Targeting Heterogeneous Architectures
in ASSIST: Experimental Results*

M. Aldinucci?, S. Campa', M. Coppola?, S. Magini!, P. Pesciullesi',
L. Potiti!, R. Ravazzolo', M. Torquati', and C. Zoccolo!

! Dept. of Computer Science — University of Pisa — Viale Buonarroti 2, Pisa, Italy
2 Inst. of Information Science and Technologies — CNR, Via Moruzzi 1, Pisa, Italy

Abstract. We describe how the ASSIST parallel programming environ-
ment can be used to run parallel programs on collections of heterogeneous
workstations and evaluate the scalability of one task-farm real applica-
tion and a data-parallel benchmark, comparing the actual performance
figures measured when using homogeneous and heterogeneous worksta-
tion clusters. We describe also the ASSIST approach to heterogeneous
distributed shared memory and provide preliminary performance figures
of the current implementation.

Keywords: Structured parallel programming, heterogeneous worksta-
tion network, shared memory.

1 Introduction

A notable problem when dealing with parallel programming environments is
the ability to produce code for heterogeneous networks/clusters of workstations.
Although some versions of MPI (e.g. LAM-MPI) allow heterogeneous collections
of PEs to be used, other versions do not support such feature, nor it is supported
by most of the other parallel programming systems, including HPF.

ASSIST is a parallel programming environment based on the concepts of co-
ordination languages and algorithmical skeletons, recently developed at the Uni-
versity of Pisa [1, 2]. The latest version (1.2) of the ASSIST programming environ-
ment supports both interoperability with other classical distributed-processing
frameworks (e.g. CORBA) and the possibility to run portions of the same ap-
plication on machines with different processors and operating systems.

The former is presented in [3], so this paper presents the latter. In Sect. 2
we discuss the current implementation of point-to-point communication and
shared memory in an heterogeneous environment, highlighting strengths and
weaknesses. In Sect. 3 the performance obtained running existing ASSIST appli-
cations and benchmarks on heterogeneous platforms are evaluated and compared
with those obtained on homogeneous ones. Sect. 4 surveys related work.

* This work has been supported by the Italian MIUR FIRB Grid.it project, n.
RBNEO1IKNFP, on High-performance Grid platforms and tools; the Italian MIUR
Strategic Project 1.449/97-2000, on High-performance distributed enabling plat-
forms.

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 638-643, 2004.
© Springer-Verlag Berlin Heidelberg 2004



Targeting Heterogeneous Architectures in ASSIST: Experimental Results 639

2 Heterogeneous Network/Cluster Targeting

The ASSIST compiler can produce code running onto an heterogeneous clus-
ter /network, composed of processing elements with different processors (word
size, endianness) and/or different operating systems. In the experiment section
we will show that the incurred overhead is tolerable, therefore efficiency and
performance figures are preserved w.r.t. the homogeneous case.

The compilation process has been designed [2, 4] to generate code for hetero-
geneous clusters/workstation networks'. When compiling for an heterogeneous
platform, the ASSIST compiler produces a full set of object files for every config-
ured architecture, and a global configuration file, that can be used to start the
application on a set of heterogeneous computing nodes, by means of a simple
invocation of the ASSIST loader. In an heterogeneous run, processes participat-
ing in the computation of the same ASSIST-CL parallel pattern (e.g. task farm,
pipeline, parmod, ...) can be scheduled on processing elements having different
CPU/operating system combinations, with minimal performance impact.

The ACE library [5] provides an hardware and operating system abstraction
layer to the ASSIST runtime. It also provides standard routines, based on the
CDR format (a flavor of XDR), to exchange data between processing elements
with different architectures, preserving their original semantics independently of
the endianness or of the machine word size used on the different machines. The
provided routines handle all CORBA basic types (octets, integers, floating point
values, ...) as well as unidimensional arrays of basic types. The ASSIST com-
piler inductively builds the conversion routines for more complex data structures
(structured types, multidimensional arrays), using the ones for the basic types.
This process (unlike in MPT), is done at compile time, and exploits the inlining
facility of the native C++ compiler, so the produced conversion routines are
quite fast. The CDR protocol prescribes that the sender doesn’t encode data,
but enriches the message with its byte-order. The receiver compares the sender
byte-order with its own, and if they are different, applies the conversion.

