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Skeletons are common patterns of parallelism, such as farm and pipeline, that can be
abstracted and offered to the application programmer as programming primitives. We
describe the use and implementation of skeletons on emerging computational grids, with
the skeleton system Lithium, based on Java and RMI, as our reference programming
system. Our main contribution is the exploration of optimization techniques for imple-
menting skeletons on grids based on an optimized, future-based RMI mechanism, which we
integrate into the macro-dataflow evaluation mechanism of Lithium. We discuss three op-
timizations: 1) a lookahead mechanism that allows to process multiple tasks concurrently
at each grid server and thereby increases the overall degree of parallelism, 2) a lazy task-
binding technique that reduces interactions between grid servers and the task dispatcher,
and 3) dynamic improvements that optimize the collecting of results and the work-load
balancing. We report experimental results that demonstrate the improvements due to our
optimizations on various testbeds, including a heterogeneous grid-like environment.

1. Introduction

Parallel and distributed computer systems have recently become less expensive and
easier to build from the engineering point of view. However, the development of cor-
rect and efficient software for such systems remains a complicated and error-prone task.
Most application programs are still being written at a low level of the C or Java pro-
gramming language, combined with a communication library or mechanism like MPI or
RMI. For performance reasons, programs are often tuned towards one specific machine
configuration.

In sequential programming, low-level coding for a specific machine also prevailed three
decades ago. The software engineering solution to overcome this problem was to introduce
levels of abstraction, effectively yielding a tree of refinements, from the problem specifi-
cation to alternative target programs |1]. In the parallel setting, high-level programming
constructs and a refinement framework for them would be very desirable, because of the
inherent difficulties in maintaining the portability of low-level parallelism [2].
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Since the 1990s, the “skeleton approach” [3| deals with high-level languages and methods
for parallel programming; see [4]| for the current state of the art. In this approach,
parallel algorithms are characterised and classified by their adherence to generic patterns
of computation and interaction. For example, many applications from different fields
share the well-known pipeline structure of control and/or data flow, probably in somewhat
different flavours. Skeletons express and implement such common patterns and can be
used as program building blocks, which can be customized to a particular application to
express its particular flavour of the generic pattern.

Traditionally, skeletons are used to extend existing sequential programming languages
or parallel programming frameworks (e.g., C+MPI or Java-+RMI). Examples of available
parallel libraries that support skeletal programming include, among others: SKEIib [5],
SKiPPER (6], Lithium (see Section 3), and eSkel |7|. Several real world applications have
been programmed and experimented with to validate the effectiveness of the approach.
Application fields where skeletons have proven to be useful include computational chem-
istry [8], massive data-mining [9], remote sensing and image analysis [10,11], numerical
computing [12], and web search engines, e.g., Google [13].

In this work, we focus on the performance issues arising when skeletons are put into
modern heterogeneous and highly dynamic distributed environments, so-called grids. The
particular contribution of this paper is a set of novel optimization techniques that aim
at solving some of the performance problems of skeleton-based programming that origi-
nate from the specific characteristics of grids. In particular, we develop optimizations in
the context of Lithium, a Java-based skeleton programming library [14]. Lithium uses
Java-RMI [15] to coordinate and distribute parallel activities, such that we were able to
integrate our recently developed optimizations of RMI presented in [16] into Lithium.

In Section 2 and 3 we motivate our work and describe the Lithium system. Section 4
explains an optimized RMI mechanism, future-based RMI, which is used in Section 5 to
implement the three proposed optimizations in Lithium. We describe our experiments in
Section 6, where we study the performance improvement of an image processing appli-
cation due to the proposed optimizations. We compare our results to related work and
discuss the general applicability of our approach in Section 7.

2. Motivation for Optimizing Skeletons on Grids

Skeletons [3] are commonly used patterns of parallel or distributed computation and
communication. The idea is to employ skeletons as pre-implemented, ready-to-use com-
ponents that are customized to a particular application by supplying suitable parameters
(data or code) |17,18]. Correspondingly to the frequently used control structures in par-
allel programming, the most popular skeletons are: pipeline, farm, reduce, scan and
divide&conquer.

Our motivation in this paper is the performance of parallel skeletons in emerging dis-
tributed environments like grids [19]. A specific property of grids is the varying latency
and bandwidth of communication between involved machines, i.e. clients and high-
performance servers. Moreover, in grid environments, it is difficult to make definite
assumptions about the load and the availability of individual computers. This raises
new, challenging problems in using and implementing skeletons efficiently, as compared
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to traditional multiprocessors.

