Dynamic Reconfiguration
of Grid-Aware Applications in ASSIST*

Marco Aldinuccit, Alessandro Petrocelli?, Edoardo Pistoletti?,
Massimo TorquatiZ, Marco Vanneschi?, Luca Veraldi?, and Corrado Zoccolo?

! Inst. of Information Science and Technologies - CNR, Via Moruzzi 1, Pisa, Italy
2 Dept. of Computer Science — University of Pisa — Largo B. Pontecorvo 3, Pisa, Italy

Abstract. Current grid-aware applications are implemented on top of
low-level libraries by developers who are experts on grid middleware ar-
chitecture. This approach can hardly support the additional complexity
of QoS control in real applications. We discuss a novel approach used
in the ASSIST programming environment to implement/guarantee user
provided QoS contracts in a transparent and effective way. Our approach
is based on the implementation of automatic run-time reconfiguration of
ASSIST application executions triggered by mismatch between the user
provided QoS contract and the actual performance values achieved.

Keywords: Structured Parallel Programming, grid, QoS contract,
Adaptive Applications

1 Introduction

A grid system is a geographically distributed collection of possibly parallel, in-
terconnected processing elements that all run some kind of common grid middle-
ware (e.g. Globus services). Such platforms are characterized by heterogeneity
of nodes, and by dynamicity in resource management and allocation [1].

One popular approach to grid programming consists in directly exploiting
middleware services within a standard programming language. This approach
rapidly leads to an intolerable complexity as soon as the application is both
complex and requested to exploit an user-defined QoS.

Large scale grid-aware application will require developing toolkits which sup-
port reconfigurable code and the binding of legacy code. They should enforce the
minimization of developing cost by enabling the (static and dynamic) reconfigu-
ration of the application to target different customer scenarios, while exploiting
a good performance/cost ratio over a broad class of hardware platforms. They
should also cope with code reuse providing the programmer with suitable bridges
to interoperate with legacy code (Corba, CCM, Java Beans, DCOM, etc.). In
this context, an advanced run-time support should seamlessly adapt the appli-
cation structure to the current grid status, and transparently manage faulty

* This work has been supported by the Italian MIUR FIRB Grid.it project No.
RBNEOIKNFP, and Italian Project “legge 449/97” No. 02.00640.ST97.

J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005, LNCS 3648, pp. 771-781, 2005.
© Springer-Verlag Berlin Heidelberg 2005

772 Marco Aldinucci et al.

events and performance degradations of the underlying platform, which should
be considered the standard behavior of a large-scale distributed platform.

High-level programming environments for grid aim at moving most of the
grid specific efforts needed while developing high-performance grid applications
from programmers to grid tools and run time systems. Among them, we mention
ASSIST, GrADS, ProActive, Condor, Ibis [2-(]. In particular, ASSIST [2] has
been designed along these guidelines. It supports the development of interoper-
able applications [7] onto heterogeneous platforms [3].

We present here a novel extension of the ASSIST environment exploiting a
self-optimizing run-time targeted to fulfill QoS requirements, which are expressed
at the language level by means of a QoS contract. QoS contract is transparently
managed by the ASSIST compiler that preprocesses it and generates all the
support code needed to enforce it at run-time by controlling parallelism degree,
processes remapping, and algorithm selection. Programmer is just asked to ex-
press a composition of ASSIST modules, and declare a QoS contract either on
each module or on the whole application. We experimentally show that both
stateless and stateful computations may be suitably reconfigured to fulfill sev-
eral kinds of contracts, and that these reconfigurations might have negligible
cost enabling fine grain control on the application dynamic evolution.

ASSIST is briefly introduced in Sect. 2. QoS contracts and their managing
strategy are presented in Sect. 3. ASSIST QoS-enabled run-time support is build
on a set of mechanisms aiming to enable the run-time reconfiguration of appli-
cations. We believe that these mechanisms are an enabling technology for QoS
control of grid-aware applications. Different policies may drive these mechanisms
to target different QoS goals, such as performance and fault-tolerance. In this
paper we mainly focus on these mechanisms, which are presented and evaluated
in Sect. 4. Some examples of performance policies are sketched in Sect. 5, a full
discussion on performance policies is outside the scope of this paper (due to lack
of space). The presented policies are validated through experiments in Sect. 6.

