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Abstract This paper presents the main ideas of the high-performance component-based
Grid programming environment of the Grid.it project. High-performance com-
ponents are characterized by a programming model that integrates the concepts of
structured parallelism, component interaction, compositionality, and adaptivity.
We show that ASSIST, the prototype of parallel programming environment cur-
rently under development at our group, is a suitable basis to capture all the desired
features of the component model in a flexible and efficient manner. For the sake
of interoperability, ASSIST modules or programs are automatically encapsulated
in standard frameworks; currently, we are experimenting Web Services and the
CORBA Component Model. Grid applications, built as compositions of ASSIST
components and possibly other existing (legacy) components, are supported by
an innovative Grid Abstract Machine, that includes essential abstractions of stan-
dard middleware services and a hierarchical Application Manager (AM). AM
supports static allocation and dynamic reallocation of adaptive applications ac-
cording to a performance contract, a reconfiguration strategy, and a performance

model.
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1. Introduction

In the context of Grid platforms at various levels of integration [1], a Grid-
aware application must be able to deal with heterogeneity and dynamicity in
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the most effective way (adaptive applications), in order to guarantee the spec-
ified level of performance in spite of the variety of run-time events causing
modifications in resource availability (load unbalancing, node/network faults,
administration issues, emergencies, and so on). With respect to traditional plat-
forms, when the Grid is taken into account it is much more important to rely on
application development environments and tools that both guarantee high-level
programmability, application compositionality, software interoperability and
reuse, and, they are able to achieve high-performance and the ability to adapt to
the evolution of underlying technologies (networks, nodes, clusters, operating
systems, middleware) [2-8]. Achieving this high-level view of Grid application
development is the basic goal of our research, in the Grid.if national project [9]
and in associated initiatives at the national and European level.

Inorder to be able to design, develop and deploy such kind of high-performance
Grid-aware applications efficiently, we are interested in innovative program-
ming environments that

i) support the programmers in all the activities related to parallelism ex-
ploitation, by providing some kind of structured primitives for parallelism
exploitation;

ii) allow to achieve full interoperability with existing software, both parallel
and sequential, either available in source or in object form;
iii) support and enforce reuse of already developed code in other applications.

In particular, we want to exploit the experience of our group in the design
and implementation of structured parallel programming environments [10-12]
to target Grids composed of clusters or networks of heterogeneous workstations

Table 1. Layered software architecture for Grid-aware applications

Complex, multidisciplinary applications. Programmer only ex-
presses the kind of parallelism, without being concerned with any

Applications detail involved in its exploitation or related to the fact that the
target architecture is a Grid. The user supplies, for each parallel
component, a performance contract to be satisfied.

High-performance Exploitation of structured parallelism, basic mechanisms support-
programming ing compositionality, interoperability and reuse of existing soft-
environment ware, support for the dynamic control of performance contracts

and adaptivity.

Functionalities and mechanism supporting the programming envi-

Grid abstract machine  ronment, including dynamic application management and all the
needed features from the resource, collective and connectivity lev-
els of Grid middleware

Basic hardware-software platform
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[13-17]. We think that a component-based programming environment is a
suitable starting point to achieve the goals just stated.

In this work, we discuss the essential features of a programming environ-
ment that is based both on the component model and on structured parallelism.
The programming environment is a layer of a larger picture, such as the one
in Table 1. We will first discuss the features of a component-based parallel
programming model. Then, we’ll take into account how these features are cur-
rently or will be soon supported in ASSIST. ASSIST is a structured parallel
programming environment that was originally designed to address cluster and
networks of TCP/IP workstations only, in the framework of the Italian national
project ASI-PQE2000 [18]. We show that ASSIST is a suitable basis to capture
all the desired features in a flexible and efficient manner, and, in particular, we
discuss how the original ASSIST environment is currently being transformed
into a component-based, Grid-aware parallel programming environment. This
evolution of the ASSIST environment is being performed in the framework of
the Grid.it Italian national project. Grid.it is a 3 year project involving ma-
jor research institutions in Italy aiming at providing innovative programming
methodologies and tools for Grids. The project has a specific work-package,
leaded by our group, aimed at designing and implementing a prototype high-
performance parallel programming environment for Grids. Component-based
ASSIST is the expected, assessed outcome of this work-package.