Our goal is to develop specific optimization techniques that aim at improving the co-
ordination and communication between the servers of the grid during the execution of a
skeletal program. There are two extreme levels of abstraction, at which such optimizations
are in principle possible:

e at the high level of algorithmic design: such semantics-preserving transformations
were studied by ourselves, e.g., in [20];

e at the low level of the particular communication mechanism.

Our approach is to take the middle path between these two alternatives, which has not
been covered by previous research. This corresponds also nicely to the general philosophy
of skeletons: patterns are abstracted and provided as a programmer’s toolkit, with spec-
ifications which transcend architectural variations but implementations which recognize
these to enhance performance. Our optimizations demonstrate that skeletons

e enhance portability and re-use by absolving the programmer of responsibility for
detailed realization of the underlying patterns;

e offer scope for static and dynamic optimization, by explicitly documenting infor-
mation on algorithmic structure (e.g., data dependencies) which would often be
impossible to extract from equivalent unstructured programs.

Apart from “embarrassingly parallel” programs, distributed applications often involve data
and control dependencies that need to be taken into account by the skeletons’ evaluation
mechanism. Our further objective is to present optimizations that are applicable for
programs both with and without dependencies between tasks and data.

3. Skeleton-based Programming in Lithium

Our reference skeleton programming system is Lithium [14]. Lithium is a full Java
library that provides the programmer with a set of parallel nestable skeletons. The skele-
tons implemented in Lithium include the Farm skeleton, modeling task farm computa-
tions, the Pipeline skeleton, modeling computations structured in independent stages,
the Map skeleton, modeling data parallel computations with independent subtasks and
the DivideConquer skeleton, modeling divide&conquer computations. All these skele-
tons process streams of input tasks to produce streams of results.

Figure 1 shows the structure of a typical Lithium application: the programmer first
declares the program to be executed, then instantiates a controller/scheduler for the
application; he requires the parallel execution of the program after providing the input
data, and eventually processes the results computed.

Lithium implements the skeletons according to the Macro Data Flow (MDF) execution
model [21]. Skeleton programs are first compiled into a data flow graph: each Macro Data
Flow instruction (MDF1i, i. e. ,each node of the MDF graph) is a plain data flow instruction.
It processes a set of input tokens (Java Object items in our case) and produces a set of
output tokens (again Java Object items) that are either directed to other data flow
instructions in the graph or directly presented to the user as the computation results.
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JSkeletons1 =...;
JSkeletonw = ... ;

Farm s2 = new Farm(w);
JSkeletons3 = ... ;

Pipeline main = new Pipeline();
main.addStage(s1);
main.addStage(s2);
main.addStage(s3);

define the structure

of the parallel program:
define seq code and then
use it in parallel skeletons

Ske eval = new Ske();
eval.setProgram(main);

eval.addHosts(machineNameStringArray);

setup an application
scheduler and tell it which
program and which machines
to use

while (...) {
eval.addTask(objectTask);
}

tell the application
scheduler which tasks
have to be computed

eval.parDo();

ask program evaluation)

do{
Object res = eval.getNextResult();

use the results
produced by the skeleton

program

}w.f;ile(res 1= null);

Figure 1. Sample Lithium code

An MDFi may represent large portions of code, rather than only simple operators or
functions; therefore the term Macro Data Flow [22-25] is used.

The skeleton program is transformed into an MDF graph transparently to the pro-

grammer as a consequence of the eval.setProgram call. Lithium also allows to statically
optimize the MDF' graph associated with the skeleton program, such that a more compact
and efficient MDF graph (the MDF “normal form”) is actually executed. These optimiza-
tions are not taken into account in this work; we refer to [14,26] for further details on this
subject.
The skeleton program is then executed by running the scheduler (eval) on the local
machine and a remote server process on each of the available remote hosts. The task pool
manager creates a new MDF graph for each new input task added via the eval.addTask
call and dispatches fireable MDFi (that is, MDFi with all the input tokens available)
to the remote servers. The remote servers execute the fireable MDFi in the graph(s)
and dispatch the results back to the task pool manager. The task pool manager stores
the results in the proper place: intermediate results are delivered to other MDFi (that,
as a consequence, may become fireable); final results are stored, such that subsequent
eval.getResult calls can retrieve them.

