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Abstract The design, implementation and deployment of efficient ligiformance ap-
plications on Grids is usually a quite hard task, even in #ese¢hat modern and
efficient grid middleware systems are used. We claim that ofdke difficulties
involved in such process can be moved away from programrsporesibility by
following a structured programming model approach. Thegpsed approach
relies on the development of a layered, component basedt@xeenvironment.
Each layer deals with distinct features and problems rélate¢he implementa-
tion of GRID applications, exploiting the more appropriééehniques. Static
optimizations are introduced in the compile layer, dynaagtmization are in-
troduced in the run time layer, whereas modern grid middiewWeaatures are
simply exploited using standard middleware systems as tiaé tirget archi-
tecture. We first discuss the general idea, then we discespetuliarities of
the approach and eventually we discuss the preliminanjtseachieved in the
GRID.it project, where a prototype high performance, congm based, GRID
programming environment is being developed using thisaaapr.
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1. Introduction

The development of efficient high performance grid applcet requires a
consistent programming effort and a huge amount of knovdeaty both the
Grid technology and the Grid middleware. Grid architectuage basically
distributed, wide area, heterogeneous and dynamic neswafrkomputing re-
sources sharing acommon middleware. As a wide area ditgdlarchitecture,
the grid inherits all the problems typical of distributeshgauting/programming,
made even worse because of the high latencies involved imeoncations.
As a heterogeneous network, important actions have to lea takallow com-
putations to be spread across a range of different machieeslifferent CPUs,
different OS, etc.). Last but not least, as a dynamic setmifpeding resources,
further actions have to be programmed to take into accoangtid nodes can
suddenly become unreachable or even that they can becoraantbmore busy,
to the point that their support to the computation at handiess negligible. In
this work, we want to discuss a methodology that enforcedl¢ivelopment of
very efficient, high performance, grid programming envinremts. The focus is
on high performanceWe basically want to be able to use grid architectures to
perform those computations thaedgrids as a substitute of powerful and very
expensive massively parallel machines. In case the foaus ligrge data han-
dling or on ubiquitous computing, rather than on high perfance, different
problems are to be faced and different solution can be egwisaln particular,
looking for high performance out of grids we are interestegroviding several
different properties, namely:

= scalability, that is the ability to run high performance applications on
differently sized grid architectures, without incurring any additional
overhead introduced by the run time support used

= fault tolerance that is the possibility of completing a high performance
application execution even in presence of typical grid ieckure faults,
such asthe temporary inaccessibility of a node due to n&timiefailures
or the shutdown of a non dedicated processing node, as arpkxam

= adaptivity, that is the ability to adapt high performance computatien b
havior to the instantaneous features of the grid targeitaathre. Adap-
tivity, by the way, requires that both static policies aredjghatis compile
time policies leading to the implementation of adaptabléec@nd dy-
namic policies, that is run time policies that allow to prdpeeact to
target architecture feature changes.

Currently, grid application development is mainly perfedrdirectly exploit-
ing in the source code the features provided by the grid reidalte at hand.
The classical picture from the first grid works shown in Fegar(left) is still
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Figure 1. Classic hierarchy in grid application development (left) the layered alternative
approach (right)