1.1 Related Work

Several studies recognized that component technology could be leveraged to
ease the development of Grid applications. We assume as reference component
standards the CORBA Component Model (CCM), because of its clean and rich
component model [19-20], and the Web/Grid Services [21], because they are
emerging as the standard infrastructure to integrate heterogeneous systems [21].
The Common Component Architecture (CCA) is a prominent standardization
effort, aiming at the definition of a high-performance oriented component ar-
chitecture [22]. We depart from CCA-based approaches like CCaffeine [23]
as we explicitly deal with component composition issues (see Sect. 1.2 and
Sect. 1.3.2).

Our approach differs from that of GridCCM [24], as the latter focuses on
communication optimization, while our work targets application adaptivity and
Grid-awareness in general.

We are closer to the GrADs project [25] with respect to the concept of adap-
tivity and in some architectural aspects, but we differentiate in the programming
model. Our model, being based on structured parallel programming, has the
ability i) to synthesize from the parallel structure of applications the perfor-
mance models used to adapt their computation, and ii) to control the applica-
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tion configuration at run-time, using a parametric implementation of the parallel
programming constructs.

A closely related project to our one is ProActive [26], which extends the
Fractal component framework for Java [27] to support parallel, reconfigurable
component architectures on the Grid. We share with the Proactive project the
departure from flat component models to move toward explicit component com-
position, the emphasis on run-time adaptivity of component structures, and the
exploitation of these hierarchical structures to manage application reconfigu-
ration. We differentiate from that research as we are not limited to Java, we
have instead a well defined, language-based separation between sequential pro-
gram behaviour and parallel coordination, at the intra- and inter- component
levels. Our primary goal in improving component interaction is also different,
as we want to exploit a broader set of interaction mechanisms than RMI. On
the contrary, Proactive primarily exploits parallel and collective RMI abstrac-
tions (and their optimizations e.g. by means of futures) to extend the sequential
component framework to a parallel, distributed one.

2.  High-performance components for Grid-aware
applications: computational model

The basic features needed to implement a component-based, high perfor-
mance programming environment targeting the Grid include most of those al-
ready implemented in currently available component models, such as JavaBeans
[28] or the CORBA Component Model [19]. These features are those needed to
implement a distributed or a parallel program, that is they are mainly framework
features and communication/interaction mechanisms. Concerning the frame-
work mechanisms, we obviously need handy ways of both creating/instantiating
and calling components across the different processing elements of the target
architecture. We also need mechanisms and features that offer the programmer
the possibility of controlling the parallel behavior of the Grid-aware application.

In the Grid.it programming environment, we want to provide such mecha-
nisms in the most abstract way possible. In particular, we want to leave the
programmer the ability of concentrate on the functional behavior of the appli-
cation, as well as on the qualitative aspects of parallelism exploitation. That is,
we want to relieve the programmer of the responsibility of directly handling all
the details related to the quantitative aspects of parallelism exploitation, and all
those related to the usage of specific Grid middleware mechanisms.

To understand the features of a high-performance components environment,
it can be useful to distinguish three conceptual levels: a) computational model,
b) functional and non-functional interfaces and c¢) support architecture for Grid-
aware applications. In this section, we start to deal with the first issue. The
other ones are discussed in successive sections, where the Grid.it approach
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based on ASSIST is presented. From the point of view of the computational
model, we propose that high performance components are studied and charac-
terized in terms of the following features: parallelism, component interaction,
composition, and adaptivity.

Parallelism. Ingeneral, components have an internal parallel structure (intra-
component parallelism). It must be possible to configure several, distinct ver-
sions of the same component, all versions having the same functional inter-
faces. Moving from one version to another one could be done by recompiling
and/or reloading, in the most simple situations (static versions); however, we
are interested also in parallel components that are able to change their internal
structure/behaviour at run time (dynamic versions), depending on functional
conditions (e.g. predicates on the computation state) and/or on non-functional
conditions (e.g. variations in the achieved performance). In addition to intra-
component parallelism, the inter-component parallelism is fundamental for
high-performance component applications as well.