Remote servers are implemented as Java RMI servers, see Figure 2. The scheduler forks
a control thread for each remote server. Such a control thread looks up a reference to one
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Figure 2. Lithium implementation outline.

server in the RMI-registry, by issuing a call to the static lookup-method of the standard
java.rmi.Naming-class. Then it sends the MDFE graph to be executed and eventually
enters a loop. In the loop body, the thread fetches a fireable instruction from the task
pool that is joined to the scheduler on the local machine, asks the remote server to execute
the MDFi and deposits the result in the task pool.

4. Future-Based RMI

Using the RMI (Remote Method Invocation) mechanism in distributed programming has
the important advantage that the network communication involved in calling methods on
remote servers is transparent for the programmer: remote calls are coded in the same way
as local calls.

4.1. The Idea of Future-Based RMI

Since the RMI mechanism was developed for traditional client-server systems, it is not
optimal for systems with several servers where server/server interaction is required. We
illustrate this with an example of a pipeline application: here, the result of a first call eval-
uating one stage is the argument of a second call (lithiumServerl and lithiumServer?2
are remote references):

partialResult
overallResult

lithiumServerl.evalStagel(input);
lithiumServer2.evalStage2(partialResult);

Such a code is not directly produced by the programmer, but rather by the run-time
support of Lithium. In particular, any time a Pipeline skeleton is used, such code will
be executed by the run-time system of Lithium to dispatch data computed by stage ¢
(partialResult) to stage i + 1.

When executing this example composition of methods using standard RMI, the result
of the remote method invocations will be sent back to the client, as shown in Figure 3 a).
When evalStagel is invoked (arrow labeled by @), the result is sent back to the client,
(@), and then to LithiumServer2 (®). Finally, the result is sent back to the client (@). For
applications consisting of many composed methods like multistage pipelines, this schema
results in a quite high time overhead.
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Figure 3. Method composition: a) using plain RMI, and b) using future-based RMI.

To eliminate this overhead, we have implemented a future-based RMI, based on the
concepts that have been proven useful for other programming languages and communica-
tion technologies [27-29]. As shown in Figure 3 b), an invocation of the first method on
a server initiates the method’s execution. The method call returns immediately (without
waiting for the method’s completion) carrying a reference to the (future) execution result
(@). This future reference is then used as a parameter for invoking the second method
(®). When the future reference is dereferenced (@), the dereferencing thread on the server
is blocked until the result is available, i. e.until the first method actually completes. The
result is then sent directly to the server dereferencing the future reference (®). After the
completion of the second method, the result is sent to the client (®).

Compared with traditional RMI, the future-based mechanism can substantially reduce
the amount of data sent over the network, because only a reference to the data is sent
to the client, whereas remote data itself is communicated directly between the servers.
Moreover, communications and computations overlap, thus hiding latencies of remote
calls.

4.2. Implementation of Future-Based RMI

In future-based RMI, a remote method invocation does not directly return the result
of the computations. Remote hosts immediately start the execution of each call, but
rather than waiting for its completion, an opaque object representing a (remote, future)
reference to the result is returned. The opaque object has type RemoteReference, and
provides two methods:

public void setValue(Object o) ...;
public Object getValue() ...;

Let us suppose that fut is a RemoteReference object. The fut.setValue(o) method
call triggers the availability of the result and binds Object o to fut, which has been
previously returned to the client as the result of the execution of a remote method. The
fut.getValue() is the complementary method call. It can be issued to retrieve the value
bound to fut (o in this case). A call to getValue() blocks until a matching setValue (o)
has been issued that assigns a value to the future reference.

The getValue() method call can be issued either by the same host that executed
setValue(...) or by adifferent host, therefore RemoteReference cannot be implemented
as remote (RMI) class. It is rather implemented as a standard class acting as a proxy.
There are two possible situations:
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1. If matching methods setValue(...) and getValue() are called on different hosts,
the bound value is remotely requested and then sent over the network. In or-
der to remotely retrieve the value, we introduce the class RemoteValue (having
the same methods as RemoteReference), accessible remotely. Each instance of
RemoteReference has a reference to a RemoteValue instance, which is used to re-
trieve an object from a remote host if it is not available locally. The translation of
remote to local references is handled automatically by the RemoteReference imple-
mentation.