2 The ASSIST Environment and Its Run-Time

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of
data. Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the par-
allel execution of a number of sequential functions, that are activated and run as
Virtual Processes on items arrival onto input streams. The sequential functions
can be programmed by using a standard sequential language (C, C++, Fortran).
Virtual Processes may synchronize with one other by barriers. Overall, a parmod
may behave in a data-parallel (e.g. SPMD /for-all/apply-to-all) or task-parallel
(e.g. farm) way and may exploit a distributed shared state which survive to Vir-
tual Processes lifespan. A module can non deterministically accept from one or
more input streams a number of input items, which may be decomposed in parts
and used as function parameters to instantiate Virtual Processes, according to

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 773

D

QoS
contract

OO

ASSIST program

72

binary code+XML
(network of processes)

program
codes
(exe)

program
meta-data
(XML)

e

Fig. 1. An ASSIST application and a QoS contract is compiled in a set of executable
codes and its meta-data [9]. These informations are used to set up a processes network
at launch time: hexagons represents Virtual Processes, ovals represents processes, solid
edges represent data channels, dashed edges managements channels.

the input and distribution rules specified in the parmod. Virtual Processes may
send onto output streams items or parts of them which are gathered according
to the output rules. More details on ASSIST environment can be found in [2, 9].

The ASSIST compiler translates a graph of modules into a network of pro-
cesses. As sketched in Fig. 1, sequential modules are translated into sequential
processes, while parallel modules are translated into a parametric (w.r.t. the
parallelism degree) network of processes: one Input Section Manager (ISM),
one Output Section Manager (OSM), and a set of Virtual Processes Managers
(VPMs, each of them running a set of Virtual Processes). The actual parallelism
degree of a parmod instance is given by the number of VPMs. ASSIST run-time
support also include a Module Adaptation Manager per parmod (MAM), which
monitors the performances of the parmod, and implements reconfiguration poli-
cies; and an Application Manager (AM), which coordinates the QoS at the level
of the whole application by coordinating MAMs. In this work we focus on MAM
design. AM design is subject of current research, we refer back to Sect. 8 and [9]
for a general description.

3 ASSIST Autonomic Run-Time and QoS Contracts

The initial configuration of an ASSIST program is specified by the set of pro-
cesses that are co-allocated at launch time. The configuration of a parmod is
managed by its MAM, which dynamically decides the number of VPMs, and
their mapping onto grid Processing Elements (PEs) acquired through grid mid-
dleware. The ASSIST compiler prepares a QoS contract for each parmod and
bind them to MAMs. Moreover, a MAM can asynchronously receive a different
QoS contract from the AM in any moment along the application run.

Among all possible QoS goals, in this work we mainly focus on performance
related ones that are achievable through adaptation within each parallel mod-
ule. All aspects regarding modules coordination, as well as other QoS measures

774 Marco Aldinucci et al.

such as reliability, availability, security are currently under investigation. We
introduce the concept of QoS contract. It carries a module QoS goal and the
description on how it should be achieved. In particular:

— Performance features: a set of variables which can be evaluated from module
static information, run-time data collected through monitoring, and perfor-
mance model evaluation.

— Performance model: a set of relations among performance features variables,
some of them representing the performance goal.

— Deployment annotations] describing processes resource needs, such as re-
quired hardware (platform kind, memory and disk size, network configura-
tion, etc.), required software (O.S., libraries, local services, etc.), and other
all strictly required constraints to enforce code correctness.

— Adaptation policy: a reference to the desired adaptation policy chosen among
the ones available for the module. Standard adaptation policies are repre-
sented as algorithms and embedded within MAM code at compile time.