depicting the actual current grid application schema. Bothase the mid-
dleware available is very general purpose (e.g. plain GiqBa] or Unicore
toolkits [19, 28]) or in case it already provides some kindhigfer level pro-
gramming abstraction (e.g. GridRPC [25]), the programmsereqguested to
go down to the middleware logic in order to implement a pafafid appli-
cation. In case the goal includes the "high performanceays, the kind
of knowledge required to the programmer is very high. Whenguglain,
low level middleware systems, the programmer must explipitogram all the
activities related to program decomposition, schedulind deployment, to
communication scheduling and management, to synchromizaandling, to
fault tolerance and possibly to adaptivity. In case higkeel tools are used,
the programmer still needs to cope with program decompuositault tolerance
and adaptivity, while other items are automatically deathwy the compiler
and/or run time support. Furthermore, whenhigh performanceoal is to be
achieved, the development of grid applications requiresibée performance
tuning phase/activity. The programmer, after exploiting his kiemlge on the
middleware to write the grid application has to exploit tlzene knowledge
to refine all those aspects affecting the application perémce. The problem
here is that most of these aspects are deeply interrelatbdheifeatures of the
grid nodes used. And these features can suddenly changeintbairing the
programmer tuning actions. Even in case the features ofridlengdes does
not change, a new run on a slightly different grid architextor on the same
architecture but with different nodes involved requiresther tuning step to
achieve high performance. We claim that there is an altem&b this way
of programming high performance grid applications. Theralitive we en-
visage is based on the adoption of a higher level programmiodel for grid
applicationsand on the highly layered implementation of a programming envi-
ronment supporting the higher level programming model Bgare 1 right).
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The higher level programming model layer should provideptiogrrammer with
tools that allow the invisible grid goal stated by NGG (Nexr@ration Grid)
expert group to be achieved [20]. The compiler tools layeukhimplement
all the known policies, strategies and heuristics that @agplied statically to
target grid features. The run time system layer should impl& all the known
policies, strategies and heuristics that can be appliedrdyjcally to target grid
features. The middleware/operating system level mustigeoall the mecha-
nisms (and only the mechanisms) needed to implement the lgy@e policies.
Therefore the classical middleware toolkits (comprehegaill the three upper
layers of Figure 1 left) can be placed internally to the loveser of the right
figure, provided that only mechanisms of these toolkits aexlu To support
our claim, we structured this paper as follows: Section Armeg a component
based programming model aimed at representing a viableehigvel alter-
native to the direct usage of plain grid middleware in highfqgrenance grid
application programming. Section 3 explains how such @egning model
can be implemented on top of existing or new grid middlewhyeadopting a
layered approach such as the one depicted in Figure 1 (riguhh Sections
built on the studies performed and on the results achievabtarcontext of
the GRID.it [22] project. GRID.it is a three-year projechding in 2005 that
involves major Italian universities and research ingotg. Within the project,
our group is responsible of a work package whose goal is tdyme a pro-
totype high performance grid-programming environment $#&8T [32, 5, 12,
7]). In Section 4, we will discuss the results achieved indesign of ASSIST,
according to the alternative approach to high performamiceagplication de-
velopment proposed in this paper. Eventually, Section &udises references
to related work and Section 6 hosts the conclusions.

2.  Component based grid programming

Some interesting, component based programming models e pro-
posed to be used in the grid context. In particular, the CORBAponent
Model (CCM [26]) and the Common Component Architecture (G€Ampo-
nent model [11] have been widely discussed in the grid con@ther models,
coming from different experiences, such as JavaBeans\{#&),Services (WS
[34]) and Microsoft .NET [18] are currently being considéria the field of
grid programming although neither the web services modelMET can be
properly called component models. In the context of theaalyementioned
GRID.it project, our group introduced a fairly new componleased program-
ming model. Components can be either parallel or sequeritegacy CCM
components and WWW web services are assumed to be usablguesntal
GRID.it components via proper wrapping.
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Componentinteraction GRID.itcomponentsinteract using three basic mech-
anisms:

use/provide ports inherited from the classical component model. Use/provide
ports are basically used to implement RPC-like componeatawtion.

events inherited from CCM. Events are basically used to implementgonent
synchronization.

data flow streams These are new. A data flow stream is basically a kind of
use/provide mechanism that it is used to implement efficiené-way
data flow communication between components. A componerurexp
data flow source port that can be used by another componeatdata
flow sink port. Overall this provides a way to transfer typedaditems
from the first component to the second one.

Even though data flow streams can be easily implemented nmstef either
use/provide ports or events, they have been explicitlyuohetl in the set of
primitive mechanism to enforce the concept that they pmwagtimized, high
performance inter-component communication mechanisnishése mecha-
nisms are used to implement two distinct component integfac

the functional interface exposing the component functional behavior to the
other components. Using the mechanisms implemented imtieidace
a component can use the services provided by another comiptme
actually compute a result

the non-functional interface providing mechanisms that can be usedan-
trol the component behavior, that is, its execution featuresedisas its
interaction with the underlying grid target architecture.

Component representation and interoperability GRID.it components can
be described via XML descriptor files, much in the sense of Belvice Def-
inition Language (WSDL) [33]. Each descriptor contains deen for each
one of the use/provide, event and data flow stream interfat#se compo-
nent. The descriptor can be used to pick up components toseenaded in a
parallel application. At the moment, exact descriptor ayris still going to
be defined. There will be some kind pfiblic items in the descriptor and
some kind ofprotected items, however. The former describe the functional
interface of the component, that is all those ports needgadgrammer to as-
semble components in such a way they perform the actual datuat hand.
The later describe the non-functional interfaces, that vdlused tananage
the components within the component assembly. Interopiyalith other
component frameworks is achieved by automatically gemgratrapping of
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GRID.it components in the Web Service framework and in theViCiéime-
work. The other way round, call to Web services or to CCM congmts is
allowed and supported from within the sequential portiohsoole embedded
in a GRID.it component.

