ-
ments such as P3L [4] and SKIE [5]. Those problems were mainly related to language expressiveness
and interoperability. The whole ASSIST environment has been designed and implemented exploit-
ing well known software engineering techniques. These enable the easy extension of programming
environment features. The result is an high performance, structured, parallel programming envi-
ronment that produces code for plain POSIX/TCP workstation networks/clusters. The object code
produced by the compiling tools demonstrated good efficiency and scalability on medium to coarse
grain parallel applications. Furthermore, some of the features inserted in the structured coordination
language of ASSIST (ASSISTcl) allow fair interoperability levels to be achieved (e.g. with respect to
the CORBA framework) as well as to use different kind of existing, optimized library codes within an
ASSISTclparallel application. The result is a programming environment that can be suitably used to
program complex, interdisciplinary applications.

The ASSIST features are discussed elsewhere [13,14,6,8,3,2]. In this work we want to point out how
the ASSIST programming environment can be used to experiment new implementation techniques,
mechanisms and solutions within the framework of structured parallel programming models. There-
fore we briefly outline the ASSIST implementation structure and then we proceed discussing some
experiments we performed aimed at extending the environment. Those experiments were aimed at
modifying ASSIST environment in such a way it can be used to program GRID architectures, include
existing libraries in the application code, target heterogeneous cluster architectures, etc.

The paper is organized as follows: Section 2 outlines the ASSIST environment features. Section

*This work has been partially supported by the Italian MIUR Strategic Project “legge 449/97” year 1999 No.
02.00470.ST97 and year 2000 No. 02.00640.ST97, and by the Italian MIUR FIRB Project GRID.it No. RBNEO1KNFP.



3 describes some experiments performed that took advantage of the ASSIST features. Eventually,
Section 4 outlines the current experiments performed with the ASSIST environment.

2. ASSIST

ASSIST is a programming environment oriented to the development of parallel and distributed
high performance applications. It is based on a coordination language providing programmers with a
structured coordination language (ASSISTcl) based on customizable parallel skeletons [10,12,7] that
can be used to model the most common parallelism exploitation patterns, and a developing toolkit to
compile ASSISTcl programs to homogeneous clusters of POSIX workstations (astCC).

ASSISTcl allows arbitrary graphs of concurrent, possibly parallel activities to be defined in a pro-
gram. Items in the graph are interconnected by means of data flow streams. In turn, parallel activities
appearing in the graph can be expressed using the ASSISTcl skeletons, as well as using plain sequen-
tial C, C++ or F77 code. ASSISTcl skeletons include the parmod (parallel module, a configurable
skeleton that can be used to model most of the classical skeletons (pipelines, task farms, data parallel
skeletons). A complete description of the coordination language can be found in [13,14].

The ASSIST environment has been designed since the very beginning with the target of being
efficient (i.e. able to produce fast object code) as well as modifiable on the need. Therefore, the whole
ASSISTcl compiling tools have been given a three tier design:

front-end (the top tier), parses ASSISTcl syntax and produces an internal representation of the
program;

core (the middle tier) that is the compiler core. It translates the internal representation of a program
into the task code. The task code represents a sort of C++ template-based , high level, parallel
assembly language. The step transforming internal representation into task code is completely
implemented exploiting design pattern technology [9]. A fagade pattern decouples compiler
internals from the compiler engine;

back-end (the bottom tier) compiles task code down to the ASSIST abstract machine (CLAM, the
Coordination Language Abstract Machine) object code.

The CLAM is basically built on POSIX processes/threads and communication (SysV and TCP/IP
sockets) primitives. All those primitives are used via the ACE (Adaptive Communication Environ-
ment) library [1].

The result of the whole compilation process consists in two distinct items: the object code files
(either as compiled code or as shared libraries) and an XML configuration file, holding all the infor-
mation needed to run the program: which objects need to be loaded/executed on which processing
element(s), how streams are mapped to INET addresses ((host, port) pairs), which existing libraries
or (external) object codes must be loaded on the processing elements, etc.)

The three tiers design allows efficient code to be generated, as each tier may take the most appro-
priate and efficient choices related to object code production. Furthermore, the heavy usage of well
known software engineering techniques, such as the design patterns, insulate all the individual parts of
the compiler in such a way that modification in one compiler part neither affect the whole compilation
process (but for the new features introduced/modified) nor require changes in other compiler parts.