The following is the QoS contract used in experiment Fig. 3 @:

Perf. features QL; (input queue level), QL, (input queue level), Trsa (ISM ser-
vice time), Tosnm (OSM service time), N,, (number of VPMs), T[]
(VPM; avg. service time), T, (parmod avg. service time)

Perf. model Ty = max{Tism, Z:L:1 Twlil/n,Tosm}, Tp < K (goal)

Deployment arch = (i686-pc-linux-gnu V powerpc-apple-darwin*)

Adapt. policy goal_based

MAM run-time behavior may be conveniently sketched in terms of autonomic
control loops [10]. In order to handle situations in which resource availability
affects the performance of the applications, the run-time system of the running
application has to:
1. monitor application actual status by collecting raw sensible performance
data, and synthesize performance features variables;
2. evaluate performance model, and if it is unsatisfied, analyze it to discover
possible causes;
3. if needed, plan a reconfiguration strategy according to the adaptation policy,
with the goal of re-conveying the application in a legal status;
4. execute the reconfiguration, possibly allocating new resources/rebalancing
the computation, possibly migrating entire modules.

4 Reconfiguration Key Concepts and Mechanisms

The modular nature of ASSIST applications and their management enable the
reconfiguration of a subset of modules while neither affecting nor stopping the
ones not involved in the reconfiguration, which can be distinguished in two cate-
gories: (a) involving the alteration of mapping between application activities and
PEs!; (b) involving the variation of process graph structure, including modules

L ASSIST parmod supports the migration of Virtual Processes between VPMs, and
VPMs between PEs, possibly migrating or remapping associated data.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 775

parallelism degree®. Observe that, load balancing within a parmod can be man-
aged by reconfigurations of kind (a): the load of a VPM (and the PE hosting it)
may be decreased by moving some of its Virtual Processes to another VPM.
Independently of when the MAM decides to trigger a reconfiguration, the
module is actually reconfigured on the next reconf-safe point. These are the
time windows during a given parmod run in which its internal attributes are
completely defined by the set of local attributes. Notably, the runtime does not
introduce any additional synchronization w.r.t. the ones required by program se-
mantics. It rather delays reconfiguration execution just after next natural reconf-
safe point is reached. We distinguish between two kinds of reconf-safe points:

— on-stream-item: A new item is available in any input streams. A complete
systolic synchronization is induced by the ISM process within the parmod.
If needed, shared state is consolidated along the synchronization process.

— on-barrier: A complete synchronization has happened within a parmod due
to either an explicit or implicit barrier. Barriers are issued by the programmer
or the compiler to enforce the consolidation of shared state (e.g. at each step
of a data-parallel iterative program).

No other points can be considered reconf-safe. Since the reconfiguration process
is designed to be transparent to the programmer, we exclude the possibility of
reconfiguring the parmod during the execution of an user defined function. In
this way, we avoid the instrumentation of legacy code and the adoption of process
dumping techniques that are hardly effective on heterogeneous platforms.

4.1 Reconfiguration Protocol

The MAM triggers a parmod reconfiguration raising a command toward all in-
terested processes which participate, with the MAM, to a distributed reconfig-
uration protocol. All data exchanges (data or computation migrations) happen
among VPMs following a communication schema encoded and optimized for the
particular parmod semantics at compile time. These regard the static instrumen-
tation of reconf-safe points with the minimum needed reconfiguration actions,
e.g. a farm stateless parmod is not instrumented with data migration code.
The MAM participates to the protocol in order to mediate and orchestrate
the interactions between AM and the Grid Abstract Machine, and to enforce
all processes involved are aware and ready to start a reconfiguration at the
next reconf-safe point. This should be enforced also when a complete barrier is
not needed to ensure data integrity (e.g. master-slave). The latter property is
guaranteed by the MAM accordingly to the following behavioral schema:

not valid
valid
start reconf. . connected
done decided validate e(\::‘gt:rzr’:ﬂgs) to MAM (wait)

ack (all new

internal state reconf-safe point: (wait)
consolidated on-stream-item VPMs are started)
ack] .
waitin recont-safe point: all VPMs (ism/osm (wait)
9 on-barrier ready are ready) ready

2 ASSIST support an increment or decrement of the number of VPMs in parmods.

776 Marco Aldinucci et al.

A parmod reconfiguration is initiated by its MAM. The reconfiguration plan is
build accordingly to the proper strategy (see Sect. 5), e.g. increase the number of
PEs, move to it a given number of Virtual Processes. Possibly some resources are
asked to grid middleware through the Grid Abstract Machine. A reconfiguration
command is synthesized, then validated (e.g. do not remove the last VPM, etc.).