Parallel components Parallel components are those components that are in-
ternally programmed as a coordinated set of parallel dietsv{virtual proces-
sors, according to the ASSIST jargon) using the ASSIST doatidn language
[32]. Basically, a parallel component is defined by qualitdy expressing the
parallelism we want to exploit. This is performed definingeaaf virtual pro-
cessors that is logically parallel activities. The read#élrnefer to the available
literature [7] in case he wants to understand better howlpbtamponents (AS-
SIST modules) can be defined. For the purpose of this workirepdrticular
to describe the GRID.it component model, how parallel peowg are imple-
mented does not matter. What’s worth pointing out is thatralfg GRID.it
component includes eomponent manageand provides suitable ways to ac-
cess the manager facilities through its non-functionarfate. The component
manager completely controls the parallel component behaki particular, it
completely manages the interaction of the component welgtid and takes
care of managing its internal parallelism degree in such wtivat both the
application needs and the target grid features are takeragtiount. The non
functional interface hosts mechanisms that can be used tp see component
parallelism degree, to add new (eliminate) resources tan(fithe set of grid
resources taking care of component execution, to monitapoment execution
parameters, to implement fault tolerance managemenégiest, etc.

Component assembly GRID.it components can be used to build applications
according to two very different strategies. On the one hanthe kind of as-
sembly language or possibly a nice GUI can be used to commospanents
in the structure/pattern required to implement the gridiagfion at hand. In
this case, users just connect use and provide, data flowesanctsink ports or
event channels of the components they pick up to build tleesgrplication. On
the other hand, coordination components can be used to Gangoonponents
according to some well-known component composition pafteka parallelism
exploitation skeleton or parallel design pattern [13, 28).2As an example, a
pipeline componenP can be used to compose two componefitand S; in
such a way that they happen to implement two stages of a pgdin this case,
the GRID.it component framework establishes proper caiorecbetween the
non-functional interfaces of the three components (thelpip one and the two
stage components) in such a way that a hierarchy of componanagers is
created. Inthe general case, managers are always compdassesias shown in
Figure 3. The top-level component manager becomes thecapiph manager.
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Figure 2. GRID.it component structure (upper left) and Sample pigehpplication schema
(lower right)

It is responsible of coordinating the actions of the othenponent managers.
The leaf component managers are those in charge of mordlgineteract-
ing with the underlying grid middleware or node operatingteyn to arrange
proper component execution. The pipeline component marag®mes the
application managerand actually takes care of coordinating the activities of
the two stage components in such a way the resulting pipalms out to be
an high performance pipeline. This allows the pipeline congmt designers
to encapsulate in the pipeline component manager all thaseamic policies
that take care of efficient pipeline parallel programs ekenos. As an example,
the pipeline component manager mapnitor the performances achieved by
the two pipeline stages using the non-functional interf@eehanisms, it can
analyzethe performance values to understand if the pipeline iscaldand as

a consequence it cgslan some kind of corrective action (first stage is much
slower than second one: it should be made faster, if po3sibleventually it
canexecutdhe corrective action (inform the first stage applicatiomager to
recruit new or better resources to support its execution).

Target architecture management GRID.it components interact with the tar-
get grid execution environment via calls to Bed Abstract Machind GAM)
Interface. This is not a component interface actually. Gdidtract Machine
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Figure 3. Tree structure of the component managers

is a layer built on top of existing operating systems and griddleware that
virtualizes the relatively small number of mechanisms eedd deploy and run
GRID.it components on a grid: staging, point to point andemtive commu-
nications, remote commanding, resource discovery. Thegpoaent model of