The CDR based approach incurs only one significant overhead: since the
memory layout of the data structures that must be communicated can be differ-
ent on different architectures even if the byte-order is the same (due to word-size
or alignment requirements), the protocol defines an architecture independent lay-
out, that can be interpreted on every supported architecture. So data structures
must be copied when sending and when receiving, even if byte-order conversion
is not needed. This enlarges the memory footprint of the parallel program (a no-
ticeable effect if the communicated structures are large), and can produce cache
pollution effects.

We are currently working on an heterogeneity-enabled version of the shared
memory library integrated in ASSIST [6]. The library provides the ASSIST pro-
grammer with a set of primitives that allow to allocate, read, write and deallocate

1 Although at the moment only Linux and MacOS X machines has been configured
and tested, the ASSIST compiler and runtime support already contains all the hooks
needed to target other architectures/operating systems (namely the ones supported
by the Hardware Abstraction Layer, based on the ACE library).



640 M. Aldinucci et al.

Scalability of the apriori algorithm Speedup of the data-parallel benchmark
35000 8

% 30000 - 7r
(%2}
=4
£ 25000 f 6 r
: o
g 20000 f 3 5r § T
S 15000 | S 4l ~
] o X
Qo o
= 10000 r 3r <
g ideal — A" ideal —
< 5000 ¢ homogeneous cluster ] 2r homogeneous cluster ]

0 ___heterogeneous cluster e 1 - _heterogeneous cluster e

0 5000 10000 15000 20000 25000 30000 35000 1 2 3 4 5 6 7 8
Ideal bandwidth (trans/s) Parallelism degree

Fig. 1. Comparison of homogeneous and heterogeneous performance figures.

segments of distributed shared memory. Types are necessary in order to select
the proper conversion routines, so we defined a typed API for the shared memory
operations, exploiting the C++ template mechanism. In the implementation we
reused the same conversion routines built for inter-process communication, but
with a different philosophy: in the interaction through shared memory, the mem-
ory itself plays the role of a third party between the interacting entities, unaware
of the data type that is being exchanged. Moreover, the receiver doesn’t know
the identity of the sender (it can happen that different entities write different
entries in one array and a single entity read the array as a whole). To arrange for
this, we decided to always encode data written to the shared space in an exter-
nal data format, with a well defined layout and byte-order, and symmetrically
decode data read from the memory. The chosen layout guarantees that all the
elements of an array have the same layout (surprisingly, this is not true for plain
CDR layout, when dealing with structured data types), in order to be able to
read/write portions of arrays.

3 Performance Evaluation

We are going to show experimental results concerning application scalability,
comparing the performance figures obtained with an homogeneous platform with
those obtained with an heterogeneous one.

Environment. The homogeneous tests are run on a cluster of 8 Pentium IV
2GHz, equipped with 512MB of RAM and interconnected by 100/1000 Mbit /s
Ethernet.

The heterogeneous tests are run on a cluster of 4 Pentium IV (same configu-
ration), a fast PowerPC G4 (1.5GHz, 512MB RAM, 100/1000 Mbit/s Ethernet)
and a slower one (800MHz, 256MB RAM, 100 Mbit/s Ethernet).

Apriori algorithm. The first algorithm we tested is a parallel implementation the
Apriori data mining algorithm [7] for finding association rules in a transaction
database. The transaction database is split in a stream of partitions that feeds



Targeting Heterogeneous Architectures in ASSIST: Experimental Results 641

a task-farm; the farm workers compute the frequent itemset independently in
each partition, and then the partial results are accumulated to build a superset
of the solution; in a second parallel scan of the database (another task-farm
working on the stream of partitions) the partial solutions are ranked and a com-
plete solution is found. In this implementation, the database partitions are sent
over the ASSIST streams, to exploit the data conversion mechanisms between
heterogeneous architectures.