Component Interaction. Most component-based frameworks supply a way
to declare the public services provided by a component and to invoke a ser-
vice provided by a (remote) component. The mechanism is based on the
uses/provides port abstraction. Being essentially a new edition of the RPC/RMI
paradigm, this is sufficient to guarantee proper interactions between compo-
nents, when they follow this simple client/server model. As an example, task
farm computations (that is, embarrassingly parallel ones) can be implemented
very efficiently using these mechanisms.

However, different mechanisms are needed to implement other parallel pat-
terns. For instance, pipelines cannot be easily expressed by means of the
uses/provides port mechanism. Therefore, we assume that at least two dis-
tinct mechanisms are implemented:

m events, that is a way to register event handlers and to propagate events
through the component network. This mechanism is already present
in CCM. It can be exploited to implement all the typical asynchronous
activities of parallel computations, such as monitoring.

m streams, that is a way to have uses/provides ports that implement data-
flow-like channels for sequences of unidirectional typed communica-
tions, without incurring in the performance penalties related to the return
messages and synchronizations typical of the plain uses/provides port
mechanism.

In general, acomponent has several input streams and several output streams,
that can be used in a data-flow and/or in a nondeterministic fashion. A rich set of
interaction mechanisms, which are typical of the parallel computation models,
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is fundamental also in order to implement higher-level abstractions, such as
complex workflow-based PSEs.

Composition.  Currently available component models allow components to
interact in several different ways. However, only a few of them (e.g. CCM
with the assembly construct) consider component composition as a primitive
operation. In our opinion, composition is fundamental to allow more and more
complex parallelism exploitation patterns to be developed and provided to the
user as components. As derived from our experiences with algorithmic skele-
tons, as soon as an efficient mechanism to exploit basic parallelism patterns
is available (see [29-30]) then the need for nesting/composition mechanisms
arises (see [14, 10]). By exploiting pattern composition, new parallel patterns
can be programmed, best suited to user’s needs. Furthermore, by properly
restricting the visibility of user-defined, composed parallel patterns, different
degrees of programmability of parallel applications can be presented to different
classes of users.

In our context, we assume to design a structured, component-based program-
ming environment, and we actually want to be able to exploit composition of
components to provide new, non-primitive components supporting the devel-
opment of Grid-aware parallel applications.

In conclusion, we need to define complex computation structures by means of
the parallel composition of parallel components. A composition of components
can be defined and reused as a new component in more complex structures.
We assume that a general, explicitly parallel structure is encapsulated into a
component in order to create a basic parallel component.

Adaptivity. A Grid-aware application must be able to deal with heterogene-
ity and dynamicity in order to guarantee the specified level of performance, in
spite of the variety of run-time events that can change resource availability. A
component must be characterized by non-functional interfaces, related to the
performance control, and by features that allow the programmer to specify how
the computation adapts at run time. Moreover, these features have to be imple-
mented efficiently at the run-time support level.

A strong relationship exists between the four features stated above. They
must be integrated consistently in a global approach, framework, or better, in a
programming model for high performance Grid programming. In Grid.it, we
use ASSIST as the programming model able to satisfy this requirement.
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3.  ASSIST as the Basic Programming Model for
High-Performance Components

We introduce ASSIST as derived from the NOW/COW programming envi-
ronment as the way to denote parallel, high-performance, component-based,
Grid applications. We also discuss how already implemented ASSIST features
match the requirements emerging from the previous Section discussion or can
be exploited/improved to match such requirements.

3.1 Basic Features of the ASSIST Programming Model

ASSIST programs are structured as generic graphs (identified by the generic
keyword), where nodes are parallel or sequential modules and arcs represent
typed streams of data/objects. No constraint is imposed to the form of graphs,
though “structured” graphs, such as those typical of a classical skeleton model,
are a notable class of cases that have efficient implementations.

All the interactions that are of interest in the composition of high-performance
components are implemented easily and efficiently with the ASSIST streams.
Streams are inherently asynchronous, however RPC/RMI interactions can be
emulated effectively.

Parallel modules are expressed by a generic skeleton, called parmod. In
this context, “generic” means that a parmod is a general-purpose construct that
can be tailored, for each application, to specific instances of classical stream-
parallel and/or data-parallel skeletons, and also to new forms of regular and
irregular parallelism.