GRID.it is currently being formalized and implemented. Atbeview of de-
scription of it can be found in [7, 6]. The component model hverly discussed
provides all the classical advantages of component basgdggnmming models,
namely interoperability (with CCM and WS frameworks), codese (native
component code can be written using plain C/C++ code, whoteponents
can be reused in several different applications), modylgaipplications are
composition/assembly of independently developed/impleied components),
software engineering (component design and implementatioerit most of
the more significant software engineering techniques) hénmeanwhile, the
addition of autonomic contrakithin each component adds a level of freedom
to the programmer: the component manager, as an exampls vd#daall the
details concerning grid execution of the component. Funtloee, the adop-
tion of a clear, concise and effective API abstracting thd griddleware and
operating system features, guarantees that portabilitiyeoivhole component
framework to different grid platforms just requires theimglementation of
the Grid Abstract Machine layer. Entire library of compotserexplicitly de-
signed for parallel grid computing can be developed. Comgnimhapplication
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patterns, such as task farms, pipelines, simple DAGs, camdggammed in a
GRID.it component by carefully providing the component muger code. The
GRID.it framework provides standard, customizable versiof component
managers to be used in the standard, simple cases. Thisrfurthroves the
programmability of grid applications as even in case ofélmsta-components
all the pleasant properties of component systems are tatlefin addition, the
meta-components will be provided by expert grid progransnaed the normal
users/programmers can just benefit of their existence iregeference library
to program efficient grid applications. Being the accessi¢ogrid completely
mediated by the component managers, and being standar@oentpnanagers
supplied by the component framework and sub classable gygroyour own
GRID.it component, this contributes to implement a congdleinvisible grid
usage.

3. Layered implementation

After outlining the layered approach to grid applicatiorplementation in
Section 1 and then briefly discussing the component mode¢ tprovided to
the user/programmer in Section 2, in this Section we dishagsthe two can
coexist. In particular, we discuss how the component modelke imple-
mented exploiting a layered implementation and how suclle@mentation can
efficiently support high performance execution of grid égadlons. We assume
that three layers of Figure 1 rightimplement the componaséHd programming
model Section 2. In particular, we outline in the next subeas the qualitative
behavior of the different layers, concentrating on thedtwaes in the lower
part of the Figure.

Compiler tools The compiler tool level is responsible of producing the ac-
tual object code of the component assembly representingpiplecation. This
means that basically each component has to be compiled ie kiowh of object
code, and that the framework code has to be generated asevggllthe code
needed to support component assembly). The object codaggddhould use
the facilities provided by the Run time system layer to asgeisl node facilities.
It cannot go directly to the grid middleware APIs, for instan This guaran-
tees portability of the whole component model across differarchitectures
provided that the GAM is available on the target architexturHeterogeneity
is dealt with at the compiler tool layer by producing differ@bject code for
each one of the different node architectures present imtgettgrid. If the grid
hosts Pentium/Windows nodes as well as PowerPC/Linux nedesutables
for both architectures are to be produced. This is complétahsparent to the
programmer/user. In case the actual grid used to executgpfiieation sports
both nodes, it will be a task of the run time system layer tgest@nd execute
proper code on the grid nodes. Single components can alsspheately com-
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Figure 4. Compiler tool layer

piled. However a moment when the component assembly is ggedemust
eventually exist. At this point the component assembly camafalyzed and
specific static optimizations enforcing high performanppligation execution
can be performed. As an example, take into account the pgekample of
Figure 2. In this case, the compiler can devise the type ofithe exchanged
between first and second stage, and, as the pipeline conmpsnsed to man-
age the two stages, it can insert any communication opttrorzanproving the

performance of the stream communication of that partictylee of data. For
instance, if the data to be transmitted is small size, conication aggregation
can be automatically inserted in the code, to provide b&itency hiding. As

the pipeline component is only used to compose componeatsniieract via

(possibly infinite) data flow stream, this does not impairgoeon semantics
nor it changes the application programmer perception oafi@ication exe-
cution, but for showing a possibly better performance. Falgrance is also
taken into account at this level. Known techniques to imgetrcomputation
checkpoints or to program handling of faulty nodes can be tsémplement

additional code in the component manager as well as in thgopent func-

tional code. Again, this can be implemented once and fonahé component
(assembly) compiler by experts of both grid technology andtfolerance tech-
niques, and the application programmers can be left coriplenaware of the
fact that fault tolerance is currently implemented in thgeobcode. In general
all the known static optimization techniques can be exptbit the compiler
tools level, also exploiting the knowledge directly comfngm the knowledge
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of the application high-level structure, i.e. of the compainassembly making
the application.