The scalability for the homogeneous and the heterogeneous executions are
compared in figure 1-left. The heterogeneous machines have different compu-
tational power: the Pentiums can process 4478 transactions per second, while
the fast and the slow PowerPC can process respectively 5079 and 2174 transac-
tions per second. The heterogeneous configurations tested are all the prefixes of
the sequence [Pentium, fast PPC, Pentium, slow PPC, Pentium]. For different
heterogeneous configurations, we computed the ideal bandwidth (x axis) as the
sum of the bandwidths of the machines employed, and measured the delivered
bandwidth (y axis). The curve obtained for the heterogeneous case is comparable
with the homogeneous one. It departs from the ideal (reaching 0.9 of efficiency)
only when the machine with slow NIC is employed: the application, in fact, has
high network bandwidth requirements, and the introduction of a node with a
slow network slightly decreases the efficiency of the task distribution process.

Data-parallel benchmark. The second algorithm tested is a synthetic data-paral-
lel benchmark, with a variable communication stencil and featuring a good com-
putation to communication ratio The benchmark implements an iterative com-
putation over a square matrix M: at iteration h the h*" row of M is broadcast
to all the processing elements; the new value for the matrix M’ is computed as
Mi/,j =N- szn(zk Mh,k . M’,(j—i—k) mod N)-

The ASSIST support currently implements only a naive partitioning strat-
egy for data-parallel computations, in which all the partitions have the same
size, even if the computation power of the employed machines differs. We can
therefore compute the speedup of the program against the sequential time of
the slowest machine. The sequential times for Pentiums, fast PPC and slow
PPC were respectively 529, 113 and 197 seconds. The difference in the execution
times between the Pentiums and the PowerPCs is considerable: the Pentiums
are disadvantaged in number crunching codes because of the small number of
general registers; register pressure, in fact, prevents the compiler from optimizing
complex matrix access patterns.

The heterogeneous configurations tested are all the prefixes of the sequence
[Pentium, fast PPC, Pentium, slow PPC, Pentium, fast PPC again]; in the maxi-
mal configuration we mapped two workers on the fastest machine, that otherwise
would be idle most of the time. Figure 1-right displays the speedups obtained
in homogeneous as well as heterogeneous runs. The overhead introduced by het-
erogeneity is negligible (less than 5%). The inability to adjust the partition sizes
proportionally to the machine powers, instead, is limiting; moreover the solution
of running more workers on faster machines introduces some inefficiencies (the
heterogeneous speedup curve, in fact, loses linearity when the second worker is



642 M. Aldinucci et al.

added). We are now considering to enhance the partitioning strategy to handle
computational power heterogeneity, as well as dynamic changes in the available
computational power.

Shared memory performance. Here we Scalability of the shared memory library
provide the first performance results - 0 ‘ ‘ ‘ ‘
regarding the described implemen- 2 35}
tation of the heterogeneous shared £
memory library integrated in ASSIST. 3 el
The benchmark employed allocates g 25 |
one segment of shared memory (10M 2 20| .
integers); several processes in parallel £ —7%"" homogeneous cluster

. heterogeneous cl‘uster | X
read randomly chosen chunks (16k in- 15 . 5 5 ; o
tegers) of this memory and write them Number of servers

in other locations. The accesses are

not synchronized. Figure 2 shows the Fig. 2. Performance of the shared memory
aggregate bandwidth of the shared library (Fclients = #servers — 2).
memory varying the parallelism de-

gree (number of servers) on the 100Mbit/s network, both in homogeneous runs
and in heterogeneous ones (the heterogeneous configuration has been enriched
with two more Pentium IV machines, hosting two memory servers). The over-
head introduced is always less than 6%, and decreases when the number of servers
increase.

4 Related Work

PBIO [8] is a flexible communication library that handles heterogeneous com-
munications using sender’s native data representation: the receiver translates
the message only if necessary, basing the decision on a message prefix describing
the data format. Our approach, instead, adopts a consistent data layout, that
is useful when we extend to shared memory. Mermaid [9] is the first example
of an heterogeneous, transparent page-based DSM; in this scheme data is repre-
sented in the page holder’s native form: this introduces several difficulties and
limitations in the architectures that can be supported. Heterogeneous DSMs can
benefit of type safe and reflective languages like Java. JavaDSM [10] is a proto-
typical implementation of a DSM that offers a single JVM image over a cluster
of possibly heterogeneous workstations.