2. If, otherwise, matching methods setValue(...) and getValue() are called on the
same host, no data is sent over the network to prevent unnecessary transmissions of
data over local sockets. A RemoteReference contains the IP address of the object’s
host and the (standard Java) hashvalue of the object, thus uniquely identifying it.
When getValue() is invoked, it first checks if the IP address is the address of the
local host. If so, it uses the hashvalue as a key for a table (which is static for
class RemoteReference) to obtain a local reference to the object. This reference
is then returned to the calling method. A remote call for retrieving a value from
a RemoteReference, is only executed, if the object holding the value is actually
located at a remote server.

Internally, remote references handle the availability of results using a simple boolean
flag. Once a RemoteReference’s setValue method was called for the first time, this ob-
ject’s getValue-method will not wait anymore. It is in general not a good practice to issue
subsequent calls to setValue for resetting RemoteReferences, because RemoteReferences
can not be cached properly using a simple hash table when they are assigned more than
once, nor does the class provide any kind of multistage notification mechanism. As
RemoteReferences are cached by the servers, they are not garbage collected automat-
ically. The scheduler explicitly causes a permanent deletion of a RemoteReference, once
the corresponding MDFi has no more successors in the MDF graph, i.e. there is no
remote post-processing necessary

5. Optimization Techniques Applied to Skeletons

In this section, we describe three optimization techniques for the Lithium skeleton
system, which are based on the future-based RMI mechanism presented in the previous
section. All three enhancements are transparent to the application programmer, i.e.an
existing Lithium application does not require any changes to benefit from them.

5.1. Task Lookahead on RMI servers

We call our first optimization technique “task lookahead” a server will not have to get
back to the task pool manager every time it is ready to process a new task. The immediate
return of a remote reference enables the scheduler to dispatch multiple tasks instead of
single tasks. When a server is presented with a new set of tasks, it starts a thread for
every single task that will process this task asynchronously, producing a reference to the
result. This is particularly important if we use multi-processor servers, because it allows
the multithreaded implementation to exploit all available processors. However, even a
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single-processor server benefits from look-ahead, because transferring multiple tasks right
at the beginning avoids idle times between consecutive tasks.

A Lithium program starts its execution by initializing the available servers and binding
their names to the local rmiregistry. Then the servers wait for RMI calls. There are
two kinds of calls that can be issued to a server:

e setMDFGraph, used within the setProgram-method of the scheduler to send a macro
data flow graph to a server. This remote call happens transparently to the program-
mer, who uses setProgram as shown in Section 3. The information in the transferred
graph is used to properly execute the MDF1i that will be assigned later to the server
for execution.

e An execute call is used to force the execution of MDFi on a remote node. Also this
remote method is never called by the programmer directly, but it is called by the
control threads during the evaluation of the parDo-call shown in Section 3.

In the original Lithium, each control thread performs the following loop [14]:

while (!taskPool.isEmpty() && '!end) {
tmpVal = (TaskItem[])taskPool.getTask();
taskPool.addTask(Ske.slave[im] .execute (tmpVal));
}

i.e.it looks for a fireable instruction (a task according to Lithium terminology), invokes
the execute method on the remote server and puts the resulting task back to the task
pool for further processing. Actually, each control thread and its associated server work
in sequence; the behavior is sketched in Figure 4. Therefore, each Lithium server has an
idle time between the execution of two consecutive tasks:

time
Lithium Application (Control Thread)

get task
from TP
A

RMI comm RMI comm RMI comm

execute execute i

Lithium Server

add task
to TP

get task
from TP

Figure 4. Server’s idle time in original Lithium implementation.

The lookahead-optimization aims at avoiding idle times at the servers. Servers are
made multithreaded by equipping them with a thread pool. As soon as a server receives
a task execution request, it selects a thread from its pool and starts it on the task. After
this invocation (and before the thread completes the task), the server returns a handle
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to its control thread, thus completing the RMI call. In this way, the control thread may
continue to run, extracting as many new fireable tasks from the task pool as currently
available and assigning them to the same server. Simultaneously, some of the server’s
threads may be still running on previous tasks. As we shall see in Section 5.3, the amount
of tasks looked ahead can be bounded within a heuristically chosen range in order to
prevent load unbalance among servers.

As a result, we can have many threads running on a single server, thus exploiting the
parallelism of the server. In any case, we eliminate control thread idle time by overlapping
useful work in each server with running its control thread. Since having multiple threads
per server also increases the control thread pressure, the MDFi computational grain should
be not too small w.r.t. communication grain. MDFi computational grain directly depends
on code enclosed within sequential skeletons (run method of JSkeleton coded by the
programmer), while communication grain depends on their input and output data size. In
general, finding a communication /computation balance is the programmer’s responsibility.
However, even if this has not been done, Lithium can coarsen the computational grain in
the server by collapsing many MDFi(s) into a single one. This transformation converts
tokens passing thru collapsed MFDi (i.e. communications) in local memory operations
thus coarsening computational grain. The full description of this technique (a.k.a task
normalization) is beyond the scope of this paper |14,26].