Runtime systemlayer The runtime system layer is responsible of supporting
the execution of the object code produced at the compilds lager. There-
fore this layer includes all the libraries and componentstoeeded to run the
component code. It also takes care of the following tasks:

= |ooking for the grid resources needed to execute the codsying the
grid middleware through the interfaces provided by the Gvibtract
Machine. The initial requirements of resources are prodatecom-
pile time. The application and component managers alse iesource
requirements that have to be satisfied by the run time systgen |

m |oading the proper object code at the grid nodes selectegrfigram
execution. This possibly requires on the fly compilation led bbject
code, to obtain architecture specific object code out of-feghl object
code

= executing the proper processes/threads at the remote@tebrused to
execute the application
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= supporting the execution of the component managers, thatgsovide
all the monitor activities needed to support manager arsadywl decision
planning and to allow the manger execute its plans

The component managers of the GRID.it components actualhpén to be
placed at this layer. They implement all those dynamic otion strategies
that are typical of high performance application suppor.aA example, appli-
cation and component managers can plan component deplogirenges, that
is migration of components from one grid node to a differard,do minimize
the measured communication overhead. Or they can plan tpgromputa-
tions (that is, components) that were originally placed wmtirttt node onto
a single one to exploit sharing of data through efficient, inmory mecha-
nisms. In the run time system layer performance contraetsiso managed.
Performance contracts are assigned to components usimgnémefunctional
interface. Basically, a performance contract is some kirdgh-level descrip-
tion of the kind of performance behavior the programmer/psetends to get
out of the component. We are currently considering perfogaacontracts
asking for a giverservice timeof an application, that is, asking the system to
be able to deliver results corresponding to different, ecosve input stream
data items at intervals no longer than a given time. We ateassuming a per-
formance contract is represented by an XML file written adogy to a given
XML document type definition (DTD). The user must provide afpenance
contract to the application manager, that is the mangeretdp-level appli-
cation component. Such performance contract may requsranaxample, a
given service time, that is a given inter-delivery time & tasks computed by
the component assembly out of the input stream data. Thieakigpntract is to
be suitably propagated to the components managed by thewelzomponent.
In Figure 2 right, the performance contract provided by teerfprogrammer
to the pipeline component is propagated to the pipelineestagnponents
and Ss. In case the performance contract originally provided t fpeline
process was a service time contract, it is simply propagtietie pipeline
stage component managers, as the service time of the whpskng is given
by the maximum of the service time of its stages. In case tiggnat contract
was a parallelism degree one, that is a contract asking getime application
manager to execute the application with a given paralletisgree, the pipeline
manager first devises a(possibly equal) subdivision of #rallelism degree
among the two stages, then propagates the requirementgtatigecomponent
managers, and eventually monitors the performance of #ge stomponent to
understand whether a different subdivision of the paiatieldegree has to be
implemented to keep the two stages balanced.

Interaction with grid middleware Most of the activities performed in the run
time system layer require an interaction with the undedygnid middleware
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through the GAM API. As an example, the discovery of the adé resources
to be used to run the component application is performedyqgethe resource
management subsystem of the grid middleware at hand. T mécessity, in
terms of grid node resources, to execute the applicatioariget! statically by
the compiler tool layer. The application manager inteptieis initial need and
queries the grid middleware to find out the needed resoutentually, when
the needed resources have been discovered and recruiteldomputation of
the component application, code is deployed to them (usiogher part of the
GAM API), this code execution is started, etc. Overall, the time system
uses a restricted set of the underlying grid middlewareuitinache GAM API
to execute component code. In a sense, this restricted ARtitges a sort
of grid operating system API, in that it provides the basichamisms needed
to run applications onto the grid. This minimal APl must umé: authen-
tication and accounting facilities, resource managemgstems, supporting
resource discovery and resource reservation, at least,stading facilities, re-
mote commanding facilities, and point-to-point and cdlieccommunication
and synchronization facilities. It is worth pointing outttthese features are
basicmechanisms All the policies are encapsulated in the run time system
layer or in the code produced by the compiler tools layer amdim the run
time system framework. This implies that the GAM API will bptimized to
provide only those mechanisms that actually support higfopeance com-
puting, leaving outside those mechanisms that cannot leetassupport high
performance applications because of their poor performéigares.

4.  ASSIST: afirst instantiation of our methodology

ASSIST (A Software development System based upon Intej@keleton
Technology) [32, 5, 12, 3] is the high performance paraliepamming envi-
ronment being developed in the framework of the GRID.itdiahational three
year project [22]. It was initially conceived as a programgienvironment
implemented according to a layered approach such as theismessed in the
Sections above and targeting plain TCP/IP networks of PO&Xstations
(namely, Linux/Intel node architectures). Subsequently,extended the im-
plementation to cover the grid architectures, and we amreotly completing a
user language review that provides GRID.it componentseatdp level of the
programming model hierarchy.