The MAM waits in sequence that new started processes are connected to
it; and the ISM, OSM, and all involved VPMs acknowledge the reconfiguration
command. Eventually the MAM waits a reconf-safe point is reached and enforces
all data and computation redistribution is completed.

4.2 Evaluation of Reconfiguration Overhead

We evaluate the cost of reconfiguration mechanisms against the following metrics
(the former two are illustrated in Fig. 2):

— Reconfiguration time (Ry): refers to the total time spent to reconfigure the
application, from the time a MAM decides the reconfiguration to the time
it is completed.

— Reconfiguration latency (R;): the time elapsed from the point a parmod is
stopped for a reconfiguration to the time it is resumed. This is the foremost
measure from users’ viewpoint.

— Reconfigurable code overhead (R,): the slowdown of an application when
instrumented with the additional code needed to make it reconfigurable.

parmod reaches a
reconf-safe point

| s - N2/
i Wy W -
i VPs are
. redistributed .
—r time —>»
i reconfl. time —I
initial configuration runs (k PEs) i— reconf. latency *1 final configuration runs (k+1 PEs)
plan | execute | monitor | analyze MAM
x

need 1 PE PEX LaunchQPM,PEx) ack
RN

Grid Abstract Machine

Discovery service ~ Stage&Launch service Grid monitor service (middleware)

Fig. 2. Reconfiguration dynamics and metrics.

These metrics are evaluated on two different ASSIST applications on a dedi-
cated Linux cluster. The cluster hosts 24 P3@800MHz PEs, connected through a
100MBit switched Ethernet. The architectural homogeneity and stability enable
to precisely discriminate the reconfiguration overhead. As shown in [8], ASSIST
already supports heterogeneous platforms in CPU and O.S. with less than 7%
of additional communication cost, due to message marshalling. The reconfigu-
ration mechanisms also support the deployment on to heterogeneous platforms
with TCP/IP or Globus provided communication channels. The two applications
are composed by one parmod and two sequential modules.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST T

The first is a data-parallel application receiving a stream of integer arrays and
computing a forall of simple function for each stream item; the matrix is stored in
the parmod shared state. In this case the overall shared state has a negligible size
since the experiment is designed to evaluate mechanism overhead. Preliminary
experiments with realistic state size show a linear dependency between R; and
the global size of parmod shared state.

The second is a farm application computing a simple function on different
stream items. Since R; also depends on sequential function cost, in both cases
we choose sequential functions with a close to zero computational cost in order
to evaluate mechanism on the finest possible grain.

The reconfiguration overhead (R,) measured during our experiments, with-
out any reconfiguration change actually performed, is practically negligible, re-
maining under the limit of 0,004%, the measurement of the other two metrics
are reported in Table 1.

Table 1. Evaluation of reconfiguration overheads (ms). On this cluster, 50 ms are
needed to ping 200KB between two PEs, or to compute a 1M integer additions.

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add_PEs remove_PEs add_PEs remove_PEs

of PEs involved 1—2 2—4 4—8 2—1 4—2 8—4 1—2 2—4 4—8 2—1 4—2 8—4

R on-barrier 12 16 23 08 14 37 - - - - - -
R; on-stream-item 4.7 12.0 339 39 6.5 19.1 ~0 ~0 ~0 ~0 ~0 ~0
Ry 244 305 36.6 21.2 35.3 435 24.0 32.7 48.6 17.1 21.6 31.9

Consider the reconfiguration x — y, where z and y are the number of PEs
before and after the reconfiguration respectively. For the data-parallel parmod,
R, grows linearly with (x + y) for both kinds of reconf-safe points, and depends
on shared state size and mapping. Shared state is kept distributed during all the
reconfiguration process. Farm parmod cannot be reconfigured on-barrier since
it has no barriers, and achieves a negligible R; (below 1072 ms). This is due to
the fact that no processes are stopped in the transition from one configuration
to the next. R;, which includes both the protocol cost and time to reach next
reconf-safe point, grows linearly with (x4 y) for the former cost and depends on
user-function for the latter.