Eventually, ASSISTcl compiled code is run by means of a dedicated loader (the assistrun com-
mand), that in turn activate CLAM run-time support. A CLAM master process scans the XML
configuration file produced by astCC compiler and arranges things in such a way that the CLAM
slave processes run on the target architecture processing nodes load and execute the suitable code?
after the set up of the communication infrastructure (i.e. after the proper TCP/IP sockets have been
published on the nodes). A more detailed description of the ASSIST implementation can be found
in [3]. As CLAM (and the object code itself) access POSIX features via ACE wrappers, and as ACE
is available on different operating systems (Linux and Windows, as an example), CLAM actually be-
haves as the fourth tier of the compile/run process and guarantees a degree of portability of the whole
programming environment.

2either coming from ASSISTcl source code or belonging to external libraries properly named by the programmer in the
ASSISTcl source code



3. Experimenting with ASSIST

The first version of ASSIST has been designed in 2001 in the framework of an Italian National
project involving Italian National Research Council and Italian Spacial Agency: the ASI-PQE project.
This version correctly compiled a significant subset of the original ASSISTcl language. This subset
did not include, as an example, pipeline and task farm skeletons. They rather can be implemented
customizing a parmod skeleton. Furthermore, the compiler was able to produce code only for homoge-
neous® Linux/ACE clusters. Exploiting the ASSIST implementation features, we performed different
experiments on this first prototype environment, that are described in the following Sections.

3.1. Optimized library inclusion

In many cases the application programmer would cope with specified problems by relying on opti-
mized libraries. A notable example of such libraries include mathematical libraries build on top of the
MPI programming environment. ASSISTcl provides different facilities to integrate existing sequential
or parallel libraries. Mainly, programmers can denote in the program which external sources/object
codes have to be compiled/linked to the ASSISTcl modules. The programmer may invoke completely
external services from within the ASSISTcl modules as well. As an example, CORBA object services
can be claimed from within the parmod sequential modules denoting parallel activities (or virtual pro-
cessors, in our terminology). However, there was no facility in the original version of the environment
that allowed programs to benefit from the execution of already existing, optimized, MPI-based library
code. Exploiting the compiler and CLAM structure, we performed an experiment that allowed to use
such libraries directly within the ASSISTcl code [8]. Basically, the mpirun command of the mpich
version of MPI has been slightly modified in such a way that its services can be invoked from within
CLAM processes. The whole library code has then been wrapped in such a way that it looked like a
normal parmod code to the programmer. Overall, this allowed MPI libraries to be run in an ASSISTcl
program without requiring an explicit programmer intervention.

Although the whole library integration process has not been included in the compiler yet, this
experiment demonstrated that the compiler/CLAM pair is flexible enough to allow to completely
independent, parallel library code to access the services provided by CLAM (e.g. to know the INET
address of the input and output stream), as well as to provide services to the rest of the ASSISTcl
program (e.g. to provide “compute” calls to other modules appearing in the ASSISTcl program graph).

3.2. GRID

As discussed, the output produced by astCC is made up by a set of object code/DLLs and an XML
file, representing the “structure” of the parallel code. Exploiting this feature, ASSISTcl programs
can be run on a GRID configuration as follows performing the following three steps. First, the XML
configuration file can be analyzed and resources needed to execute the program can be individuated.
Such resources are defined in terms of generic “processing elements” in the original compiler XML
file. Second, the resources needed to execute the program can be gathered (and reserved) from GRID
using the normal GRID middle-ware tools (e.g. those provided by the Globus toolkit). Last, the XML
file can be modified in such a way that the resources gathered are used to run the ASSIST code.

In order to to demonstrate the feasibility of the approach we developed a tool that support such
kind of manipulation of the original XML configuration file [6]. Actually, the tool only supports
programmer decisions: starting from information gathered from the GRID, the tool proposes to the
programmer a set of choices. Afterward, the tool produces a new XML configuration file describing
the new mapping of program entities onto GRID resources.

In Section 4, we should outline how this process is being fully integrated in the ASSIST programming
environment in such a way the environment could efficiently target GRID architectures also.

3.3. Heterogeneous clusters

The first version of ASSIST produces code for homogeneous cluster of Linux PC/WS only. The
missing items needed to produce code for heterogeneous architectures are basically two: the inclusion
of some kind of XDR (external data representation) wrapping messages flowing among heterogeneous

3in terms of processor type



processing elements, and the generation of proper makefiles to compile final object code*. Both this
problems can be solved exploiting the ASSISTcl compiling tools structure. As the astCC compiler
uses a builder pattern both to generate the actual task code and to generate the makefiles needed
to compile task code to object code, we are currently intervening on these two builders in order to
modify them in such a way that:

e on the one side, communication routines are produced that either process memory communi-
cation buffers with XDR routines during marshaling and unmarshaling or do not process them
with XDR. The former routines will be used in case processing elements using different data
representations (e.g. little/big endian machines) are involved in the communication. The latter
routines instead will be used in those cases when homogeneous processing elements are involved
in the communications. Proper makefiles are generated consequently

e on the other side, the XML config file is arranged in such a way that XDR communication
libraries are used when “different” architectures are involved and non-XDR routines are used in
all the other cases.