A parmod operates on multiple input streams and multiple output streams.
Several distribution and collection strategies are provided for the input and
output streams respectively. Moreover, input streams can be controlled in a
data-flow or in a nondeterministic manner. Nondeterminism is important to
model several instances of workflow structures, as well as interaction by events.

The parallel computation expressed in a parmod is decomposed in sequen-
tial units assigned to abstract executors called virtual processors (VP). The
parmod can have an explicitly defined internal state for the duration of the
computation. This feature is important in many cases, for example in nonde-
terministic/reactive computations, as well as in many irregular and dynamic
computations.

As in any model for structured parallel programming, the parmod construct
is characterized by the important property that the implementation model is
parametric. This means that the realization of the run-time support is largely
independent of the actual mapping of the virtual processors of parmod onto the
real processors: this is true as far as it concerns the distribution of functions,
the distribution of data, and the communication.



In the same way, an instance of a parmod is characterized by a performance
model, which is parametric with respect to the actual realization. In the struc-
tured parallel programming community, a large amount of performance models
have been provided for many stream-parallel and data-parallel skeletons. In
ASSIST, we exploit this experience in order to characterize the behaviour of a
parmod in terms of the performance it can offer according to the actual mapping.
In many cases, i.e. where the parametric behaviour is predictable, the perfor-
mance model is recognizable at compile-time, while in other, more dynamic
cases, the association of a performance model to the computation, expressed by
a parmod, requires some annotation by the programmer and/or the knowledge
of the past history of the system or application. All the performance models can
be made available, in a sort of Performance Model Repository, to the strategies
implemented by the compiler and to the run-time support.

The “parametricity” feature (parametric implementation model and paramet-
ric performance model) is the basis for the implementation of adaptive strategies
in high-performance Grid-aware applications. How this issue is dealt with in
Grid.it will be discussed in detail in Sect. 1.4.1.

The “genericity” of the parmod construct offers an interesting opportunity to
express adaptive parallel computations by program. That is, the same parmod
(the same collection of virtual processors, input and output streams, and state
variables) can express different parallelism forms according to the value of the
internal state or of the input values. For example, in the Divide & Conquer im-
plementation of the C4.5 algorithm [18], in different phases the Divide module
has a data-parallel or a task-farm-like behaviour, in order to optimize the avail-
able parallelism in each phase of the computation. Because of the huge amount
of data associated to the internal state, this flexible implementation in ASSIST
is much more efficient than an equivalent version in which the data-parallel
phase and the farm-like phase are expressed by different specific skeletons.

In other words, ASSIST offers a powerful feature for expressing and im-
plementing adaptive computations: the same computation can be expressed
according to several alternative strategies. As we describe in Sect. 1.4.1, al-
ternative strategies can be associated to values generated by the program at
run-time, or they can be selected according to the actual performance values
with respect to the performance contract.

ASSIST modules can refer to external objects during any phase of the com-
putation, i.e. to objects not defined by the ASSIST coordination language and,
consequently, that are referred according to their specific interfaces/APIs. In
addition to libraries and system facilities (I/O, file, data bases), current external
objects in ASSIST are shared variables, CORBA remote objects, storage ob-
jects and data repositories. The existence of external objects is a further facility
to express alternative strategies for adaptive computations.



Components for High-Performance Grid Programming in Grid.it 9

ASSIST provides full interoperability with CORBA: not only an ASSIST
program can act as a client of a CORBA server, but, most significantly, an
ASSIST program can be automatically compiled as a CORBA object with RMI-
like synchronous invocations or with stream-like asynchronous data passing. It
has been shown [31] that the overhead introduced by the program transformation
is definitely acceptable for many parallel applications.

This experience proves that interoperability features can be efficiently merged
into the ASSIST model, in order to design applications as composition of com-
ponents, some of which will eventually be parallel.

3.2  ASSIST and Components

We figured the road-map transforming ASSIST programs/modules to com-
ponents as follows: first, we allow ASSIST modules to be encapsulated as
components in existing, well known component frameworks; then we include
in the component framework all the mechanisms needed to implement high-
performance applications; eventually, we integrate the framework in such a way
that parallel ASSIST components and existing legacy components can coexist
in an high-performance parallel Grid application. Following this road-map, our
current research [31] will produce the next version of ASSIST (2.0), where an
ASSIST program, expressed either as a single ASSIST module or as a graph of
parallel or sequential modules, is considered as a high-performance component
which:

a) can be composed using standard component frameworks, in addition to the
native ASSIST mechanisms,

b) exports non-functional interfaces and features automatic support to adaptive
applications, which will be discussed in the next section.