Basic features The basic concept of ASSIST is that users cannot specify arbi
trary parallel code. Rather, they can provide graphs of resginterconnected

by means of data flow streams and possibly sharing extetmat i€ imple-
mented in external libraries) objects. Each module, in,taam be sequential
module or gparmod Sequential modules are plain sequential portions of code
(procedures) wrapped to make clear their functional beinathat is, the data
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they consume and the data they produce. Data input to a Segjueadule can
come either from a data flow stream or it can be an externatblgéerence.
In the latter case, the reference to the object is usuallgguhto the sequen-
tial module through a data flow stream. Parmods, insteadjeareric parallel
modules In a parmod, a programmer can basically define a set of Ithgica
parallel computations, the parmod virtual processors tlaagvay they process
data. In particular, he defines how data coming from the satarfule input
data flow streams are non-deterministically distributeduiicast, multicast or
broadcast) to the virtual processors, and how each virtaalggsor contributes
to generate the data eventually placed on the module outmanss (that is
how those data are generated either taking pieces from taegpdaduced by
each one of the virtual processors or simply delivering @ieg piece the data
produced by each single virtual processor as a single datadf the output
stream). The single virtual processor code can be definad ssguential code
such as the one used to define a sequential module. Virtueégsors in a
parmod are named according ttba@ology Anonymous topology (each virtual
processor performs the same computation) is used to madefbtan like com-
putations, whereas vector or array topology are used terdiftiate the virtual
processors either in base to the code (vector topologieadhe first and the
last virtual processor computing a different code with ee$po the other ones,
as an example) or in base to data (again, vector topologtbsdaia coming on
an input stream scattered across the virtual processorsecdafined). As an
example, the user may include in the parmod code the line

topology array[i:1024] Vp;

In this way, a vector of 1K virtual processors (i.e. logigadbrallel activities) is
defined. Inthe following code, the programmer may assige tothe executed
to different virtual processors simply specifying theol@x (e.g.Vp[i]). Inany
case, the virtual processor does not necessarily corrdgpa@ctual processing
elements used to compute the ASSIST program. The numberooéssing
elements used and the mapping of virtual processors (ratwise processing
elements is actually jointly performed by the compilinglsand by the run
time system of ASSIST.

Implementation The ASSIST programming environment is implemented us-
ing a structure such as the one depicted in Figure 1 right.atheal structure

of the ASSIST environment is depicted in Figure 6. The coenpibols level
take care of compiling ASSIST source code, without any kirgtiol awareness

in it, into a C++ object code, that is a set of process codegaloith all the
makefiles needed to compile it on different (possibly hegen@ous) nodes of
the grid target architecture. The compiler also producesesneta-information
about the code in an XML configuration file. The XML describles structure
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Figure 6. Structure of the ASSIST environment

of the parallel program, the code needed, the librariesetwatbng with the
parallelism degree required to execute the different mesdin the source code
module graph. The process code produced at this level ussathe AS-
SISTIib run time system to implement communications, dhtisg, etc. The
Run time system layer comprehends two items: the ASSISTtishrun time
and a loader/manager processing the XML config file and iatieig with the
grid middleware to achieve completely automatic ASSISTgmm execution.
Currently, two versions of this tool have been developedS¥KT conf is used
when Globus grid target architectures are considered, e@aseASSISTrun is
used when simpler, plain POSIX-TCP/IP workstation netwatke targeted.
In particular, the ASSISTconf tool:

= |ooks at the computing resources needed in the XML configurdile,

= queries Globus toolkit 2.4 Monitoring and Discovery Sys{@mdsS [9])
to retrieve such resources,

m schedules (compiles and deploys) logical nodes (modulssitmsets of
parmod module virtual processors) ofthe ASSIST prograimgphysical
nodes recruited to the computation and
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Figure 7. Completion times of an ASSIST data mining application on akstation network

= eventually starts the logical nodes, waits for program detign and
gathers the results produced.

In future ASSIST versions, the globus and POSIX-TCP/IPstadll be merged
to have a unique configurator/launcher ASSIST tool.