5 Adaptation Policies

Adaptation policies are implemented as algorithms, actually methods of the
MAM automatically generated by the compiler. ASSIST provides the program-
mer with hooks to add user-defined policies. The definition of a set of suitable
policies and models to drive MAM and AM analyze and plan phases is sub-
ject of current research. For the sake of brevity, we present here a policy to
automatically drive MAM of a farm-like parmod, adaptation policies for data-
parallel stateful parmod have been presented elsewhere [11]. Farm parmod ex-

778 Marco Aldinucci et al.

ploits on-demand task scheduling that guarantees load-balancing also in case
of heterogeneous platforms, thus the MAM does not need to care about it. As
discussed in Sect. 3, it is worth distinguishing two kinds of goals, and their
adaptation policies. Ensure: (i) a desired service time; (ii) the best effort in the
performance/resource trade-off.

In general, a policy should first analyze causes of module misbehavior reason-
ing on performance features values, then use the performance model to forecast
if an adaptation may lead to contract satisfation. Eventually use mechanisms
API (e.g. add_PEs) to reconfigure the module. Different policies can lead to dif-
ferent decisions in the same configuration: when the QoS contract is fulfilled, a
policy of kind (i) would not increase the resource assigned to the module, even
if it could exploit them. A best-effort policy in this case would pursue the max-
imum performance. As well, when incoming data rate decreases, so that some
resources could be released because the module is over-dimensioned w.r.t. the
input rate, a best-effort strategy will promptly release the resources, in order
to optimize their usage, while a goal based policy would not, in the eventuality
that the input rate will raise again.

When operating in best effort mode, the parmod acquires a new resource if
the input queue is filling (its utilization is close to 1) and the output queue is
emptying, i.e. the slower stage in the parmod is the processing one. It releases a
certain amount of resources if exists a proper subset R of the set of VPMs that
provides enough computing power:

Brsy < ZieR Bw[iLWhere Brsm = TIéM>Bw[i] = Twli]

in that case, the resources not in R can be released with no loss in performance.

When pursuing target (i), in the condition to release the resource, the actual
bandwidth Brsas is substituted by the contractually specified one: T),. In this
setting, the parmod acquires a new resource if the contract is not satisfied and
the slower stage in the parmod is the processing one (as in the best-effort case);
the conjunction of the two conditions prevents from adding new resources if the
contract is not satisfied but due to other modules low performances.

These policies can clearly distinguish when a contract is violated due to
another module misbehavior: in such case, the module manager is aware that no
actions could be performed to solve the problem: we are investigating cooperation
strategies among managers, to address these issues.

6 Experiments

To evaluate the effectiveness of proposed reconfiguration mechanisms and poli-
cies we tested a farm and a data-parallel parmods on several scenarios. The
former parmod farms out a dummy sequential function with 2s average service
time (experiments in Fig. 3 @, @, ©). The latter computes a shortest-path like
algorithm exploiting 640KB of shared state (Fig. 3 @). Tests are performed on
the cluster described in Sect. 4.2, results are shown in Fig. 3:

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 779

N it

» 2]
= 10} PMsinparmod =— § 2 9t
s gt 1 > 8t
5 4L 1 S It N. of VPMs i od —
S of 1 =2 8 ﬁ . s in parmo 1
» 8F Ms aggregated power =+- 1 o gl VPMs:aggregated power = = -
% 6f Input Stream pressure — 1 2 51 AN NN s em i]
5 ¢] 84 P
= 25 3 QoS contract —— 1
i‘”gg = [Tinputistream queue fi level ;=1] 2100 F=== ST T T s i]
T ot ; o I I P S e R P T Y B T 53 F Input stream queue fill level --=-]
@ 20 40 60 80 100 120 140 160 180 200 o 50 100 150 200

Wall Clock Time (s) Wall Clock Time (s)
12}
Z 10t A N. of VPMs in parmod —— Reconfiguration time ——
S g 3 JJ_r’f 1 100 = Communic. time (1 iter) ===
5 L Computation time (1 iter) ==
S 4 e = 80 P! (1 iter)
= 3
© 8r R ‘VPMs aggregated power == - | " 60 -
g 6r - . Input stream pressure -1 E
s A2 [i ' . QoScontract — 1 40
R 100 F="= === === SN Sl === === T== q 20
E 58 E ‘ . sInput stream quede fill level ==~] 0
e 20 40 60 80 100 120 140 160 180 200 e 2 3 4 5 6 7 8 9 10 11

Wall Clock Time (s) N. of VPMs

Fig. 3. Experiments on parmod reconfiguration (see Sect. 6).

