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Abstract. Grid computing platforms require to handle dynamic be-
haviour of computing resources within complex parallel applications. We
introduce a formalization of adaptive behaviour that separates the ab-
stract model of the application from the implementation design. We ex-
emplify the abstract adaptation schema on two applications, and we show
how two quite different approaches to adaptivity, the ASSIST environ-
ment and the AFPAC framework, easily map to this common schema.

1 An Abstract Schema for Adaptation

With the advent of more and more complex and dynamic distributed archi-
tectures, such as Computational Grids, growing attention has to be paid to
the effects of dynamicity on running programs. Even assuming a perfect initial
mapping of an application over the computing resources, choices made can be
impaired by many factors: load of the used machines and network available band-
width may vary, nodes can disappear due to network problems, user requirements
may change.

To properly handle all these situations, as well as the implicitly dynamic
behaviour of several algorithms, adaptivity management code has to be built
into the parallel/distributed application. In so doing, a tradeoff must be settled
between the complexity of adding dynamicity-handling code to the application
and the gain in efficiency we obtain.

The need to handle adaptivity has been already addressed in several projects
(AppLeS [6], GrADS [11], PCL [9], ProActive [5]). These works focus on several
aspects of reconfiguration, e.g. adaptation techniques (GrADS, PCL, ProActive),
strategies to decide reconfigurations (GrADS), and how to modify the applica-
tion configuration to optimize the running application (AppLes, GrADS, PCL).
In these projects concrete problems posed by adaptivity have been faced, but
little investigation has been done on common abstractions and methodology [10].

In this work we discuss, at a very high level of abstraction, a general model of
the activities we need to perform to handle adaptivity in parallel and distributed
programs.
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Fig. 1. Abstract schema of an adaptation manager.

Our model is abstract with respect to the implemented adaptation tech-
niques, monitoring infrastructure and reconfiguration strategy; in this way we
can uncover the common aspects that have to be addressed when developing
a programming framework for reconfigurable applications, and we show that it
can be applied to two concrete examples: ASSIST [4] and AFPAC [7].

The abstract model of dynamicity management we propose is shown in Fig. 1,
where high-level actions rely on lower-level actions and mechanisms. The model is
based on the separation of application-oriented abstractions and implementation
mechanisms, and is also deliberately specified in minimal way, in order not to in-
troduce details that may constrain possible implementations. As an example, the
schema does not impose a strict time ordering among its leaves. In order to val-
idate the proposed abstraction, we exemplify its application in two distinct, sig-
nificant case studies: message-passing SPMD programs, and component-based,
high-level parallel programs. In both cases, adaptive behaviour is derived by spe-
cializing the abstract model introduced here. We get significant results on the
performance side, thus showing that the model maps to worthwhile and effective
implementations [4].

This work has already been presented at the ParCo 2005 conference [1]. It is
structured as follows. Sec. 2 introduces the abstract model. The various phases
required by the general schema are detailed with examples in Sec. 3.1 and Sec. 3.2
with respect to two example applications. Sec. 4 explains how the schema is
mapped in the AFPAC framework, where self-adapting code is obtained by semi
automated restructuring of existing code. Sec. 5 describes how the same schema
is employed in the ASSIST programming environment, exploiting explicit pro-
gram structure to automatically generate autonomic dynamicity-handling code.

2 Adaptivity

The process of adapting the behaviour of a parallel/distributed application to
the dynamic features of the target architecture is built of two distinct phases:
a decision phase, and a commit phase, as outlined in Fig. 1. The outcome of
the decide phase is an abstract adaptation strategy that the commit phase has
to implement. We separate the decisions on the strategy to be used to adapt
the application behaviour from the way this strategy is actually performed. The
decide phase thus represents an abstraction related to the application structure
and behaviour, while commit phase concerns the abstraction of the run-time
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support needed to adapt. Both phases are split into different items. The decide
phase is composed of:
– trigger – It is essentially an interface towards the external world, assessing the

need to perform corrective actions. Triggering events can result from various
monitoring activities of the platform, from the user requesting a dynamic
change at run-time, or from the application itself reacting to some kind of
algorithm-related load unbalance.

– policy – It is the part of the decision process where it is chosen how to deal
with the triggering event. The aim of the adaptation policy is to find out
what behavioural changes are needed, if any, based on the knowledge of the
application structure and of its issues. Policies can also differ in the objectives
they pursue, e.g. increasing performance, accuracy, fault tolerance, and thus
in the triggering events they choose to react to.
Basic examples of policy are “increase parallelism degree if the application
is too slow”, or “reduce parallelism to save resources”. Choosing when to re-
balance the load of different parts of the application by redistributing data
is a more significant and less obvious policy.
In order to provide the decide phase with a policy, we must identify in the

code a pattern of parallel computation, and evaluate possible strategies to im-
prove/adapt the pattern features to the current target architecture. This will
result either in specifying a user-defined policy or picking one from a library of
policies for common computation patterns. Ideally, the adaptation policy should
depend on the chosen pattern and not on its implementation details.