W.rt. standard frameworks, we are experimenting several solutions based
on Web Services (WS) and the CORBA Component Model (CCM). The imple-
mentation approach is similar to the one already adopted for CORBA 2 inter-
operability, i.e. the compiler generates bridge ASSIST modules, which support
the various kind of component ports related to the functional interfaces, as well
as ports related to the non functional interfaces.

From the point of view of compositionality, the ASSIST based approach
offers the following features:

i) a component (either WS or CCM) encapsulates an ASSIST (sub)graph,
ii) components can be composed according to ASSIST mechanisms or accord-
ing to the mechanisms of the standard component framework adopted.

In the first solution of point ii), two or more components, being ASSIST
graphs, are composed by the generic construct, which describes the structure
of the resulting ASSIST graph in terms of component modules and streams (and
possibly external objects). The composed ASSIST program is automatically
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compiled into a standard component. This solution can be adopted when the
components are all (new or existing) ASSIST programs whose ASSIST source
code is available.

In the second solution of point ii), the programmer uses the interaction mech-
anisms of the component framework (ports) to compose two or more compo-
nents. This approach is typically adopted when one or more of the components
of the application are existing (legacy) components that have not been designed
in ASSIST.

4.  Support Architecture for Applications Based on
High-Performance Adaptive Components

According to what stated in previous sections, several critical points have to
be addressed when we tackle adaptivity control in Grid-aware applications. In
particular, non-functional interfaces and reconfiguration strategy and applica-
tion management have to be taken into account. In this section, we will discuss
how these features have been taken into account in the design of our prototype
of the component-based parallel programming environment ASSIST 2.0.

4.1 Non-functional Interfaces and Reconfiguration
Strategy

We assume that a Grid-aware application is a composition of high-performance
components. That is, we restrict to the case where no legacy, non-parallel com-
ponents are used in the application.

Let us consider the case in which such components are ASSIST components
(graphs of sequential modules and/or parmods), composed by means of the
generic graph construct. In addition to functional interfaces, that are auto-
matically generated at compile time (out of the ASSIST code), each component
is characterized by non-functional interfaces. They are expressed as annota-
tions in a proper formalism, which is translated by the compiler into a run-time
representation based on XML. Such annotations convey information about per-
formance contract, reconfiguration strategy, and allocation constraints. The
template of an ASSIST component thus assumes the form shown in Fig. 1.

Figure 1. Template of an ASSIST component
ASSIST parmod modules and their generic graph composition

Performance contract (annotations)

Specification of the reconfiguration strategy and performance models
for Assist modules (ASSIST + annotations)

Allocation constraints (annotations)
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Figure 2. Example of an adaptive application expressed by parallel components

Performance Contract. Many parameters can be used to specify the per-
formance level that is required for the application. In this paper, we refer to
the processing bandwidth (service time) in stream-based computations, and/or
to the completion time, which is significant also for non-stream computations.
However, the following discussion is largely independent of the specific per-
formance parameters adopted.

The performance contract can be specified for the whole application and/or
for every single component. If the required performance of every component is
specified, the required performance of the whole application can be derived at
compile time using the knowledge of the graph. For example, the methodology
of queueing networks can be used, both in the case of asynchronous stream and
in the case of RMI-like interaction. If only the whole application performance
is specified, it is still possible to derive rough information at compile and run
time on the performance of the single components, using profiling estimates and,
most important, taking into account that an ASSIST component is a composition
of ASSIST modules for each of which a performance model may be known on
the basis of a Performance Model Repository.

Additional information related to communication bandwidth and latency
must be estimated; of course, the reliability of this information may not be
very accurate. However it is exactly because of these and other inaccuracies,
which are inherent of Grid platforms, that we need a support for adaptive Grid-
aware applications.

Reconfiguration Strategy. For each component, the application designer
specifies which way the component has to be restructured at run-time if and
when the performance contract happens to be no longer satisfied.