5.2. Server-to-Server Lazy Binding

Our second optimization technique is called “lazy binding™ a remote server will only
execute a new MDFi from the graph if necessary; analogously, the scheduler will not
wait for a remote reference to produce the future result.Here, we use remote references
to avoid unnecessary communications between control threads and remote servers. Our
implementation of remote references uses hash tables as local caches, which leads to the
caching of intermediate results of the MDF evaluation. The system will identify chains
in which each task depends on previous ones and make sure that such sequences will
be dispatched to a single remote machine. Thus, a sequence of dependent tasks will be
processed locally on one server, which leads to a further reduction of communication.

If no post-processing of an MDFi is specified in the MDF graph, then it does not
need to be cached anymore. Once such an MDFi has been processed, the associated
RemoteReference is removed from the cache by the server, which makes it eligible for
garbage collection.

Let us consider again the evaluation of the sequence of two functions, f and g, on a
stream of data as in our first example in Section 3. The program can be expressed using
the Pipeline skeleton, whose two stages evaluate f and g, respectively. The behavior of
the original Lithium system on this program is shown in Figure 5 a):

(i) The control thread fetches a fireable MDF-instruction and sends it to the associated
server (®). The MDF-instruction includes a reference to the function T f and the
input data x;.

(ii) The Lithium server executes the instruction and sends the resulting data y; back to
the control thread (@).

(iii) The control thread deposits the result in the task pool that makes another MDF-
instruction 1 g(y;) fireable. It will be then fetched by either the same or another



10 Marco Aldinucci, Marco Danelutto, Jan Diinnweber and Sergei Gorlatch

control thread and sent to the server (®).
(iv) After the evaluation, the whole execution z; = g(f(z;)) is completed (@).

(...)
8C.) 8C-) (- LithiumServer 8- LithiumServer
MDF MDF MDF (multithreaded) MDF  (multithreaded)

LithiumServer LithiumServer

Figure 5. Communications between the Task Pool and Servers. a) Original Lithium. b)
Optimized implementation using lazy binding.

The goal of the lazy binding optimization is reducing the size of communications @ and
®. Without lazy binding both, the reference to the function to be executed and its input
data are transmitted in these communications, the latter being the large part. Since the
input data might be computed in a previous step by the same server, we can communicate
a handle (the RemoteReference) for the input/output data instead of their actual values.
In this way, each server retains computed values in its cache until these values are used. If
they are used by the same server, we greatly reduce the size of round trip communication
with the control thread. If they are used by another thread, then we move the values
directly between servers, thus halving the number of large-size communications.
The optimized behavior is shown in Figure 5 b):

(i) The control thread fetches an MDF-instruction and sends it to a server (@).

(ii) The Lithium server assigns the work to a thread in the pool and, immediately, sends
back the result handle T y; (@). The message may be extended with the completing
token ¢, for a previously generated handle j (i > j) in order to make the control
thread aware of the number of ongoing tasks.

(iii) The control thread deposits the result in the task pool that makes another MDF-
instruction 7 ¢g(7y;) fireable; it will be fetched by either the same or another control
thread and sent to its associated server (®). Let us suppose the instruction is fetched
by another control thread.

(iv) The server immediately returns the handle to the control thread (@).

(v) To evaluate Tg(Ty;), the server invokes getValue() on Ty; (©).

(vi) Value y; arrives at the server (@), thus enabling the evaluation of g(y;).

Note that if f and g are evaluated on the same server, then the communications @ and
® do not take place at all, since references are resolved locally.
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Lazy Binding for Data-Parallel Computations.

The execution of skeletons like Map or Farm with no dependencies between data ele-
ments are performed as data-parallel computations, i.e. these skeletons are parallelized
by partitioning the input data and processing all partitions in parallel, which is carried
out in Lithium as follows:

e a task x is divided into a set of (possibly overlapping) n subsets xq - - - x,;

e cach subset is assigned to a remote server;

e the results of the computation of all the subsets are used to build the overall result
of the data-parallel computation.