@ Farm: best effort mode: the Input stream pressure, i.e. the frequency at which
parmod receive stream items, is changed along the program run. The parmod
input queue tends to fill when the VPMs consume stream items slower than
they are received, and vice-versa. The MAM tries to match the service time of
VPMs and items arrival time by increasing or decreasing the number of VPMs.
Transient VPMs may be exploited to bring back queue to a safe level.
® Farm: a fixed service time specified in the contract and with a fixed input
pressure. Three times, along the program run, a PE is externally overloaded
causing a contract violation. The MAM reacts by adding as many VPMs (one in
the figure) mapped onto fresh PEs until the contract is satisfied. The MAM also
knows (see Sect. 5) that the contract continues to be satisfied if the overloaded
PE is removed, and after a while removes it. On the whole a VPM migrates from
one PE to another without stopping the parmod.
©® Farm: a fixed service time specified in the contract and with a fixed input
pressure, but the contract is changed by the AM three times along the program
run. Each time, the MAM reacts by adapting the number of VPMs in order to
satisfy the new contract.
O Data-parallel: on-barrier reconfiguration during the execution of a single forall.
The MAM receives, during the program run, different contracts with fixed num-
ber of PEs (ranging from 2 to 11); it reacts by asking each time a fresh PE,
mapping on it a VPM, and triggering the suitable computation and shared data
redistribution. Observe that in this case the optimal number of PEs may heuris-
tically be decided since the iteration time (computation time + communication
time) exhibit a quite regular behavior. The figure also show that reconfiguration
is quite efficient since its overhead is comparable to a single iteration time.
The experiments show that the approach is feasible for data-parallel compu-
tations, and that good results are obtained for the task-parallel ones.

780 Marco Aldinucci et al.

7 Related Work

Early experiences of reconfigurable code have been presented since eighties; these
include the management of process migration at O.S. kernel level [12], and li-
braries providing the programmer with a migration API for running processes
(the libckpt [13], MPI-based DyRect [14]). With respect to them, ASSIST is able
to target heterogeneous architectures, at a higher level of abstraction. The ex-
tensions of parallel programming languages (OpenMP [15], HPF [16]) proposed,
are not enough flexible for a grid-like environment (e.g. they cannot acquire new
PEs at run-time). The AFPAC library [17] proposes a similar approach to our in
supporting reconf-safe points (AFPAC coordination protocol) for MPI applica-
tions, however the reconfigurations are not transparent since the user code should
be augmented with both reconf-safe points and reconfiguration code. Java byte-
code portability has been exploited to provide a user-level migration mechanism
(ProActive [4]), even if it is not transparent to the application programmer.

We followed a similar approach to the GrADS project, which exploits a com-
plete environment, including a monitoring architecture, contract negotiators and
configuration optimizer. Differently from GrADS we can reconfigure applications
in transparent manner , and with a sensibly better performance (we can join ad-
ditional resources without completely stopping the application). In particular
[3], reports cost of minutes for reconfiguring a data-parallel application while
ASSIST overheads ranges in milliseconds—seconds span. The lower reconfigura-
tion cost diminishes the criticality of deciding a reconfiguration, and enables the
use of heuristic “try-and-see” approach whether analytic modeling fails.

8 Conclusions and Future Work

We presented a novel extension of the ASSIST environment that seamlessly
support application reconfiguration at run-time. Application reconfiguration is
achieved efficiently and transparently to the application programmers through
parmod reconfiguration. ASSIST parmod are self-optimizing parallel entities
that can be able to respect a dynamically received QoS contract. A parmod
reconfiguration does not have any direct impact on other parmods in the same
application. Also, we shown a set of policies to deal with QoS contracts en-
abling parmods to self-adapt to a running environment that is heterogeneous
and unreliable in provided performance.

On this ground we are extending ASSIST to full grid support. In particular,
all MAMs can be organized in a hierarchy of managers, the root being the Ap-
plication Manager (AM), that enforces a QoS contract for the whole application
[9]. The AM works — in the large — similarly to MAM (see Sect. 3), and lever-
ages on MAMs to detect parmods behaving as bottlenecks for the application:
it reacts sending their MAMs a suitable new contract.