Again, the algorithms that solve these problems are currently being incorporated in the ASSISTcl
compiling tools. We plan to have a working version of the compiler targeting Intel Linux and Mac
OsX networks by the end of this year.

3.4. ASSISTcl improvement

The first version of the ASSISTcl coordination language demonstrated some problems and pitfalls
mainly due to the strict timings involved in language design and implementation in the ASI-PQE
project. Currently, we are enhancing the coordination language features, mainly those related to
the language expressivity and to the possibility to use external libraries from within the sequential
portions of code included in the ASSISTcl source code.

Different enhancements have been designed and implemented exploiting the three tier structure
of the ASSIST environment compiling tools. As an example, a smarter syntax has been designed to
allow items of the output data streams of a parmod to be gathered from parmod virtual processors
(i.e. internal, concurrent/parallel parmod activities). These enhancements did not imply any changes
in the compiler core and back-end layers. Just the front end has been modified.

Other enhancements regard the possibility to have variable length arrays in the ASSISTcl type
systems. This is dramatically important in order to efficiently implement the activities (and the
communications) involved in Divide&Conquer like computations. Again, the introduction of variable
length data structures® only interested the front-end and part of the core compiler layer. The existing
task code implementation perfectly supports these changes.

4. Ongoing activities

The experiments described in Section 3 have already been performed and currently the related
experience is being moved to the production compiler. However, as the ASSIST environment was
exactly meant to be a sort of test-bed to experiment new solutions to efficiently support structured
parallel programming on a wide range of target architectures, we are currently studying different new
enhancements, in the context of several National Research projects. These experiences are described
in the following sections.

4.1. Component-based ASSISTcl

In the context of the FIRB project, we are re-designing the ASSIST environment as a full-fledged
component based programming model. This means that the upper part of the coordination lan-
guage will move to a component framework and that existing ASSISTcl skeletons will be provided as
parametric components to be used in the construction of parallel applications. This is possible as

4The astCC compiler actually produces a set of C4++ files that include calls to ACE and CLAM services, but these
need to be compiled using a standard C++ compiler. This is because we do not aim at entering the sequential code
compiling area.

5in the sense of C+4 Vector objects



the modules that are used to construct the generic graphs appearing in ASSISTcl programs are al-
ready conceived as close modules interacting with the external world (other modules) via streams and
events. As a matter of fact, this means that ASSISTcl modules already behave as (non-standardized)
components. On the other side, the task code is already organized as a class hierarchy providing
objects that model common parallel program components. Therefore, while restructuring the coordi-
nation language level, we are also trying to expose part of the task code at the component level, in
such a way that experienced users can program directly the component task code level to provide new
higher level components to applicative programmers (i.e. to the end users of the ASSIST programming
environment)®.

4.2. Full GRID ASSISTcl

In the meanwhile, in the context of both strategic project “legge 449/97” and FIRB project we
are currently trying to make automatic the targeting of GRID architectures. In order to produce
efficient code, many factors have to be taken into account, which are traditionally handled by expert
parallel programmers: resource co-allocation, code and data staging, task scheduling and the alike.
The structure of existing ASSIST programming environment can be exploited in this case as follows:

e resource co-allocation can be decided on the basis of the contents of the XML configuration
file produced by the ASSISTcl compiling tools. In particular, the compiler already devises the
number and the kind of resources needed to execute the code, mostly exploiting user provided
parameters. A CLAM version targeting GRIDs may easily process the XML config file in such
a way that resources are looked for that match the needs stated in that file.

e Code and data staging can also be managed by the CLAM setup process. Also on clusters,
the first phase in the execution of an ASSISTcl program consists in deploying the proper ob-
ject/library code to the interested processing nodes. Data items instead are delivered to the
processing nodes needing them either as data items on the streams connecting the ASSISTcl pro-
gram modules (and this happens under direct programmer control), or as data items belonging
to the underlying distributed shared virtual memory subsystem (this is automatically managed
by the ASSISTcl runtime).

e Task scheduling is completely under the control of CLAM and follows the directives taken from
the XML configuration file.

