
STRUCTUREDIMPLEMENTATIONOFCOMPONENT
BASEDGRIDPROGRAMMINGENVIRONMENTS ∗

M. Aldinucci, M. Coppola
ISTI/C.N.R. – Via Moruzzi 1, 56100 PISA, Italy

{aldinuc,coppola}@di.unipi.it

S. Campa, M. Danelutto, M. Vanneschi, C. Zoccolo
Dept. Computer Science – Largo Pontecorvo 3, 56122 PISA, Italy

{campa,marcod,vannesch,zoccolo}@di.unipi.it

Abstract The design, implementation and deployment of efficient highperformance ap-
plications on Grids is usually a quite hard task, even in the case that modern and
efficient grid middleware systems are used. We claim that most of the difficulties
involved in such process can be moved away from programmer responsibility by
following a structured programming model approach. The proposed approach
relies on the development of a layered, component based execution environment.
Each layer deals with distinct features and problems related to the implementa-
tion of GRID applications, exploiting the more appropriatetechniques. Static
optimizations are introduced in the compile layer, dynamicoptimization are in-
troduced in the run time layer, whereas modern grid middleware features are
simply exploited using standard middleware systems as the final target archi-
tecture. We first discuss the general idea, then we discuss the peculiarities of
the approach and eventually we discuss the preliminary results achieved in the
GRID.it project, where a prototype high performance, component based, GRID
programming environment is being developed using this approach.

Keywords: Components, structured programming, parallelism, application manager, hetero-
geneous architectures, fault tolerance

∗This work has been partially supported by Italian national FIRB project no. RBNE01KNFPGRID.it, by
Italian national strategic projectslegge 449/97No. 02.00470.ST97 and 02.00640.ST97, and by the FP6
Network of Excellence CoreGRID funded by the European Commission (Contract IST-2002-004265)

2

1. Introduction

The development of efficient high performance grid applications requires a
consistent programming effort and a huge amount of knowledge on both the
Grid technology and the Grid middleware. Grid architectures are basically
distributed, wide area, heterogeneous and dynamic networks of computing re-
sources sharing a common middleware. As a wide area distributed architecture,
the grid inherits all the problems typical of distributed computing/programming,
made even worse because of the high latencies involved in communications.
As a heterogeneous network, important actions have to be taken to allow com-
putations to be spread across a range of different machines (i.e. different CPUs,
different OS, etc.). Last but not least, as a dynamic set of computing resources,
further actions have to be programmed to take into account that grid nodes can
suddenlybecome unreachable or even that theycanbecome more andmore busy,
to the point that their support to the computation at hand becomes negligible. In
this work, we want to discuss a methodology that enforces thedevelopment of
very efficient, high performance, grid programming environments. The focus is
onhigh performance. We basically want to be able to use grid architectures to
perform those computations thatneedgrids as a substitute of powerful and very
expensive massively parallel machines. In case the focus ison large data han-
dling or on ubiquitous computing, rather than on high performance, different
problems are to be faced and different solution can be envisaged. In particular,
looking for high performance out of grids we are interested in providing several
different properties, namely:

scalability, that is the ability to run high performance applications on
differently sized grid architectures, without incurring in any additional
overhead introduced by the run time support used

fault tolerance, that is the possibility of completing a high performance
application execution even in presence of typical grid architecture faults,
suchas the temporary inaccessibility of a node due tonetwork link failures
or the shutdown of a non dedicated processing node, as an example

adaptivity, that is the ability to adapt high performance computation be-
havior to the instantaneous features of the grid target architecture. Adap-
tivity, by the way, requires that both static policies are used, that is compile
time policies leading to the implementation of adaptable code, and dy-
namic policies, that is run time policies that allow to properly react to
target architecture feature changes.

Currently, grid application development is mainly performed directly exploit-
ing in the source code the features provided by the grid middleware at hand.
The classical picture from the first grid works shown in Figure 1 (left) is still

Aldinucci et al. Structured component based grid progr. environments 3

� � � � � � � � � � � � � � 	
 �
� � �
 � � � � � � � � � � � � � � � � � � �

�

� � � �
 � � � �

� � � � � � � � � � � � � � � � � � �
 � � � �
 � � � �

� � � � �
 � � � � � � � � � � � � � � �
 � �

� � � � � � � � � �

� � � � �

� � � � �
 � � � � � �

� � � � � �
 �

� � � � �
 � � � �

� � � � �
 � � � � �

� � � � � � � � �
 � �

	

� � � � � � �
 � �

� � � � � � � � �

Figure 1. Classic hierarchy in grid application development (left) vs. the layered alternative
approach (right)

depicting the actual current grid application schema. Bothin case the mid-
dleware available is very general purpose (e.g. plain Globus [21] or Unicore
toolkits [19, 28]) or in case it already provides some kind ofhigher level pro-
gramming abstraction (e.g. GridRPC [25]), the programmer is requested to
go down to the middleware logic in order to implement a parallel grid appli-
cation. In case the goal includes the ”high performance” keywords, the kind
of knowledge required to the programmer is very high. When using plain,
low level middleware systems, the programmer must explicitly program all the
activities related to program decomposition, scheduling and deployment, to
communication scheduling and management, to synchronization handling, to
fault tolerance and possibly to adaptivity. In case higher-level tools are used,
the programmer still needs to cope with program decomposition, fault tolerance
and adaptivity, while other items are automatically dealt with by the compiler
and/or run time support. Furthermore, when thehigh performancegoal is to be
achieved, the development of grid applications requires sensibleperformance
tuningphase/activity. The programmer, after exploiting his knowledge on the
middleware to write the grid application has to exploit the same knowledge
to refine all those aspects affecting the application performance. The problem
here is that most of these aspects are deeply interrelated with the features of the
grid nodes used. And these features can suddenly change, thus impairing the
programmer tuning actions. Even in case the features of the grid nodes does
not change, a new run on a slightly different grid architecture or on the same
architecture but with different nodes involved requires another tuning step to
achieve high performance. We claim that there is an alternative to this way
of programming high performance grid applications. The alternative we en-
visage is based on the adoption of a higher level programmingmodel for grid
applicationsandon the highly layered implementation of a programming envi-
ronment supporting the higher level programming model (seeFigure 1 right).