This implies the following communication overhead (see Figure 6 a):

e n communications from the task pool control thread to the remote servers are needed
to dispatch subsets;

e n communications from the remote servers to the task pool control threads are
needed to collect the subsets of the result;

e one communication from the control thread to a remote server is needed to send the
subsets in order to compute the final result;

e one communication from the remote server to the task pool control thread is needed
to gather the final result of the data-parallel computation.

The lazy-binding optimization implies the following behavior (Figure 6 b):

e cach time a data-parallel computation is performed, the task pool control thread
generates and dispatches all “body” instructions, i.e.instructions that compute a
subset of the final result. The remote servers immediately return handles Ty, - - - Ty,
(RemoteReferences) representing the values still being computed;

e after receiving all handles, the control thread dispatches the “gather” MDFi (i. e. the
instruction packing all the sub-results into the result data structure) to the remote
server hosting the major amount of references to sub-results. Thereby, the dispatcher
assigns the gathering task to the server that already holds the largest number of
references. When this instruction is computed, the result is sent back to the task
pool.

Thus, we avoid moving the intermediate results back and forth between the task pool
threads and the servers in both the execution and gathering phases.

5.3. Load-Balancing

In this section, we describe how the load-balancing mechanism of Lithium is adapted to
the optimized evaluation mechanisms presented above, in order to achieve a stable level
of parallelism on all servers. This is accomplished by measuring the number of active
threads on the servers.

Our asynchronous communications lead to a multithreaded task evaluation on the
servers. The scheduler can dispatch a task by sending it to a server, which is already
evaluating other tasks, so that the server will start evaluating the new task in parallel.
We implemented this server-side multithreading using a thread pool, which is more effi-
cient than spawning a new thread for each task. However, tasks may differ in size, and
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Figure 6. Executing a data-parallel skeleton: a) original Lithium; b) optimized.

machines in a Grid are usually heterogeneous. Without a suitable load-balancing strategy,
this may lead to an inefficient partitioning of work.

To balance the load in the system, we measure the current load of each grid server.
One possibility would be to use a new remote method, which, however, implies addi-
tional remote communication. Instead, we exploit the fact that the scheduler already
communicates frequently with the remote servers when it dispatches tasks. We extend
communicated data records by a value that reports to the scheduler the actual work-load
on the server. So, every time the scheduler sends a task to a server, it gets the number
of threads currently running on that server. The scheduler can re-check this number and,
if there is already much load on this server, it can decide to release the task again and
wait instead. Accordingly, another scheduler thread will process the task by sending it to
another server.

So, dispatching tasks and measuring work-load can be done in one remote communica-
tion as shown in Figure 7: Here, we have a maximum number of six active threads per
server. Dispatching tasks to server 1 and server n yields the actual work-load (five active
threads at server 1, six active threads at server n), which means that the scheduler can
continue to dispatch tasks to these servers. But for a server that has already reached the
maximum number of active threads (server 2 in the figure), the scheduler waits until the
number of active threads has fallen below the limit.

With many remote servers and, correspondingly, control threads running in the sched-
uler, the measured value may already be obsolete when the next task is sent. However,
since asynchronous communication causes tasks to be dispatched with a high frequency,
the suggested technique is precise enough for an efficient load balancing. This has also
been proved by our experiments that included checkpointing.

6. Experiments

For the evaluation of our optimizations, we conducted performance measurements on
three different distributed platforms:

(i) A dedicated Linux cluster at the University of Pisa. The cluster hosts 24 nodes:
one node devoted to cluster administration and 23 nodes (P3@ 800MHz) exclusively
devoted to parallel program execution. Described in Section 6.1.
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Figure 7. Communication schema for the load balancing mechanism.

(ii) A distributed execution environment including Linux and Sun SMP machines. The
client runs on a Linux machine in Miinster and the servers run on a set of Sun SMP
machines in Berlin. Described in Section 6.2.

(iii) A Grid-like environment, including two organizations: the University of Pisa (di.unipi.it)
and an institute of the Italian National Research Council in Pisa (isti.cnr.it). The
server set is composed of several different Intel Pentium and Apple PowerPC com-
puters, running Linux and Mac OS X respectively (The detailed configuration is
shown in Figure 10 left). The comparison of computing power of machines is per-
formed in terms of BogoPower, i.e.the number of tasks per second which a given
machine can compute running the sequential version of the application. Described
in Section 6.3.

The three testing environments represent significantly different scenarios:

(i) is characterized by uniform computing power and high-bandwidth communications
across the whole system (client and servers);

(ii) has low latency and high bandwidth for server-to-server communication, while the
client is connected to the servers with a fairly slow connection.