The reconfiguration strategy is basically expressed in ASSIST with the ad-
dition of some annotation. In Sect. 1.3.1 we saw that ASSIST allows the
programmer to express alternative strategies (e.g. different parametric forms
of parallelism) directly in the same program, when their activation depends on
the values of some program variables (e.g. the internal state of a parmod).
Moreover, the programmer can also specify that alternative strategies must be
activated when the performance contract is violated. Let us consider the fol-
lowing example (Fig. 2).
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a)

b)

c)

d)

Component C1 is an interface towards a Grid memory hierarchy, that vir-
tualizes and transforms data sets available on the Grid into two streams of
objects, the first one (whose elements have an elementary type) is sent to
C2, and the other (whose elements have array type) is sent to C3. C1 may
be an existing component available on the Grid, mediated by an ASSIST
program.

C2 is a parallel component encapsulating an ASSIST program. The recon-
figuration strategy of C2 specifies that

m “by default” C2is asequential module executing a certain function
F;

m  when the current performance level must be adjusted C2 is transformed
into a farm computation whose workers execute the same function
F. The actual number of workers will be determined parametrically
at run-time, according to the performance model and to the current
availability of resources.

C3 is a parallel component encapsulating an ASSIST data-parallel program
operating on each stream element of array type. As in the case of C2, the
strategy of C3 specifies that its parallelism degree (i.e. the amount of real
processors onto which the virtual processors are mapped) can be modified,
if needed.

C4 is a parallel component encapsulating an ASSIST program which, by
default, is a sequential module, but it can be restructured into a parmod
operating on the input stream according to a data-parallel or to a task farm
style, depending on the values of the parmod state and on the input values
themselves. Therefore, in this case the adaptation principle is applied at two
levels: at the program level and at the run-time support level.

C5 is a parallel component encapsulating an ASSIST program operating
nondeterministically on the input values received from C3 or C4, and trans-
forming the two streams into a data set.

Let us assume that, at a certain time, some monitoring activity signals that

C2 is becoming a bottleneck and that this causes a substantial degradation of
performance of the whole application. C2 can be transformed into a version
with suitable parallelism degree. In this case other components may have to be
restructured (e.g. C4,C5) in order to guarantee the level of performance. As
previously stated, this is possible according to a global strategy based on the
knowledge of the application structure.

When restructuring data-parallel components (C3), the strategy must be ap-

plied also to the re-distribution of the data constituting the internal state of a
parmod.
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Figure 3. Grid.it software architecture Figure 4. Grid Abstract Machine
ASSIST components
= high performance components
= ASSIST programs *D— —i}
@ ﬁ Application Manager (AM)
Grid Abstract Machine (GAM) @ ﬁ GAM
@ ﬁ Abstraction of the basic services:
resource management & scheduling,
tandard middl monitoring, ...
standard middleware —
. ¥ 1r

standard middleware

More sophisticated strategies can be expressed in ASSIST than those shown
in the example: the strategy of C4 could depend just on performance require-
ments instead of predicates on the internal state, and other alternative strategies
could exploit external objects, as opposed to strategies based on the stream
composition only.

Allocation Constraints. In general, restructuring high-performance com-
ponents involves resources belonging to different Grid nodes. In the example
above, the new workers of C2 can be allocated onto processors of a cluster
from a different Grid node. There are instead several cases in which we must
put constraints on resource allocation. For instance, several components (C1
and C5, say) can be executed only on certain Grid nodes and no reconfigura-
tion is permitted, either due to security or privacy reasons, or to requirements
related to the kind of resources needed to operate on the data sets. This kind
of information has to be associated with the reconfiguration strategy of every
component.

4.2  Application Management for Reconfiguration

We eventually come to the point where the implementation of the high-
performance component framework has to be taken into account. The software
architecture of Grid.it component-based parallel programming environment is
organized as shown in Fig. 3. The run-time environment of ASSIST 2.0 is
implemented on top of a Grid Abstract Machine (GAM), which in turn is im-
plemented on top of existing middleware (currently a version of the Globus
Toolkit) and realizes the functionality needed by the programming environ-
ment to support high-performance, component-based Grid-aware applications.