4

The higher level programming model layer should provide theprogrammer with
tools that allow the invisible grid goal stated by NGG (Next Generation Grid)
expert group to be achieved [20]. The compiler tools layer should implement
all the known policies, strategies and heuristics that can be applied statically to
target grid features. The run time system layer should implement all the known
policies, strategies and heuristics that can be applied dynamically to target grid
features. The middleware/operating system level must provide all the mecha-
nisms (and only the mechanisms) needed to implement the upper layer policies.
Therefore the classical middleware toolkits (comprehending all the three upper
layers of Figure 1 left) can be placed internally to the lowerlayer of the right
figure, provided that only mechanisms of these toolkits are used. To support
our claim, we structured this paper as follows: Section 2 outlines a component
based programming model aimed at representing a viable, higher level alter-
native to the direct usage of plain grid middleware in high performance grid
application programming. Section 3 explains how such programming model
can be implemented on top of existing or new grid middleware,by adopting a
layered approach such as the one depicted in Figure 1 (right). Both Sections
built on the studies performed and on the results achieved inthe context of
the GRID.it [22] project. GRID.it is a three-year project, ending in 2005 that
involves major Italian universities and research institutions. Within the project,
our group is responsible of a work package whose goal is to produce a pro-
totype high performance grid-programming environment (ASSIST [32, 5, 12,
7]). In Section 4, we will discuss the results achieved in thedesign of ASSIST,
according to the alternative approach to high performance grid application de-
velopment proposed in this paper. Eventually, Section 5 discusses references
to related work and Section 6 hosts the conclusions.

2. Component based grid programming

Some interesting, component based programming models havebeen pro-
posed to be used in the grid context. In particular, the CORBAComponent
Model (CCM [26]) and the Common Component Architecture (CCA) compo-
nent model [11] have been widely discussed in the grid context. Other models,
coming from different experiences, such as JavaBeans [27],Web Services (WS
[34]) and Microsoft .NET [18] are currently being considered in the field of
grid programming although neither the web services model nor .NET can be
properly called component models. In the context of the already mentioned
GRID.it project, our group introduced a fairly new component based program-
ming model. Components can be either parallel or sequential. Legacy CCM
components and WWW web services are assumed to be usable as sequential
GRID.it components via proper wrapping.

Aldinucci et al. Structured component based grid progr. environments 5

Component interaction GRID.it components interact using three basic mech-
anisms:

use/provide ports inherited from the classical component model. Use/provide
ports are basically used to implement RPC-like component interaction.

events inherited from CCM. Events are basicallyused to implement component
synchronization.

data flow streams These are new. A data flow stream is basically a kind of
use/provide mechanism that it is used to implement efficient, one-way
data flow communication between components. A component exports a
data flow source port that can be used by another component viaa data
flow sink port. Overall this provides a way to transfer typed data items
from the first component to the second one.

Even though data flow streams can be easily implemented in terms of either
use/provide ports or events, they have been explicitly included in the set of
primitive mechanism to enforce the concept that they provide optimized, high
performance inter-component communication mechanisms. All these mecha-
nisms are used to implement two distinct component interfaces:

the functional interface exposing the component functional behavior to the
other components. Using the mechanisms implemented in thisinterface
a component can use the services provided by another component to
actually compute a result

the non-functional interface providing mechanisms that can be used tocon-
trol the component behavior, that is, its execution features as well as its
interaction with the underlying grid target architecture.

Component representation and interoperability GRID.it components can
be described via XML descriptor files, much in the sense of WebService Def-
inition Language (WSDL) [33]. Each descriptor contains oneitem for each
one of the use/provide, event and data flow stream interfacesof the compo-
nent. The descriptor can be used to pick up components to be assembled in a
parallel application. At the moment, exact descriptor syntax is still going to
be defined. There will be some kind ofpublic items in the descriptor and
some kind ofprotected items, however. The former describe the functional
interface of the component, that is all those ports needed byprogrammer to as-
semble components in such a way they perform the actual computation at hand.
The later describe the non-functional interfaces, that will be used tomanage
the components within the component assembly. Interoperability with other
component frameworks is achieved by automatically generating wrapping of

6

GRID.it components in the Web Service framework and in the CCM frame-
work. The other way round, call to Web services or to CCM components is
allowed and supported from within the sequential portions of code embedded
in a GRID.it component.

Parallel components Parallel components are those components that are in-
ternally programmed as a coordinated set of parallel activities (virtual proces-
sors, according to the ASSIST jargon) using the ASSIST coordination language
[32]. Basically, a parallel component is defined by qualitatively expressing the
parallelism we want to exploit. This is performed defining a set of virtual pro-
cessors that is logically parallel activities. The reader will refer to the available
literature [7] incase he wants to understand better how parallel components (AS-
SIST modules) can be defined. For the purpose of this work, andin particular
to describe the GRID.it component model, how parallel programs are imple-
mented does not matter. What’s worth pointing out is that a parallel GRID.it
component includes acomponent managerand provides suitable ways to ac-
cess the manager facilities through its non-functional interface. The component
manager completely controls the parallel component behavior. In particular, it
completely manages the interaction of the component with the grid and takes
care of managing its internal parallelism degree in such a way that both the
application needs and the target grid features are taken into account. The non
functional interface hosts mechanisms that can be used to set up the component
parallelism degree, to add new (eliminate) resources to (from) the set of grid
resources taking care of component execution, to monitor component execution
parameters, to implement fault tolerance management strategies, etc.

Component assembly GRID.it components can be used to build applications
according to two very different strategies. On the one hand,some kind of as-
sembly language or possibly a nice GUI can be used to compose components
in the structure/pattern required to implement the grid application at hand. In
this case, users just connect use and provide, data flow source and sink ports or
event channels of the components they pick up to build the grid application. On
the other hand, coordination components can be used to compose components
according to some well-known component composition pattern (aka parallelism
exploitation skeleton or parallel design pattern [13, 23, 24]). As an example, a
pipeline componentP can be used to compose two componentsS1 andS2 in
such a way that they happen to implement two stages of a pipeline. In this case,
the GRID.it component framework establishes proper connections between the
non-functional interfaces of the three components (the pipeline one and the two
stage components) in such a way that a hierarchy of componentmanagers is
created. In the general case, managers are always composed in trees as shown in
Figure 3. The top-level component manager becomes the application manager.