(iii) shows a heterogeneous distribution of computing power and interconnection speed,
typical for grids.

The image processing application we used for our tests employs the Pipeline skeleton,
which applies two filters in sequence to 30 input images. All input images are true-
color (24 bit color depth) of 640x480 pixels size. We used filters from the Java Imaging
Utilities (available at http://jiu.sourceforge.net) that add a blur effect and an oil effect.
Note that these are area filter operations, i.e. the computation of each pixel’s color does
not only impact its direct neighbors, but also an adjustable area of neighboring pixels.
By choosing five neighboring pixels in each direction as filter workspaces, we made the
application more complicated and enforced several iterations over the input data within
each pipeline stage, which makes our filtering example a good representative for a compute
intensive application.

Despite its simplicity, the application presented here, which is based on a single pipeline,
represents a significant and complete test for our optimizations. Indeed, the Pipeline is
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the simplest skeleton among all the skeletons offered by Lithium that exhibits control
dependencies and a compositional behavior, like described in Figure 3 and Figure 5. This
kind of interaction is typical for the MDF evaluation mechanism of Lithium and occurs
in more sophisticated application repeatedly, but with no technical differences concerning
the communication schema (see [14]). Actually, the only programs that do not interact like
shown in Figure 3 and Figure 5 are applications composed of the plain Farm skeleton only,
which can not benefit from Lazy Binding since it does not involve any Server-to-Server
interaction.

Load-balancing for the future-based version was adjusted to the maximum of six con-
current threads per node. The lower limit was set to two threads. These values enable the
exploitation of both task-lookahead optimization and thread parallelism on standard SMP
systems, while not introducing excessive overhead due to multithreading management. All
experiments were performed using the Sun J2SE Client VM SDK version 1.4.1.

As shown in the following sections, the optimized Lithium demonstrates a clear time
advantage over the standard version along all tested configurations.

6.1. Dedicated Cluster (environment i)

Figure 8 (left) shows the measured time in seconds, for both the original Lithium and
the optimized version running on the dedicated cluster in Pisa. The speedup in the
right part of the figure is calculated with respect to the plain Java sequential version of
the application running on one node of the same cluster (execution time 446 Sec). The
plots show that the future-based version performs approximately twice as fast as standard
Lithium.

700 ‘ —— ‘ 16 : s : ‘
opt. Lithium —— opt. Lithium ——
600 orig. Lithium -~ ] 14 ¢ orig. Lithium e
12 | ideal -~ T
& 900 %
8 400 s
s 300 g 8
E S 6
200 ¢ 4
100 5 s
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Cluster Nodes (including 1 client node) Cluster Nodes (including 1 client node)

Figure 8. Measured execution times and speedup on the cluster (i).

In the example application, three kinds of activities take place: communication, compu-
tation, and data I/O. Task lookahead allows to overlap these activities, while lazy binding
ensures that the whole data transfer between the stages of the pipeline takes place on the
server side without client interaction.
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6.2. Distributed Environment (ii)
Figure 9 shows the execution time for both the original Lithium and the optimized
version running in the environment (ii). The tests demonstrate a clear increase in perfor-
mance due to our optimizations, in particular to the lazy-binding mechanism.
By introducing server-to-server communica-
tion, the transmission of data between client
and servers is reduced considerably. The

fastest connections of the network (the inter- 322 - A —

connection between the servers in Berlin) are 600 |

used for handling the biggest part of data ex- % 500 :

change instead of tracing back each communi- <. 400 L

cation to the scheduler host with a much slower £ 300 ]

connection. 200 ¢ \\ ]
100 | ]

6.3. Heterogeneous Environment (iii) o 5 5 ]

Figure 10 compares the optimized version Number of Servers

against the standard one in the heterogeneous

environment (iii), whose composition is listed Figure 9: Run times in environment (ii)
in Figure 10 left. To take the varying com-

puting power of different machines into ac-

count, the performance increase is documented

by means of the BogoPower measure, which enables the comparison between application’s
actual parallel performance and the application ideal performance (Figure 10 right).
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Figure 10. Left: Test environment (iii). Right: Execution times vs. increasing (Bogo-
Jpowerful ordered server set.