As is, ASSIST perfectly matches what stated in the first pathis paper.
Compiler layer performs static optimizations and take adrgenerating the
code necessary to take heterogeneity into account. As aneathe exchange
of data shared among the virtual processors are optimizédsdével, produc-
ing code that uses optimized, aggregated message passtagearof virtual
processors allocated on different processing elemenige wkimply exploits
pointers in case the virtual processors are mapped ont@the physical pro-
cessor. The decision concerning which code has to be usesbipgmed to
the run time system layer, when the physical allocation atigl processors is
known. The run time layer accounts for dynamic optimizagiand grid target-
ing. As an example, the manger activity in charge of ensuoagd balancing
among virtual processors activities is performed at thysia

Results This structure of the ASSIST implementation leads to veogme-

sults. Figure 7 shows the typical performance figures aeliesn a NOW
(Network Of Workstations) architecture. In this case, tppl@ation was a
data mining application. The different curves refer toeatt values of the
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support set parameter used. In this case, the data minidigatpms is based
on the APRIORI data-mining algorithm. The support set repnés the per-
centage of the data base data supporting (i.e. validatatd) &ssociation rule of
APRIORI. Smaller support set values usually lead to (pdssikponentially)
higher computational weight, as more association rulesa&en into account.
The completion times measured are definitely close to tred miees, indepen-
dently of the support set used or, in other words of the coatfmurtal effort
required [15]. We achieved similar results both executitngoapplications on
a NOW target architecture and executing the same applicatia Globus grid
architecture, i.e. on a network of workstations running@ebus toolkit.

Figure 8 plots efficiency for an application processing MP&£Gata using
different numbers of grid nodes. The different runs usesdéifit mappings of
the ASSIST logical nodes/components to the physical gedueces available.
The mappings have been set up by hand intervening on the XMiigtoation
files produced by the compiler, just to show the effect of cg alterna-
tive mappings when executing an ASSIST program. The efiigiearves are
shown for a typical "good” mapping (run 1) and for a bad onen(8): the
former using more efficiently the processing elements atihte latter using
them less efficiently, as an example mapping/deployingldrwtk nodes on
slower machines. The superscalar efficiencies are due thetegogeneous
nodes used: some machines were more powerful than the oddéause the
complete application on a single node. In this case, all thehimes used
where Linux/Pentium based workstations, but some of theme wquipped
with rather old Pentium Il and others were equipped withidraew Pentium
IV. Moreover, different machines were equipped with diigramount of main
store. The nodes were spread across a grid involving twerdift institutions
inthe Pisa area. The Figure shows how good efficiency figunese achieved,
without actually requiring the programmer any single lifie@de concerning
process and communication set up and scheduling, or eveagimgninter-
actions with the grid middleware/system. Furthermore hastivo runs only
differ in some parameters of the XML configuration file proeddy the com-
piler (modified by hand, in this case, but that is usually pesed by the run
time system tools ASSISTconf and ASSISTrun), this resudtahhow policies
implemented at the run time system level (the mapping pdjctan sensibly
affect the overall performance of ASSIST applications, tnedefore it further
justifies the concept of the layered implementation.

Figure 9, plots the speedups achieved executing an irregpfaication us-
ing two different implementation strategies (templates)d single ASSIST
parallel module/component. The line marked as "dynamie2 @ne closer to
the ideal line) is relative to a template fully exploiting ona data flow [16—17]
implementation technology, while the line marked as "statses compile time
virtual processor partitioning. The ASSIST compiler wiél Bble to generate
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Figure 8. Completion times and efficiencies of an ASSIST MPEG appbicebn a variable
number of grid nodes

code for both implementation templates. Then, the run tigstesn can use
a default template (the static one, as an example). In cadesdrves that the
computation is unbalanced the run time may dynamicallyd#etd move to

the alternative template, the dynamic one. This is possgildebecause the
parallel component is structured (that is the parallelispi@tation pattern is
exposed to the compiler/run time layers), the templategnt@s (approximate
analytical performance models) are known and the run tinppau is free to

decide which code generated by the compiler is to be usechdagpeon the

"observed” features of the computation at hand.