Dynamic Reconfiguration of Grid-Aware Applications in ASSIST 781

References

10.

11.

12.

13.

14.

15.

16.

17.

. Foster, 1., Kesselmann, C., eds.: The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann (2003)

Vanneschi, M.: The programming model of ASSIST, an environment for parallel
and distributed portable applications. Parallel Computing 28 (2002) 1709-1732
Vadhiyar, S., Dongarra, J.: Self adaptability in grid computing. International Jour-
nal Computation and Currency: Practice and Experience (2005) To appear.
Baude, F., Caromel, D., Morel, M.: On hierarchical, parallel and distributed com-
ponents for Grid programming. In: Workshop on component Models and Systems
for Grid Applications. (2005)

Thain, D., Tannenbaum, T., Livny, M.: Condor and the grid. In: Grid Computing;:
Making the Global Infrastructure a Reality. John Wiley & Sons Inc. (2002)

van Nieuwpoort, R.V., Maassen, J., Wrzesinska, G., Hofman, R., Jacobs, C., Kiel-
mann, T., Bal, H.E.: Ibis: a flexible and efficient Java-based grid programming
environment. Concurrency & Computation: Practice & Experience (2005)
Magini, S., Pesciullesi, P., Zoccolo, C.: Parallel software interoperability by means
of CORBA in the ASSIST programming environment. In: Proc. of Euro-Par 2004.
Volume 3149 of LNCS., Springer (2004) 679688

Aldinucci, M., Campa, S., Coppola, M., Magini, S., Pesciullesi, P., Potiti, L., Ravaz-
zolo, R., Torquati, M., Zoccolo, C.: Targeting heterogeneous architectures in AS-
SIST: experimental results. In: Proc. of Euro-Par 2004. Volume 3149 of LNCS.,
Springer (2004) 638-643

Aldinucci, M., Coppola, M., Danelutto, M., Vanneschi, M., Zoccolo, C.: ASSIST
as a research framework for high-performance Grid programming environments.
In: Grid Computing: Software environments and Tools. Springer (2005)

Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Computer
36 (2003) 41-50

Aldinucci, M., Campa, S., Coppola, M., Danelutto, M., Laforenza, D., Puppin, D.,
Scarponi, L., Vanneschi, M., Zoccolo, C.: Components for high performance Grid
programming in Grid.it. In: Proc. of the Workshop on Component Models and
Systems for Grid Applications. CoreGRID series. Springer (2005)

Zayas, E.R.: Attacking the process migration bottleneck. In: Proc. of the 11th
ACM Symposium on Operating System Principles. (1987)

Litzkow, M.: Supporting checkpointing and process migration outside the unix
kernel. In: Usenix Winter Conference. (1992)

E. Godard, S. Setia, E.W.: Dyrect: Software support for adaptive parallelism on
nows. In: Proc. of IPDPS Workshop on Runtime Systems for Parallel Program-
ming. (2000)

Scherer, A., Lui, H., Gross, T., Zwaenepoel, W.: Transparent adaptive parallelism
on nows using OpenMP. In: Proc. of Principles and Practice of Parallel Program-
ming. (1999)

Edjlali, G., Agrawal, G., Sussman, A., Humphries, J., Saltz, J.: Compiler and
runtime support for programming in adaptive parallel environments scientific pro-
gramming. Scientific Programming 6 (1997)

André, F., Buisson, J., Pazat, J.L.: Dynamic adaptation of parallel codes: toward
self-adaptable components for the Grid. In: Workshop on component Models and
Systems for Grid Applications. (2005)

	Dynamic Reconfiguration of Grid-Aware Applications in ASSIST
	1 Introduction
	2 The ASSIST Environment and Its Run-Time
	3 ASSIST Autonomic Run-Time and QoS Contracts
	4 Reconfiguration Key Concepts and Mechanisms
	4.1 Reconfiguration Protocol
	4.2 Evaluation of Reconfiguration Overhead

	5 Adaptation Policies
	6 Experiments
	7 Related Work
	8 Conclusions and Future Work
	References