Parallel speedup usually assumes that all machines in the running environment have
the same computational power, which is often not true in grid-like environments. The
BogoPower measure describes the aggregate BogoPower of a heterogeneous distributed
system as the sum of individual BogoPower contributions (Figure 10 left). Application



16 Marco Aldinucci, Marco Danelutto, Jan Diinnweber and Sergei Gorlatch
400 713/ 400 4xP4@2 E;GH
Y% Xi 4 z 0,
- 350 | > % 350 [ has been \\ 20%
H g o \ N
g 300 - o) 11| 24% g 300 [ oveﬁggﬁgh{lere \\\ §
@ 250 | ?/’\§ 2 1 @ 250 \\\\\&\\\\Q“\\:\ ! |1 |36%
] GRS ) SRR
© 200 f Bt 1 © 200 | \\&i\\\ g & S5
Bso f 7 leass & 1507 % .
2100 4, 1 2100 ST % £ 44%
(2] | i » | /3§> /;>’§> 20988
< 50t/ < 50 /{ /
0 : 0L
0 50 100 150 200 0 50 100 150 200

Wall Clock Time (Secs)

Wall Clock Time (Secs)

Figure 11. Detailed history of tasks scheduling. Left: All machines are dedicated to the
experiment. Right: One of the machines is externally overloaded from time 10 to 70.

ideal performance curve is evaluated w.r.t. a system exploiting a given BogoPower rank,
assuming both an optimal scheduling of tasks and zero communication costs.

We use environment (iii) for studying to what extent the heterogeneity challenge of
grids is met by our improved load-balancing strategy. The Lithium runtime system con-
tinuously monitors the servers’ states and raises or drops the number of threads corre-
spondingly. To demonstrate the dynamic load-balancing behavior of the scheduler, we
performed two identical experiments with differing load on one of the involved machines.
First (Figure 11 left) all machines were
dedicated to the experiment. Then, in the

second experiment (Figure 11 right) fewer 16 [ o mabhine has N, of Trvoads 16
tasks are dispatched to the most powerful 14 | been arificaly Service Time 114
machine, because this machine was heavily —_ 127 112 8
loaded by another application. s 10 11002
Figure 12 shows the history of threads is- o 8| N 18 %
sued to the overloaded machine: When the & © E W 16 =2
machine load grows too much, the sched- 4 14
uler drops the number of active threads i e i
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iment).  This decision is supported by
the system-wide historical statistics, main-
tained by the load-balancing module of the
client.

Figure 12: Throttling in task scheduling.

7. Related Work and Conclusions

In this paper, we have described three optimization techniques aimed at an efficient
implementation of parallel skeletons in distributed grid-like environments with high com-
munication latencies. As a reference implementation, we took the Lithium skeleton library.

We studied the effects of three optimizations based on the asynchronous, future-based
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RMI mechanism: (1) dispatching batches of tasks, rather than single tasks, to remote
servers (“task lookahead”); (2) caching intermediate results on the remote servers, thus
allowing to reduce the communication overhead (“lazy binding”); (3) adapting the load-
balancing strategy to the multithreaded evaluation mechanism initiated by the task looka-
head and implementing it without a large increase in remote communication: the messages
carry one additional value, but the number of messages remains unchanged.

Several research projects investigated asynchronous RMI in Java [16,30,31|. In almost
all of them, the programmer is responsible for writing the asynchronous invocations.
In contrast, our future-based implementation encapsulates the modified communication
schema into the skeleton evaluation mechanisms of the Lithium system, without demand-
ing from the programmer to take care of the internal changes. Internally, our implemen-
tation uses the future-mechanism introduced in [16], but these core methods could also
be replaced by e.g. ProActive that implements concepts described in [30], without affect-
ing the high-level interface provided by Lithium. In [32], RMI calls are optimized using
call-aggregation, where a server can directly invoke methods on another server. While
this approach optimizes RMI calls by reducing the amount of communicated data, the
method invocations are not asynchronous as in our implementation: they are delayed to
find as many optimization possibilities as possible.

All three optimization techniques have been integrated into Lithium transparently to
the user; i.e., applications developed on top of the original framework can directly use the
optimized version without any changes in the code. The presented optimizations can easily
be applied to other skeleton programming environments than Lithium. Furthermore, they
are not restricted to RMI as a communication mechanism.

The broad applicability of our optimizations is confirmed by the fact that currently we
are considering the adoption of these techniques in ASSIST [33], a system that exploits in
part the experiences gained from Lithium and that runs upon different kinds of modern
grid middleware (plain TCP/IP and POSIX processes/threads, CORBA and the Globus
Toolkit [34]).
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