Aldinucci et al. Structured component based grid progr. environments 7

 ! " # $ % & ' ! ()' & * + # (% *# $ % & ' ! ()' & * + # (% *

, + ' - . / 0 & + (% &1 (% 2 ' * ' & * + # (% *

% ! 3 4 ! * &3 ((5 * +# $ % & ' ! ()% ! 3 4 ! * &% ! - *
6 7 8 9 : 7 ;< 7 8 : ; 7 =6 7 8 9 : 7 ;< 7 8 : ; 7 =

> ? : ? @ : ; A ? 6

B C D E F D E E G H I J C H K L M
B C D E N O P Q C J R Q S J R T D U H

A V A < W 6 7 8 9 : 7 ;A V A < W 6 7 8 9 : 7 ;

A V A < W 6 7 8 9 : 7 ;

X Y

Z

X [

Figure 2. GRID.it component structure (upper left) and Sample pipeline application schema
(lower right)

It is responsible of coordinating the actions of the other component managers.
The leaf component managers are those in charge of more directly interact-
ing with the underlying grid middleware or node operating system to arrange
proper component execution. The pipeline component manager becomes the
application managerand actually takes care of coordinating the activities of
the two stage components in such a way the resulting pipelineturns out to be
an high performance pipeline. This allows the pipeline component designers
to encapsulate in the pipeline component manager all those autonomic policies
that take care of efficient pipeline parallel programs executions. As an example,
the pipeline component manager maymonitor the performances achieved by
the two pipeline stages using the non-functional interfacemechanisms, it can
analyzethe performance values to understand if the pipeline is balanced and as
a consequence it canplan some kind of corrective action (first stage is much
slower than second one: it should be made faster, if possible) and eventually it
canexecutethe corrective action (inform the first stage application manager to
recruit new or better resources to support its execution).

Target architecture management GRID.it components interact with the tar-
get grid execution environment via calls to theGrid Abstract Machine(GAM)
Interface. This is not a component interface actually. GridAbstract Machine

8

\] ^ _

` a b c

d d d
` a b c

d d d d d d

e f g h

i j i k l m i n o p j i q rp i o s t l q n sl m i n o p j i q rp i o s t l q n s

u t p v w x y o t q n oz q n { p i s p i o s t l q n s

n j | } j i s i o| q i q ~ s tl m i n o p j i q rn j | } j i s i on j v s
� ` ` � � � � � � � � � � � � � � �

� � � ` � � � � � � � � � � � � �

Figure 3. Tree structure of the component managers

is a layer built on top of existing operating systems and gridmiddleware that
virtualizes the relatively small number of mechanisms needed to deploy and run
GRID.it components on a grid: staging, point to point and collective commu-
nications, remote commanding, resource discovery. The component model of

GRID.it is currently being formalized and implemented. A better view of de-
scription of it can be found in [7, 6]. The component model we shortly discussed
provides all the classical advantages of component based programming models,
namely interoperability (with CCM and WS frameworks), codereuse (native
component code can be written using plain C/C++ code, whole components
can be reused in several different applications), modularity (applications are
composition/assembly of independently developed/implemented components),
software engineering (component design and implementation inherit most of
the more significant software engineering techniques). In the meanwhile, the
addition of autonomic controlwithin each component adds a level of freedom
to the programmer: the component manager, as an example, deals with all the
details concerning grid execution of the component. Furthermore, the adop-
tion of a clear, concise and effective API abstracting the grid middleware and
operating system features, guarantees that portability ofthe whole component
framework to different grid platforms just requires the re-implementation of
the Grid Abstract Machine layer. Entire library of components, explicitly de-
signed for parallel grid computing can be developed. Commongrid application

Aldinucci et al. Structured component based grid progr. environments 9

patterns, such as task farms, pipelines, simple DAGs, can beprogrammed in a
GRID.it component by carefully providing the component manager code. The
GRID.it framework provides standard, customizable versions of component
managers to be used in the standard, simple cases. This further improves the
programmability of grid applications as even in case of thesemeta-components
all the pleasant properties of component systems are inherited. In addition, the
meta-components will be provided by expert grid programmers and the normal
users/programmers can just benefit of their existence in some reference library
to program efficient grid applications. Being the access to the grid completely
mediated by the component managers, and being standard component managers
supplied by the component framework and sub classable to program your own
GRID.it component, this contributes to implement a completely invisible grid
usage.

3. Layered implementation

After outlining the layered approach to grid application implementation in
Section 1 and then briefly discussing the component model tobe provided to
the user/programmer in Section 2, in this Section we discusshow the two can
coexist. In particular, we discuss how the component model can be imple-
mented exploiting a layered implementation and how such implementation can
efficiently support high performance execution of grid applications. We assume
that three layers of Figure 1 right implement the component based programming
model Section 2. In particular, we outline in the next subsections the qualitative
behavior of the different layers, concentrating on the three ones in the lower
part of the Figure.