5 Conclusion

In this paper we described ASSIST support to heterogeneity, i.e. the ability to
produce code for heterogeneous networks/clusters, and run portions of the same
application (and even of the same parallel pattern) on machines with different
processor architectures and operating systems.

We discussed the implementation of point-to-point communications, high-
lighting its strengths and weaknesses; we provide experimental evidence that



Targeting Heterogeneous Architectures in ASSIST: Experimental Results 643

this approach incurs in tolerable overhead, comparing the performance figures
obtained by heterogeneous runs to those obtained by homogeneous ones of a
real task-parallel program (the Apriori data mining algorithm) and a synthetic
data-parallel benchmark.

Finally, we extended the approach to the shared memory library integrated
in ASSIST and presented first experimental results showing that the impact of
data translation on the achieved performance is small.

Acknowledgements

We wish to thank all the people that participated to the design and development
of the ASSIST programming environment, in particular P. Ciullo, M. Danelutto,
G. Giaccherini, A. Paternesi, A. Petrocelli, E. Pistoletti, P. Vitale, M. Vanneschi,
G. Virdis.

References

1. Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709-1732

2. Aldinucci, M., Campa, S., Ciullo, P., Coppola, M., Magini, S., Pesciullesi, P., Potiti,
L., Ravazzolo, R., Torquati, M., Vanneschi, M., Zoccolo, C.: The Implementation
of ASSIST, an Environment for Parallel and Distributed Programming. In Kosch,
H., Laszlé Boszorményi, Hellwagner, H., eds.: Euro-Par 2003: Parallel Processing.
Number 2790 in Lecture Notes in Computer Science (2003) 712-721

3. Magini, S., Pesciullesi, P., Zoccolo, C.: Parallel Software Interoperability by means
of CORBA in the ASSIST Programming Environment. In: Euro-Par 2004 Parallel
Processing. (2004) (to appear).

4. Aldinucci, M., Campa, S., Ciullo, P., Coppola, M., Danelutto, M., Pesciullesi, P.,
Ravazzolo, R., Torquati, M., Vanneschi, M., Zoccolo, C.: A Framework for Exper-
imenting with Structured Parallel Programming Environment Design. In: ParCo
2003 Conference Proceedings, to appear, Dresden, Germany (2003)

5. Schmidt, D.C., Harrison, T., Al-Shaer, E.: Object-oriented components for high-
speed network programming. In: Proceedings of the 1st Conference on Object-
Oriented Technologies and Systems (COOTS), Monterey, CA, USENIX (1995)

6. Carletti, G., Coppola, M.: Structured Parallel Programming and Shared Objects:
Experiences in Data Mining Classifiers. In Joubert, G.R., Murli, A., Peters, F.J.,
Vanneschi, M., eds.: Parallel Computing, Advances and current issues, Proceedings
of the Int. Conf. ParCo 2001, Naples, Italy (4-7 September 2001), Imperial College
Press (2002) ISBN 1-86094-315-2,.

7. Coppola, M., Vanneschi, M.: High-Performance Data Mining with Skeleton-based
Structured Parallel Programming. Parallel Computing, special issue on Parallel
Data Intensive Computing 28 (2002) 793-813

8. Eisenhauer, G., Bustamante, F.E., Schwan, K.: Native Data Representation: An
Efficient Wire Format for High-Performance Distributed Computing. IEEE Trans-
actions on Parallel and Distributed Systems 13 (2002) 1234-1246

9. Zhou, S., Stumm, M., Li, K., Wortman, D.: Heterogeneous Distributed Shared
Memory. IEEE Trans. on Parallel and Distributed Systems 3 (1992) 540-554

10. W.Yu, A.Cox: Java/DSM: A Platform for Heterogeneous Computing. In: Proc. of
ACM 1997 Workshop on Java for Science and Engineering Computation. (1997)



	1 Introduction
	2 Heterogeneous Network/Cluster Targeting
	3 Performance Evaluation
	4 Related Work
	5 Conclusion
	Acknowledgements
	References