In the commit phase, the decision previously taken is implemented. In order
to do that, some assessed plan of execution has to be adopted.
– plan – It states how the decision can be actually implemented, i.e. what list

of steps has to be performed to come to the new configuration of the running
application, and according to which control flow (total or partial order).

– execute – Once the detailed plan has been devised, the execute phase takes
it in charge relying on two kinds of functionalities of the support code
• the different mechanisms provided by the underlying target architecture,

and
• a timing functionality to activate the elementary steps in the plan, taking

into account their control flow and the needed synchronizations among
processes/threads in the application.

The actual adapting action depends on both the way the application has
been implemented (e.g. message passing or shared memory) and the mechanisms
provided by the target architecture to interact with the running application
(e.g. adding and removing processes to the application, moving data between
processing nodes and so on).

The general schema does not constrain the adaptation handling code to a
specific form. It can either consist in library calls, or be template-generated, it
can result from instrumenting the application or as a side effect of using explicit
code structures/library primitives in writing the application. The approaches
clearly differ in the degree of user intervention required to achieve dynamicity.
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3 Examples of the abstract decomposition

In order to better explain the abstract adaptation model, we instantiate the
model in two different applications, and discuss the meaning that actions and
phases in the model assume.

3.1 Task farming

We exemplify the abstract adaptation schema on a task-parallel computation
organized around a centralized task scheduler, continuously dispatching works to
be performed to the set of available processing elements. For this kind of pattern,
both a performance model and a balancing policy are well known, and several
different implementation are feasible (e.g. multi-threaded on SMP machines, or
processes in a cluster and/or on the Grid). At steady state, maximum efficiency
is achieved when the overall service time of the set of processing elements is
slightly less than the service time of the dispatcher element.

Triggers are activated, for instance, when (1) the average interarrival time of
task incoming is much lower/higher than the service time of the system, (2) on
explicit user request to satisfy a new performance contract/level of performance,
(3) when built-in monitoring reports increased load on some of the processing
elements, even before service time increases too much.

Assuming we care first for computation performance and then resource uti-
lization, the adaptation policy would be like that in Fig. 2. Applying this policy,
the decide phase will eventually determine the increase/decrease of a certain
magnitude in the allocated computing power, independently of the kind of com-
puting resources.

This decision is passed to the commit phase, where we must produce a de-
tailed plan to implement it (finding/choosing resources, devising a mapping of
application processes where appropriate).

Assuming we want to increase the parallelism degree, we will often come up
with a simple plan like that in Fig. 3. The given plan is the most usual one,
but some steps can be skipped depending on the implementation. For example,
a multithreaded program executing on a SMP architecture does not require the
code to be installed (step 2). The order may also be different, e.g. swapping
steps 3 and 4. Actions listed in the plan exploit mechanisms provided by the
implementation, for instance to either fork new threads, or stage and run new
processes or even ask for a larger processing time share (on a multiprogrammed

– when steady state is reached, no con-
figuration change is needed

– if the set of processing elements is
slower than the dispatcher, new pro-
cessing elements should be added to
support the computation and reach
the steady state

– if the processing elements are much
faster than the dispatcher, reduce
their number to increase efficiency

Fig. 2. A simple farm adaptive policy

1. find a set of available processing elements
{Pi}

2. install code to be executed at the chosen
{Pi} (i.e. application code, code that inter-
acts with the task scheduler and for dinam-
icity handling)

3. register with the scheduler all the {Pi} for
task dispatching

4. inform the monitoring system that new pro-
cessing element have joined the execution

Fig. 3. Plan for increasing resources.

98



system with QoS control at the system level). The list of steps in the plan
is also customized w.r.t. application implementation. As an example, whenever
computing resources are homogeneous, step 1 is quite simple, while it will require
a specific effort to select the best execution plan on heterogeneous resources.

Once the detailed plan has been devised, it has to be executed and its actions
have to be orchestrated, choosing proper timing in order that they do not to
interfere with each other and with the ongoing computation.

Abstract timing depends on the implementation of the mechanisms, and on
the precedence relationship that may be given in the plan. In the given exam-
ple, steps 1 and 2 can be executed in sequence, but without internal constraint
on timing. Step 3 requires a form of synchronization with the scheduler to up-
date its data, or to suspend all the computing elements, depending on actual
implementation of the scheduler/worker synchronization. For the same reason,
execution of step 4 also may/may not require a restart/update of the monitoring
subsystem to take into account the new resources.