As shown in Fig. 4, the GAM consists of the Application Manager and
of the abstraction of the services for Resource Management and Scheduling,
Monitoring, and other services (accounting and so on).
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Application Manager Structure. The Application Manager (AM) has a
hierarchical structure. Fig. 5 illustrates a first case of an application consisting
of just one component structured as a graph of ASSIST modules

Figure 5. Example of an ASSIST com- Figure 6. Two interacting ASSIST com-
ponent ponents
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1
1
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{'==———> CAMy, CAMg, <-—* |

CAM,
AM | AM

Each ASSIST module has associated a Module Application Manager (MAM):
each MAM,; is responsible of the configuration control of the associated mod-
ule. A global strategy for the configuration control of the whole component is
implemented by the Component Application Manager (CAM).

In the example of Fig. 2, let us assume that each of the components C, .. .Cs
consists of one module and the whole application is wrapped as a component
Cy. Then, the AM consists of a two-level tree in which MAM1, .. MAMj5 are
leafs and CAMj is the root.

Application management is, in principle, a centralized process. It can be
realized in a decentralized way, according to several strategies. We suppose
that the decentralization is realized in a hierarchical manner. Moreover, for
availability reasons, we assume that the root is designed according to princi-
ples of fault-tolerance, e.g. using redundancy and, possibly, mechanisms for
checkpointing.

The hierarchical structure can be extended at any level according to the com-
positionality and abstraction strategy adopted for the application. For example,
Fig. 6 shows the same application of Fig. 5 in which we recognize two compo-
nents, Co; consisting of modules C;, Co and C,4, and Cgs consisting of modules
Cs and Cs. The whole application, which can be seen as the composition of
Co1 and Cyg, is considered as a component Cy. Thus, in addition to the same
leaf managers (MAM1, .. .MAM5;), we have CAMg; and CAMjs at the second
level, and CAMj at the root.
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Module Application Managers (MAMs). The MAM level is an ASSIST
abstraction, independently of the fact that the application is structured as a
(hierarchical) composition of higher-level components. At the MAM level we
implement the configuration control of the single ASSIST modules (parmods)
exploiting the associated performance model. As introduced in Sect. 1.3, a
Performance Model Repository is provided in the programming environment
and it is updated according to the history of the applications running in the
system. The specific performance model of each module, to be found in the
performance model repository, can be recognized

m by the compiler, according to the knowledge of some parallelism forms.
Examples of parallelism forms which are statically recognizable in AS-
SIST are farms (with and without state), data parallel computations with
fixed or variable static stencils, and some mixed combinations of stream-
and data-parallelism;

m by the programmer, in all the cases in which his knowledge is more
accurate, and/or a new parallelism form and the associated performance
model are expressed by properly and specifically instantiating a parmod
construct.

As discussed in Sect. 1.3 and 1.4, the reconfiguration strategies of an AS-
SIST module can exploit different forms of parallelism, different data distribu-
tion/collection strategies, and the usage of external objects. Moreover, in case
of data-parallel behaviour, data can be redistributed at run-time according to
load balancing strategies that cannot be (have not been) recognized at compile-
time. Notice that, for stream-parallel farm-like structures, load balancing is
always implemented by the run-time support .

MAM behaviour is basically event-driven, where the events indicate the
opportunity/necessity for restructuring the associated ASSIST module. One
kind of event is generated according to the outcome of Monitoring service
invocations. In this case, the MAM can provide the following sequence of
actions:

m arestructuring strategy is taken into account, either based on the ASSIST
alternative descriptions or on load balancing for data parallel modules;

m in case of alternative parallel strategies, the performance model from the
performance model repository is applied, a proposed solution to recon-
figuration is derived,

m the non transient nature of the event is assessed and therefore

m the father CAM is informed about this proposal.
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The MAM can also receive an event by the father CAM indicating that it
has to apply a restructuring strategy because a global variation of performance
has been detected. For example, in the computation of Fig. 6, CAMy; can ask
MAM{ to apply a reconfiguration strategy in order to increase the C4 bandwidth
in consequence of an increase of bandwidth of Cs.

Component Application Managers (CAMs). Each CAM applies control
strategies at a global level for the associated component.

As indicated above, a CAM can receive proposals of restructuring by the
child MAMs. In this case, the CAM has to apply a global performance model
(e.g. queueing network based model) in order to individuate a good solution
to the restructuring of one or more of the children modules. The Allocation
Constraints, indicated in the non-functional interfaces of the component, are
also applied during this process.