Compiler tools The compiler tool level is responsible of producing the ac-
tual object code of the component assembly representing theapplication. This
means that basically each component has to be compiled in some kind of object
code, and that the framework code has to be generated as well (e.g. the code
needed to support component assembly). The object code produced should use
the facilities provided by the Run time system layer to access grid node facilities.
It cannot go directly to the grid middleware APIs, for instance. This guaran-
tees portability of the whole component model across different architectures
provided that the GAM is available on the target architectures. Heterogeneity
is dealt with at the compiler tool layer by producing different object code for
each one of the different node architectures present in the target grid. If the grid
hosts Pentium/Windows nodes as well as PowerPC/Linux nodes, executables
for both architectures are to be produced. This is completely transparent to the
programmer/user. In case the actual grid used to execute theapplication sports
both nodes, it will be a task of the run time system layer to stage and execute
proper code on the grid nodes. Single components can also be separately com-

10

� � � � � � � � �
� � � � � �� � � �

� � � � � � � � � � � � �

� � � � � �� � � �

� � � � � � � � � � �

� � � � � �� � � �

� � � � � � � � � � ¡

� � ¢ � £ � � � � � � �� � £ �� �¤ � ¥
� � ¢ � £ � � �

� � ¢ � £ � � �

Figure 4. Compiler tool layer

piled. However a moment when the component assembly is processed must
eventually exist. At this point the component assembly can be analyzed and
specific static optimizations enforcing high performance application execution
can be performed. As an example, take into account the pipeline example of
Figure 2. In this case, the compiler can devise the type of thedata exchanged
between first and second stage, and, as the pipeline component is used to man-
age the two stages, it can insert any communication optimization improving the
performance of the stream communication of that particulartype of data. For
instance, if the data to be transmitted is small size, communication aggregation
can be automatically inserted in the code, to provide betterlatency hiding. As
the pipeline component is only used to compose components that interact via
(possibly infinite) data flow stream, this does not impair program semantics
nor it changes the application programmer perception of theapplication exe-
cution, but for showing a possibly better performance. Fault tolerance is also
taken into account at this level. Known techniques to implement computation
checkpoints or to program handling of faulty nodes can be used to implement
additional code in the component manager as well as in the component func-
tional code. Again, this can be implemented once and for all in the component
(assembly) compiler by experts of both grid technology and fault tolerance tech-
niques, and the application programmers can be left completely unaware of the
fact that fault tolerance is currently implemented in the object code. In general
all the known static optimization techniques can be exploited at the compiler
tools level, also exploiting the knowledge directly comingfrom the knowledge

Aldinucci et al. Structured component based grid progr. environments 11

¦ § ¨
§ © © ª « ¬ ­ ® ¬ ¯ § ° ± ² ³ ´ ª « µ © ³¶ · ¬ · ¯ ¶ ³ ¬ ­ § ° ± ¸ ­ · ¯ ® ¬ ¯ § ° ± ² ³ ¶ ª ­ ³© ª ¶ ¶ · ¬ ¹ § ° ± º ª ¶ ¶ « ¬ ® © · ­ ® ª ¬§ ° ±

» ª · ¹ · ¼ » ³© ª ¹ ³

§ ¹ · ½ ­ ® ¾ ® ­ ¿
½ ª » ® © ® ³ ´ À ± Á ´

Â ¿ ¬ · ¶ ® ©ª ½ ­ ® ¶ ® Ã · ­ ® ª ¬ ´ º ª ¬ Ä ® ¯ Å » ª · ¹ ³ µ ´

² Æ ¸

ª ¼ Ç ³ © ­© ª ¹ ³
¶ ³ ­ ·® ¬ Ä ª

Figure 5. Run time system layer

of the application high-level structure, i.e. of the component assembly making
the application.

Run time system layer The run time system layer is responsible of supporting
the execution of the object code produced at the compiler tools layer. There-
fore this layer includes all the libraries and component tools needed to run the
component code. It also takes care of the following tasks:

looking for the grid resources needed to execute the code, querying the
grid middleware through the interfaces provided by the GridAbstract
Machine. The initial requirements of resources are produced at com-
pile time. The application and component managers also issue resource
requirements that have to be satisfied by the run time system layer

loading the proper object code at the grid nodes selected forprogram
execution. This possibly requires on the fly compilation of the object
code, to obtain architecture specific object code out of high-level object
code

executing the proper processes/threads at the remote grid nodes used to
execute the application

12

supporting the execution of the component managers, that isto provide
all the monitor activities needed to support manager analysis and decision
planning and to allow the manger execute its plans

The component managers of the GRID.it components actually happen to be
placed at this layer. They implement all those dynamic optimization strategies
that are typical of high performance application support. As an example, appli-
cation and component managers can plan component deployment changes, that
is migration of components from one grid node to a different one, to minimize
the measured communication overhead. Or they can plan to group computa-
tions (that is, components) that were originally placed on distinct node onto
a single one to exploit sharing of data through efficient, in memory mecha-
nisms. In the run time system layer performance contracts are also managed.
Performance contracts are assigned to components using their non-functional
interface. Basically, a performance contract is some kind of high-level descrip-
tion of the kind of performance behavior the programmer/user pretends to get
out of the component. We are currently considering performance contracts
asking for a givenservice timeof an application, that is, asking the system to
be able to deliver results corresponding to different, consecutive input stream
data items at intervals no longer than a given time. We are also assuming a per-
formance contract is represented by an XML file written according to a given
XML document type definition (DTD). The user must provide a performance
contract to the application manager, that is the manger of the top-level appli-
cation component. Such performance contract may require, as an example, a
given service time, that is a given inter-delivery time of the tasks computed by
the component assembly out of the input stream data. The original contract is to
be suitably propagated to the components managed by the top-level component.
In Figure 2 right, the performance contract provided by the user/programmer
to the pipeline component is propagated to the pipeline stage componentsS1

andS2. In case the performance contract originally provided to the pipeline
process was a service time contract, it is simply propagatedto the pipeline
stage component managers, as the service time of the whole pipeline is given
by the maximum of the service time of its stages. In case the original contract
was a parallelism degree one, that is a contract asking the pipeline application
manager to execute the application with a given parallelismdegree, the pipeline
manager first devises a(possibly equal) subdivision of the parallelism degree
among the two stages, then propagates the requirement to thestage component
managers, and eventually monitors the performance of the stage component to
understand whether a different subdivision of the parallelism degree has to be
implemented to keep the two stages balanced.