The layered implementation of the ASSIST programming @emvirtent is
also exploited to tackle heterogeneous target archiestuhSSIST compiler
generates code for a range of admissible host target astthiés. In the cur-
rent version, Pentium/Linux and PowerPC/MacOSX architest are actually
taken into account and Pentium/Windows is going to be tak&ndccount too.
Versions of the run time library ASSISTIib are provided fdirthe admissible
target host architectures. Then, the run time tools (e®®&81STconf or AS-
SISTrun) decide which version of the library and of the cdegptode has to be
used according to the target architecture nodes chosen theudifferent parts
of the ASSIST application. As an example, in case a thregegtgpeline is run
on two Linux and one MacOSX box, the code of the former stagipicked up
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Figure 9. Speedup of different templates implementing the same ABB#Ballel component

from the compiler output directory relative to Linux tardetsts and the code
from the later is picked up from the MacOSX directory. Furthere, proper

code is inserted when communications are performed acrosegses running
on different host target nodes, in such a way that convengeahitecture neu-
tral external data representation is used to avoid data &SSIST applications
runs on heterogeneous target architectures with bothurefitinux and Pow-

erPC/MacOSX nodes demonstrated almost perfect speedwpded that the

parallel program exploits a suitable grain of parallelism.

Recently, we got also results concerning the applicationagers activity
showing that run time dynamic adaptation of parmod exenusideasible and
convenient to adapt parmod execution to changed targeitectire load or
node availability. These results are discussed in [4]. feid0 shows the results
of an experiment involving component managers. An apptindiuilt around a
single ASSIST parmod is run, after providing the parmod congmt manager
a performance contract stating that 4 tasks per second raysbbessed. The
manager initially looks for resources increasing the patiparallelism degree
to the point the performance contract is satisfied. Afteres@® seconds, the
contract is satisfied and the manager stops looking for nesurees to the used
to increase the parmod parallelism degree. For three tiches g ASSIST
program execution, the performance contract is violatezltduncreased load
on the machines used to run the application. The managesradding new
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resources to the set of processing elements used to impleheeparmod (8
PEs— 9). When the manager foresees that by releasing the lessfpbwe
processing element used the performance contract will pe/aan satisifed,
that processing element is actually released (9 PES8). The component
manager of the parmod performs all this work automatically.

Several other already published papers present expeahrestilts achieved
using ASSIST: [6] and [7] discuss topics more related to tiraonent model
of ASSIST. [8] discusses heterogeneity specific topics aadlts. [5] discusses
the overall implementation of the COW/NOW version of ASSIBTomplete
list of the ASSIST papers can be found on our group web sitg]at [

5. Related work

Many projects address the problem of high performance gyiti@ation im-
plementation. Actually, several projects are focused eruage of RPC based
programming models [25, 30]. In this cases, the implemamtaif applica-
tions simply relies on a further layer, the RPC one, built@maf the layers of
the Figure 1 left, rather than spreading responsibilitie®ss a compiler and
a run time layer as we do. An interesting project, aimed aviginog a high
level-programming environment for grids, is the GrADS putj[2]. GrADS
uses performance contracts to manage grid applicatioruézac It also adopts
an application manager that is very close to our one. Thedmehtation of
the whole system is not clearly structured in layers, howg@]. Just taking
into account the concept of manager, in [10], an approaclartallgl program
adaptivity is also shown, based on a notion of adapter whsiatery close to
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our application manager concept. Some programming envieoits designed
in the frameworks of algorithmic skeletons or parallel daspatterns have
a layered implementation close to the one we present in Hpermp although
they target a different kind of architectures. In particutaO, P3S [24] has
a layered implementation that indeed is mainly used to eseharpandability
of the design pattern set. Among the other programming emmients that
use higher level parallel programming patterns and stil/jge some kind of
layered implementation, IBIS [1] is a Java based progrargreinvironment
whose implementation deeply optimizes several key aspectsilso provides
some adaptive policies for its main parallelism explo@agpattern, namely the
divide&conquer pattern [31].

6. Conclusions

We discussed an alternative way to implement high perfoomparallel pro-
gramming environments targeting grid platforms. This @ is alternative
to the classic grid programming figure assuming that apjodica are built on
top of grid middleware directly using/invoking the middlexe functionalities
at the user code level. We propose to clearly separate stataerns, solved in
the compiler tool layer, from dynamic concerns, solved @nin time system
layer, much as it already happens in the classical, seglenbn-grid pro-
gramming universe. We pointed out how this structuring carexploited to
perform different optimizations in the proper place, aumicthat the effects of
an optimization impairs the effects of other optimizatigust taking the right
decisions/applying the right policies in the right placéhile discussing these
items, we introduced the GRID.it component model, alondvi#t component
and application manager concept, to enforce the generagfajuhe structured
implementation of grid applications/programming enviremts. Eventually,
we showed how ASSIST, the prototype, component based, legbrmance,
parallel programming environment we are currently devielpjin the context
of the GRID.it project fits the methodology described in thstfpart of this
work.
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