Recursively, a CAM can receive reconfiguration requests from father CAMs,
and can send them reconfiguration proposals. The root CAM (CAMy) is re-
sponsible for the final decisions in the global reconfiguration control which, as
seen, is a sort of parallel and asynchronous Divide & Conquer strategy applied
along the hierarchical Application Manager structure.

Ateach CAM level, the Resource Management and Scheduling services pro-
vided by the Grid Abstract machine are utilized. Notice that such services do
not necessarily coincide with the services in the standard middleware, instead
they represent the abstraction that are strictly needed by the Application Man-
ager. That is, a “RISC-like” GAM is defined, though starting from a monolithic
Middleware level; in the next future, this GAM service structure could be the
basis for the proposal of a new Risc-like Middleware level.

5.  Experiments

The features to be included in the Grid Abstract Machine have been experi-
mented using Lithium, a full Java, RMI based, structured parallel programming
environment [16]. Lithium has been often used to experiment solutions that have
been then moved to ASSIST, as the former is much more compact and easy to
modify than the latter. These experiments showed that

= almost perfect scalability can be achieved, even in the case when hetero-
geneous resources are used for the execution. The measured execution
times are usually no more than 5% away from the ideal ones.

= good tolerance to typical "dynamic" situations, such as the presence of
faulty nodes, can be achieved. In presence of a number of faulty nodes not
exceeding 20% of the nodes used to compute the parallel application, an
increase of less than 10% of the total execution time has been measured.
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Figure 7. Experiments in dynamic restructuring of parallel components
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The proposed AM organization and behaviour, described in Sect. 1.4, have
then been evaluated on some ASSIST examples, emulating the dynamic features
of the run-time support and of the MAM/CAM hierarchical organization. The
implementation of a first version of this support is on-going. Figure 7 shows the
results achieved in a set of reconfiguration experiments [32]. The experiments
have been performed using an application whose structure was a pipeline of
three stages: the first and the third stages are data servers and stream managers,
and the second stage is a data parallel version of the finite difference method
for solving differential equations (Jacobi method).

Figure 7-a shows how the Application Manager can satisfy the performance
contract (service time) by increasing the amount of real processors onto which
virtual processors of a data-parallel stencil computation are mapped. Figure
7-b shows the effect of transient variations of system load, that have no effect in
the performance in the long period (we employed an exponential mean, reset at
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every reconfiguration). Figure 7-c shows the more serious effects of a perturbing
overload caused by the creation of a new application onto the same processing
nodes. In this case, we assume that no more processing nodes are available,
thus only the load balancing solution is attempted, with a suitable redistribution
of data partitions implemented directly by the run-time support. Fig. 7-d shows
a situation similar to Fig. 7-c: the difference is that more processing nodes
are now available, and, after a first attempt of applying data redistribution, the
degree of parallelism of the data parallel module is successfully increased.

These experiments have been performed on a heterogeneous cluster, con-
firming that the Application Manager overhead is quite acceptable, and the
performance obtained is the same as in the case of optimal static mapping.
More intensive experiments to evaluate the Grid overhead are on-going.

6.  Conclusion and On-going Work

In this paper we have outlined the guidelines of our research in high-performance
component-based programming environments which are Grid-aware, in the
context of the Grid.it national project. We have shown that ASSIST is a suitable
programming model on which to build all the complex features of the program-
ming environment. In addition to showing the feasibility of component-based
ASSIST, we have proposed a Grid Abstract Machine, including a hierarchical
Application Manager to control resources for dynamically adaptive applica-
tions, structured by ASSIST components.

In the Grid.it project, a large amount of application case-studies provide
intensive experiments and benchmarks of the proposed ideas and tools. In
the short term, the on going research activity will produce a new version of
ASSIST with a full implementation of all the features discussed in this paper
and providing full interoperability with both CCM components and plain web
services as well.

In the medium term, the research will produce ASSIST version 2.0, in which
the ideas and first prototypes for the Grid Abstract Machine will be studied, im-
plemented and evaluated and the whole, component-based, high-performance,
structured parallel programming environment will be deployed.
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