Interaction with grid middleware Most of the activities performed in the run
time system layer require an interaction with the underlying grid middleware

Aldinucci et al. Structured component based grid progr. environments 13

through the GAM API. As an example, the discovery of the available resources
to be used to run the component application is performed querying the resource
management subsystem of the grid middleware at hand. The initial necessity, in
terms of grid node resources, to execute the application is derived statically by
the compiler tool layer. The application manager interprets this initial need and
queries the grid middleware to find out the needed resources.Eventually, when
the needed resources have been discovered and recruited to the computation of
the component application, code is deployed to them (using another part of the
GAM API), this code execution is started, etc. Overall, the run time system
uses a restricted set of the underlying grid middleware through the GAM API
to execute component code. In a sense, this restricted API constitutes a sort
of grid operating system API, in that it provides the basic mechanisms needed
to run applications onto the grid. This minimal API must include: authen-
tication and accounting facilities, resource management systems, supporting
resource discovery and resource reservation, at least, code staging facilities, re-
mote commanding facilities, and point-to-point and collective communication
and synchronization facilities. It is worth pointing out that these features are
basicmechanisms. All the policies are encapsulated in the run time system
layer or in the code produced by the compiler tools layer and run in the run
time system framework. This implies that the GAM API will be optimized to
provide only those mechanisms that actually support high performance com-
puting, leaving outside those mechanisms that cannot be used to support high
performance applications because of their poor performance figures.

4. ASSIST: a first instantiation of our methodology

ASSIST (A Software development System based upon Integrated Skeleton
Technology) [32, 5, 12, 3] is the high performance parallel programming envi-
ronment being developed in the framework of the GRID.it Italian national three
year project [22]. It was initially conceived as a programming environment
implemented according to a layered approach such as the one discussed in the
Sections above and targeting plain TCP/IP networks of POSIXworkstations
(namely, Linux/Intel node architectures). Subsequently,we extended the im-
plementation to cover the grid architectures, and we are currently completing a
user language review that provides GRID.it components at the top level of the
programming model hierarchy.

Basic features The basic concept of ASSIST is that users cannot specify arbi-
trary parallel code. Rather, they can provide graphs of modules, interconnected
by means of data flow streams and possibly sharing external (that is imple-
mented in external libraries) objects. Each module, in turn, can be sequential
module or aparmod. Sequential modules are plain sequential portions of code
(procedures) wrapped to make clear their functional behavior, that is, the data

14

they consume and the data they produce. Data input to a sequential module can
come either from a data flow stream or it can be an external object reference.
In the latter case, the reference to the object is usually passed to the sequen-
tial module through a data flow stream. Parmods, instead, aregeneric parallel
modules. In a parmod, a programmer can basically define a set of logically
parallel computations, the parmod virtual processors, andthe way they process
data. In particular, he defines how data coming from the set ofmodule input
data flow streams are non-deterministically distributed (in unicast, multicast or
broadcast) to the virtual processors, and how each virtual processor contributes
to generate the data eventually placed on the module output streams (that is
how those data are generated either taking pieces from the data produced by
each one of the virtual processors or simply delivering piece by piece the data
produced by each single virtual processor as a single data item of the output
stream). The single virtual processor code can be defined using sequential code
such as the one used to define a sequential module. Virtual processors in a
parmod are named according to atopology. Anonymous topology (each virtual
processor performs the same computation) is used to model task farm like com-
putations, whereas vector or array topology are used to differentiate the virtual
processors either in base to the code (vector topologies having the first and the
last virtual processor computing a different code with respect to the other ones,
as an example) or in base to data (again, vector topologies with data coming on
an input stream scattered across the virtual processors canbe defined). As an
example, the user may include in the parmod code the line

topology array[i:1024] Vp;

In this way, a vector of 1K virtual processors (i.e. logically parallel activities) is
defined. In the following code, the programmer may assign code to be executed
to different virtual processors simply specifying their index (e.g.Vp[i]). In any
case, the virtual processor does not necessarily correspond to actual processing
elements used to compute the ASSIST program. The number of processing
elements used and the mapping of virtual processors (ranges) to the processing
elements is actually jointly performed by the compiling tools and by the run
time system of ASSIST.

Implementation The ASSIST programming environment is implemented us-
ing a structure such as the one depicted in Figure 1 right. Theactual structure
of the ASSIST environment is depicted in Figure 6. The compiler tools level
take care of compiling ASSIST source code, without any kind of grid awareness
in it, into a C++ object code, that is a set of process code along with all the
makefiles needed to compile it on different (possibly heterogeneous) nodes of
the grid target architecture. The compiler also produces some meta-information
about the code in an XML configuration file. The XML describes the structure

Aldinucci et al. Structured component based grid progr. environments 15

È É É Ê Ë Ì Í Î Ï Ð Ê Ï Ë Ñ Î Ò Ó Ô Î Õ Ö × Î Ø Ù Ú Ï Ë Û Õ Ö Ü Õ Ö × Î

Ý Þ ß Ï Ï

ß È à á â à à ã Þ â Ø ä Ë å Ô æ Ð Ó Ð Ö Ë Û Û Î Ð ä Ë å Ô á Ï × ç æ Ð Î åè × Ë Ì ç æ é ê ë Ü å Ö Ñ

Ý Þ Þ â Þ ß Ï Ë Û Õ

Ý Þ Þ â Þ ß × Ö Ì

Ý Þ Þ â Þ ß å ç Û

È ã Ù à â Ú ì í ß ã ã Ú Þ Ú Ý î ì íÞ Ð Ó Ð Ö Ï Ï Ë Ò Ò ç Û Ö Ï Ó Ð Ö Ë Û Ë ï Ð êð Î Ð Î å Ë Ü Î Û Î Ë ç æ Ò Ó Ï ñ Ö Û Î Ï Ë Ñ Î Ü Î Û êÞ Ð Ó Ð Ö Ï æ ñ Ó å Î Ñ Ñ Ó Ð Ó Ó Ï Ï Î æ æ ï × Ó Û Û Ö Û Ü

í ò ó ß â Ù ì Þ î Þ ß ì Ù Ú Ý î ì íí Î æ Ë ç å Ï Î Ñ Ö æ Ï Ë ô Î å õö õ Û Ó Ò Ö Ï Ñ Ó Ð Ó Ó Ï Ï Î æ æ Ë ï Ð êö õ Û Ó Ò Ö Ï Ê ï å Ë ï Î å Ê Ï Ë Ñ Î × Ö Û Ô