Therefore, by moving the GRID configuration and management phase to the XML config file pro-
cessing phase and to the CLAM we expect that the whole ASSIST environment can be made “GRID
aware”.

5. Conclusions

In this work we outlined the features of the 9000 L A g
ASSIST programming environment and we dis- s, g |
cussed several experiences aimed at improving 7000 |1
the programming environment features. We are o |

currently consolidating the experimental results
achieved with the ASSIST programming environ-
ment. That means that current “production”
compiling tools do not include some of the re-
sults already assessed. Rather, development ver-
sions of the ASSISTcl compiling tools include | TV e
these results and are currently being debugged T A B B
and used by our team. In all cases, once the

compiler debugging has been completed, by us- Figure 1: Typical ASSISTcl program performance
ing the ASSIST programming environment pro- (data mining code on Linux PC cluster)
grammers took hours to develop complete paral-

lel applications out of existing sequential code. And these applications demonstrated good (close to

5000 |-

4000 |

Execution time (secs)

3000
2000

1000 -

6Much in the style of what already happens in the design pattern environment COPS [11].



ideal) scalability on workstation clusters with either Fast or Gbit Ethernet. As a typical example of
performances achieved using ASSIST, Figure 1 plots the execution times (ideal and measured) of an
ASSIST data mining application run on a network of Linux PCs (the different curves are relative to
different dimensions of the support set).

Never, once debugged versions of the compilers has been used, programmers needed to enter the
classical debug/compile/run cycle. In particular, they didn’t care about correctness of process/parallel
activities setup and scheduling, communications, termination etc. Instead, programmers could spend
time in experimenting different parallelization strategies for the application at hand. This activity
requires to rewrite from scratch a few lines of the coordination/skeleton code rather than entire parts
of the program. Overall, this represent a consistent advantage with respect to what happens when
using other parallel programming environments, at least in our experience.

REFERENCES

[1] The Adaptive Communication Environment home page. http://www.cs.wustl.edu/~
schmidt/ACE-papers.html, 2003.

[2] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, M. Danelutto, P. Pesciullesi, R. Ravazzolo,
M. Torquati, M. Vanneschi, and C. Zoccolo. ASSIST demo: a high level, high performance,
portable, structured parallel programming environment at work. In Proceedings of FuroPar’03,
LNCS. Springer Verlag, august 2003. to appear.

[3] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo,
M. Torquati, M. Vanneschi, and C. Zoccolo. The Implementation of ASSIST, an Environment for
Parallel and Distributed Programming. In Proceedings of FuroPar’03, LNCS. Springer Verlag,
august 2003. to appear.

[4] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L: A Structured High
level programming language and its structured support. Concurrency Practice and Experience,
7(3):225-255, May 1995.

[5] B. Bacci, M. Danelutto, S. Pelagatti, and M. Vanneschi. SKIE: a heterogeneous environment for
HPC applications. Parallel Computing, 25:1827-1852, December 1999.

[6] R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P. Palmerini, R. Perego, P. Pesciullesi, and
M. Vanneschi. AssistConf: A Grid Configuration Tool for the ASSIST Parallel Programming
Environment. In Proceedings of the Eleventh Furomicro Conference on Parallel, Distributed and
Network-Based Processing, pages 193-200. Euromicro, IEEE, February 2003. ISBN 0-7695-1875-3.

[7] M. Cole. Bringing skeletons out of the closet. available at author’s home page, december 2002.

[8] P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna. Integrating MPI-Based Numerical
Software into an Advanced Parallel Computing Environment. In Proceedings of the Eleventh
Euromicro Conference on Parallel, Distributed and Network-Based Processing, pages 283-291.
Euromicro, IEEE, February 2003. ISBN 0-7695-1875-3.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley, 1994.

[10]H. Kuchen. A skeleton library. In Proceedings of the Euro-Par 2002 Conference, LNCS. Springer
Verlag, August 2002.

[11]S. MAcDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Taa. From patterns to
frameworks to parallel programs. Parallel Computing, 28(12):1663-1684, december 2002.

[12]J. Serot and D. Ginhac. Skeletons for parallel image processing: an overviwe of the SKIPPER
project. Parallel Computing, 28:1685-1708, December 2002.

[13]M. Vanneschi. ASSIST: an environment for parallel and distributed portable applications. Tech-
nical Report TR 02/07, Dept. Computer Science, Univ. of Pisa, May 2002.

[14] M. Vanneschi. The programming model of ASSIST, an environment for parallel and distributed
portable applications. Parallel Computing, 28:1709-1732, December 2002.