Ý Þ Þ â Þ ßæ Ë ç å Ï ÎÏ Ë Ñ Î

ã Þ á Ü å Ö Ñ Ò Ö Ñ Ñ × Î ä Ó å Î â ó ß ì í ÷ Ý È ì Ú Ý î ì í

Figure 6. Structure of the ASSIST environment

of the parallel program, the code needed, the libraries needed along with the
parallelism degree required to execute the different modules in the source code
module graph. The process code produced at this level uses calls to the AS-
SISTlib run time system to implement communications, data sharing, etc. The
Run time system layer comprehends two items: the ASSISTlib actual run time
and a loader/manager processing the XML config file and interacting with the
grid middleware to achieve completely automatic ASSIST program execution.
Currently, two versions of this tool have been developed: ASSISTconf is used
when Globus grid target architectures are considered, whereas ASSISTrun is
used when simpler, plain POSIX–TCP/IP workstation networks are targeted.
In particular, the ASSISTconf tool:

looks at the computing resources needed in the XML configuration file,

queries Globus toolkit 2.4 Monitoring and Discovery System(MDS [9])
to retrieve such resources,

schedules (compiles and deploys) logical nodes (modules orsubsets of
parmodmodule virtual processors) of the ASSIST program to the physical
nodes recruited to the computation and

16

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 1 2 3 4 5 6 7 8 9 10

C
om

pl
et

io
n

tim
e

(s
ec

s)

Number of processing elements used (#PE)

support 1.5%
support 1.0%

support 1.0% ideal
support 1.5% ideal

Figure 7. Completion times of an ASSIST data mining application on a workstation network

eventually starts the logical nodes, waits for program completion and
gathers the results produced.

In future ASSIST versions, the globus and POSIX–TCP/IP tools will be merged
to have a unique configurator/launcher ASSIST tool.

As is, ASSIST perfectly matches what stated in the first part of this paper.
Compiler layer performs static optimizations and take careof generating the
code necessary to take heterogeneity into account. As an example, the exchange
of data shared among the virtual processors are optimized atthis level, produc-
ing code that uses optimized, aggregated message passing incase of virtual
processors allocated on different processing elements, while it simply exploits
pointers in case the virtual processors are mapped onto the same physical pro-
cessor. The decision concerning which code has to be used is postponed to
the run time system layer, when the physical allocation of virtual processors is
known. The run time layer accounts for dynamic optimizations and grid target-
ing. As an example, the manger activity in charge of ensuringload balancing
among virtual processors activities is performed at this layer.

Results This structure of the ASSIST implementation leads to very nice re-
sults. Figure 7 shows the typical performance figures achieved on a NOW
(Network Of Workstations) architecture. In this case, the application was a
data mining application. The different curves refer to different values of the

Aldinucci et al. Structured component based grid progr. environments 17

support set parameter used. In this case, the data mining applications is based
on the APRIORI data-mining algorithm. The support set represents the per-
centage of the data base data supporting (i.e. validating) each association rule of
APRIORI. Smaller support set values usually lead to (possibly exponentially)
higher computational weight, as more association rules aretaken into account.
The completion times measured are definitely close to the ideal ones, indepen-
dently of the support set used or, in other words of the computational effort
required [15]. We achieved similar results both executing other applications on
a NOW target architecture and executing the same applications on Globus grid
architecture, i.e. on a network of workstations running theGlobus toolkit.

Figure 8 plots efficiency for an application processing MPEG-4 data using
different numbers of grid nodes. The different runs use different mappings of
the ASSIST logical nodes/components to the physical grid resources available.
The mappings have been set up by hand intervening on the XML configuration
files produced by the compiler, just to show the effect of choosing alterna-
tive mappings when executing an ASSIST program. The efficiency curves are
shown for a typical ”good” mapping (run 1) and for a bad one (run 2): the
former using more efficiently the processing elements at hand, the latter using
them less efficiently, as an example mapping/deploying bottleneck nodes on
slower machines. The superscalar efficiencies are due to theheterogeneous
nodes used: some machines were more powerful than the one used to run the
complete application on a single node. In this case, all the machines used
where Linux/Pentium based workstations, but some of them were equipped
with rather old Pentium III and others were equipped with brand new Pentium
IV. Moreover, different machines were equipped with different amount of main
store. The nodes were spread across a grid involving two different institutions
in the Pisa area. The Figure shows how good efficiency figures can be achieved,
without actually requiring the programmer any single line of code concerning
process and communication set up and scheduling, or even managing inter-
actions with the grid middleware/system. Furthermore, as the two runs only
differ in some parameters of the XML configuration file produced by the com-
piler (modified by hand, in this case, but that is usually processed by the run
time system tools ASSISTconf and ASSISTrun), this result shows how policies
implemented at the run time system level (the mapping policies) can sensibly
affect the overall performance of ASSIST applications, andtherefore it further
justifies the concept of the layered implementation.

Figure 9, plots the speedups achieved executing an irregular application us-
ing two different implementation strategies (templates) for a single ASSIST
parallel module/component. The line marked as ”dynamic” (the one closer to
the ideal line) is relative to a template fully exploiting macro data flow [16–17]
implementation technology, while the line marked as ”static” uses compile time
virtual processor partitioning. The ASSIST compiler will be able to generate

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2 4 6 8 10 12

E
ffi

ci
en

cy

Number of processing elements used (#PE)

ideal
run 1
run 2

Figure 8. Completion times and efficiencies of an ASSIST MPEG application on a variable
number of grid nodes

code for both implementation templates. Then, the run time system can use
a default template (the static one, as an example). In case itobserves that the
computation is unbalanced the run time may dynamically decide to move to
the alternative template, the dynamic one. This is possiblejust because the
parallel component is structured (that is the parallelism exploitation pattern is
exposed to the compiler/run time layers), the template properties (approximate
analytical performance models) are known and the run time support is free to
decide which code generated by the compiler is to be used depending on the
”observed” features of the computation at hand.

The layered implementation of the ASSIST programming environment is
also exploited to tackle heterogeneous target architectures. ASSIST compiler
generates code for a range of admissible host target architectures. In the cur-
rent version, Pentium/Linux and PowerPC/MacOSX architectures are actually
taken into account and Pentium/Windows is going to be taken into account too.
Versions of the run time library ASSISTlib are provided for all the admissible
target host architectures. Then, the run time tools (eitherASSISTconf or AS-
SISTrun) decide which version of the library and of the compiled code has to be
used according to the target architecture nodes chosen to run the different parts
of the ASSIST application. As an example, in case a three-stage pipeline is run
on two Linux and one MacOSX box, the code of the former stages is picked up

Aldinucci et al. Structured component based grid progr. environments 19

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processing elements used (#PE)

ideal
STATIC parmod implementation

DYNAMIC parmod implementation

Figure 9. Speedup of different templates implementing the same ASSIST parallel component

from the compiler output directory relative to Linux targethosts and the code
from the later is picked up from the MacOSX directory. Furthermore, proper
code is inserted when communications are performed across processes running
on different host target nodes, in such a way that convenient, architecture neu-
tral external data representation is used to avoid data loss. ASSIST applications
runs on heterogeneous target architectures with both Pentium/Linux and Pow-
erPC/MacOSX nodes demonstrated almost perfect speedup, provided that the
parallel program exploits a suitable grain of parallelism.

Recently, we got also results concerning the application managers activity
showing that run time dynamic adaptation of parmod execution is feasible and
convenient to adapt parmod execution to changed target architecture load or
node availability. These results are discussed in [4]. Figure 10 shows the results
of an experiment involving component managers. An application built around a
single ASSIST parmod is run, after providing the parmod component manager
a performance contract stating that 4 tasks per second must be processed. The
manager initially looks for resources increasing the parmod parallelism degree
to the point the performance contract is satisfied. After some 25 seconds, the
contract is satisfied and the manager stops looking for new resources to the used
to increase the parmod parallelism degree. For three times,during ASSIST
program execution, the performance contract is violated due to increased load
on the machines used to run the application. The manager reacts adding new

20

F
ill

 %

 150 200

Wall Clock Time (s)

Ite
m

s/
s

N. of VPMs in parmod

 3
 4
 5
 6 VPMs aggregated power

N
. o

f V
P

M
s

 0

 6
 7
 8
 9

 50

QoS contract
 100

Input stream queue fill level

 50 100

Figure 10. Effects of component manager activity when a performance contract is provided.

resources to the set of processing elements used to implement the parmod (8
PEs→ 9). When the manager foresees that by releasing the less powerful
processing element used the performance contract will be anyway satisifed,
that processing element is actually released (9 PEs→ 8). The component
manager of the parmod performs all this work automatically.

Several other already published papers present experimental results achieved
using ASSIST: [6] and [7] discuss topics more related to the component model
of ASSIST. [8] discusses heterogeneity specific topics and results. [5] discusses
the overall implementation of the COW/NOW version of ASSIST. A complete
list of the ASSIST papers can be found on our group web site at [3].

5. Related work

Many projects address the problem of high performance grid application im-
plementation. Actually, several projects are focused on the usage of RPC based
programming models [25, 30]. In this cases, the implementation of applica-
tions simply relies on a further layer, the RPC one, built on top of the layers of
the Figure 1 left, rather than spreading responsibilities across a compiler and
a run time layer as we do. An interesting project, aimed at providing a high
level-programming environment for grids, is the GrADS project [2]. GrADS
uses performance contracts to manage grid application execution. It also adopts
an application manager that is very close to our one. The implementation of
the whole system is not clearly structured in layers, however [29]. Just taking
into account the concept of manager, in [10], an approach to parallel program
adaptivity is also shown, based on a notion of adapter which is very close to

Aldinucci et al. Structured component based grid progr. environments 21

our application manager concept. Some programming environments designed
in the frameworks of algorithmic skeletons or parallel design patterns have
a layered implementation close to the one we present in this paper, although
they target a different kind of architectures. In particular, CO2P3S [24] has
a layered implementation that indeed is mainly used to enhance expandability
of the design pattern set. Among the other programming environments that
use higher level parallel programming patterns and still provide some kind of
layered implementation, IBIS [1] is a Java based programming environment
whose implementation deeply optimizes several key aspectsand also provides
some adaptive policies for its main parallelism exploitation pattern, namely the
divide&conquer pattern [31].

6. Conclusions

We discussed an alternative way to implement high performance parallel pro-
gramming environments targeting grid platforms. This proposal is alternative
to the classic grid programming figure assuming that applications are built on
top of grid middleware directly using/invoking the middleware functionalities
at the user code level. We propose to clearly separate staticconcerns, solved in
the compiler tool layer, from dynamic concerns, solved in the run time system
layer, much as it already happens in the classical, sequential, non-grid pro-
gramming universe. We pointed out how this structuring can be exploited to
perform different optimizations in the proper place, avoiding that the effects of
an optimization impairs the effects of other optimizations, just taking the right
decisions/applying the right policies in the right places.While discussing these
items, we introduced the GRID.it component model, along with its component
and application manager concept, to enforce the general figure of the structured
implementation of grid applications/programming environments. Eventually,
we showed how ASSIST, the prototype, component based, high performance,
parallel programming environment we are currently developing in the context
of the GRID.it project fits the methodology described in the first part of this
work.

References
[1] The IBIS home page. http://www.cs.vu.nl/ibis/, 2004.

[2] The grads home page. http://www.hipersoft.rice.edu/grads/, 2005.

[3] The Pisa parallel processing group home page. http://www.di.unipi.it/groups/architetture/,
2005.

[4] M. Aldinucci, A.Petrocelli, A. Pistoletti, M.Torquati, M. Vanneschi, L.Veraldi, and C. Zoc-
colo. Dynamic reconfiguration of Grid-aware applications in ASSIST. Technical report,
Dept. Computer Science, University of Pisa, Italy, 2005. Submitted to Euro-Par 2005.

[5] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini,P. Pesciullesi, L. Potiti,
R. Ravazzolo, M. Torquati, M. Vanneschi, and C. Zoccolo. Theimplementation of AS-

22

SIST, an Environment for Parallel and Distributed Programming. In H. Kosch, L. Boszor-
menyi, and H. Hellwagner, editors,Euro-Par 2003 Parallel Processing, number 2790 in
LNCS, pages 712–721. Springer Verlag, august 2003. Klagenfurt, Austria.

[6] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a
Research Framework for High-performance Grid ProgrammingEnvironments. In Jose C.
Cunha and Omer F. Rana, editors,Grid Computing: Software environments and Tools.
Springer Verlag, 2005.

[7] Marco Aldinucci, Sonia Campa, Massimo Coppola, Marco Danelutto, Domenico
Laforenza, Diego Puppin, Luca Scarponi, Marco Vanneschi, and Corrado Zoccolo. Com-
ponents for High Performance Grid Programming in Grid.IT. In Vladimir Getov and
Thilo Kielmann, editors,Component Models and Systems for Grid Applications, Proc. of
the WCMSGA Workshop of ACM ICS’04. Springer, 2005.

[8] Marco Aldinucci, Sonia Campa, Massimo Coppola, Silvia Magini, , Paolo Pesciullesi,
Laura Potiti, Massimo Torquati, and Corrado Zoccolo. Targeting Heterogeneous Archi-
tectures in ASSIST: Experimental Results. In Marco Danelutto, Domenico Laforenza, and
Marco Vanneschi, editors,Euro-Par 2004: Parallel Processing, number 3149 in LNCS,
pages 638–643, 2004.

[9] Globus Alliance. Globus Monitoring and Discovery System homepage. http://www-
unix.globus.org/toolkit/mds/.

[10] F. André, J. Buisson, and J.L. Pazat. Dynamic adaptation of parallel codes: towards self-
adaptable components. InComponent Models and Systems for Grid Applications, pages
145–156, 2005. First volume of the CoreGRID series.

[11] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott Kohn, Lois McInnes,
Steve Parker, and Brent Smolinski. Toward a common component architecture for high-
performance scientific computing. InHPDC ’99: Proceedings of the The Eighth IEEE
International Symposium on High Performance Distributed Computing, page 13. IEEE
Computer Society, 1999.

[12] R. Baraglia, M. Danelutto, D. Laforenza, S. Orlando, P.Palmerini, R. Perego, P. Pesci-
ullesi, and M. Vanneschi. AssistConf: A Grid Configuration Tool for the ASSIST Parallel
Programming Environment. InProceedings of the Eleventh Euromicro Conference on
Parallel, Distributed and Network-Based Processing, pages 193–200. IEEE, 2003.

[13] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming.Parallel Computing, 30(3):389–406, 2004.

[14] M. Cole and A. Benoit. The edinburgh skeleton library home page, 2005.
http://homepages.inf.ed.ac.uk/abenoit1/eSkel/.

[15] M. Coppola and M. Vanneschi. High-Performance Data Mining with Skeleton-based
Structured Parallel Programming.Parallel Computing, 28(5):793–813, 2002.

[16] M. Danelutto. Efficient support for skeletons on workstation clusters.Parallel Processing
Letters, 11(1):41–56, 2001.

[17] M. Danelutto. QoS in parallel programming through application managers. InProceedings
of the 13th Euromicro Conference on Parallel, Distributed and Network-based processing.
IEEE, 2005. Lugano (CH).

[18] Microsoft .NET Developer Center: Technology Information. http://msdn.microsoft.com/
netframework/technologyinfo/default.aspx, 2005.

[19] Dietmar W. Erwin and David F. Snelling. UNICORE: A Grid computing environment.
In Rizos Sakellariou, John Keane, John Gurd, and Len Freeman, editors,Euro-Par 2001
Parallel Processing, volume 2150 ofLNCS, pages 825–834, 2001.

Aldinucci et al. Structured component based grid progr. environments 23

[20] D. Snelling et. al. Next generation grids 2 requirements and options for european grids
research 2005-2010 and beyond. ftp://ftp.cordis.lu/pub/ist/docs/ngg2egfinal.pdf, 2004.

[21] Ian Foster and Carl Kesselman. The Globus toolkit. In Ian Foster and Carl Kesselman,
editors,The Grid: Blueprint for a New Computing Infrastructure, chapter 11. Morgan
Kaufmann Pub., July 1998.

[22] Grid.it community . The GRID.it home page, 2005. http://www.grid.it.

[23] H. Kuchen. A skeleton library. InEuro-Par 2002, Parallel Processing, number 2400 in
LNCS, pages 620–629. "Springer" Verlag, August 2002.

[24] S. MAcDonald, J. Anvik, S. Bromling, J. Schaeffer, D. Szafron, and K. Taa. From patterns
to frameworks to parallel programs.Parallel Computing, 28(12):1663–1684, december
2002.

[25] H. Nakada, S. Matsuoka, K. Seymour, J. Dongarra, and C. Lee. GridRPC: A Remote
Procedure Call API for Grid Computing. http://www.eece.unm.edu/ ?apm/docs/APM
GridRPC 0702.pdf, July 2002.

[26] Object Management Group. CORBA Component Model version 3.0 Specification.
http://www.omg.org/, September 2002.

[27] Sun. Javabeans home page.http://java.sun.com/products/javabeans, 2003.

[28] Unicore forum. http://www.unicore.org/, 2004.

[29] S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. http://www.hipersoft.
rice.edu/grads/publicationsreports.htm, 2004.

[30] Sathish Vadhiyar and Jack Dongarra. GrADSolve - A Grid-based RPC system for Re-
mote Invocation of Parallel Software.Journal of Parallel and Distributed Computing,
63(11):1082 – 1104, November 2003.

[31] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, T. Kielmann, and H. E. Bal.
Adaptive Load Balancing for Divide-and-Conquer Grid Applications. www.cs.vu.nl/
∼kielmann/papers/satin-crs.pdf, 2004.

[32] Marco Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications.Parallel Computing, 28(12):1709–1732, 2002.

[33] W3C. Web Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl.

[34] W3C. Web services home page. http://www.w3.org/2002/ws/, 2003.