3.2 Fast fourier transform

The fast fourier transform can be implemented as a parallel SPMD code which
distributes the matrix by lines. It alternates local computation and global matrix
transposition steps. A performance model is known that predicts the optimal
number of processors for such an application, depending on their power and
the cost of communications. The code can thus be made adaptive, by spawning
processes when new processors become available. Similarly, when some allocated
processors are reclaimed by the operating system, concerned processes have to
be safely terminated first. Thanks to the abstract model for dynamic adaptation,
such a behavior can be easily designed.

The policy is composed of the following two statements: when the trigger
notifies of available processors, and if the optimal number of processors is not
overflowed, then the application decides to start new processes; when the trigger
notifies that some used processors are reclaimed, some of the processes will be
stopped. Given this decision, the commit phase produces a plan. The plans for
the two kinds of adaptation are given on Fig. 4 and 5.

This example shows that the implementation mechanisms may depend on sev-
eral aspects of the application. For example, redistributing a matrix is strongly
dependent on the application and its implementation. On the other hand, prepa-

1. prepare the environment for the newly re-
cruited processors (start daemons, stage-in
files, etc.)

2. spawn processes to be executed by the new
processors

3. fix connections between processes such
that the new ones can communicate with
the others

4. redistribute the matrix in order to balance
the load amongst the whole set of processes

Fig. 4. Plan for spawning processes.

1. redistribute the matrix in such a way that
the terminating processes do not hold any
part of the matrix anymore

2. fix connections between processes in order
to exclude the processes that are termi-
nating

3. effectively terminate the concerned pro-
cesses

4. clean everything that has been previously
installed specifically for the application

Fig. 5. Plan for removing processes.
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Fig. 6. AFPAC Framework.

ration of the environment may require for example starting daemons (when using
LAM-MPI communications), but it is not strictly related to the application code.

The mechanisms also impose various constraints on the timing phase of the
abstract model, depending on their implementation. This is the case for action 2
of the plan for spawning processes which creates the processes. For an MPI
application this action can be implemented either the standard way, with the
MPI_Comm_spawn, or in an ad-hoc way if the developer requires finer control
over process creation. The former approach requires synchronization of already
running processes, whereas the latter may not.

4 AFPAC: A generic framework for developers to
manage adaptation

The AFPAC framework [7] focuses at present on adaptability of parallel compo-
nents. Its approach consists in defining the modifications that should be applied
to an existing component in order to make it able to adapt itself. Its concrete ar-
chitecture (Fig.6) can be seen as a specialization of the abstract model of Fig. 1
as follows. Indeed, policy, planner and actions entities implement respectively
the policy, plan and mechanisms phases of the abstract model; the timing phase
of the abstract model is split over both the executor for handling the control flow
and the coordinator for the synchronization with the application. AFPAC does
not make appear explicitly the trigger phase as it is considered as an interface,
whereas the service entity, modelling the application, has no counter-part in the
abstract model. As shown in Fig.6, the decider glues the policy to the external
probes in the same way that the decide phase aggregates the trigger and policy
phases in the abstract model. The same kind of matching applies between the
executor entity and the execute phase.

In the case of a parallel component, the service is implemented by a parallel
algorithm. At runtime, it contains several execution threads distributed over a
collection of processes. The AFPAC framework does not impose any constraint
on communications between threads.

At the current state, the AFPAC framework includes two coordinators. The
first one executes sequential actions and does not impose any synchronization
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constraint with the service. It is somewhat an empty coordinator. The other
coordinator aims at executing parallel actions in the context of the execution
threads of the service. To do so, it requires to suspend the execution threads
at a state from which such actions are allowed to be executed. Such a state
is called an adaptation point. In the case of parallel codes, adaptation points
must be related in order to build a global state that satisfies some consistency
model. For example, in the case of SPMD codes, such a consistency model may
state that all threads should execute the action from the same adaptation point.
This problem has been further discussed in [7]; an algorithm has been proposed
in [8] for implementing such a coordinator that looks for adaptation points in
the future of the execution of the service. It is especially suitable for SPMD
codes such as the ones using MPI (e.g. the fast fourier transform example given
in Sec.3.2).

The AFPAC framework gives full control over dynamic adaptation to the
developer. Consequently, the developer is responsible for designing and imple-
menting the policy, plan template and action entities. In the same way, he/she
has to place manually adaptation points within the source code of the service as
additional statements. Nevertheless, extra preparation of the component (such
as generation of annotations required by the coordinator) is done automatically
thanks to aspect-oriented programming. Thanks to this semi-automated modifi-
cation and to the separation of concerns, AFPAC can be used to make adaptable
existing legacy codes at a low development cost.

5 ASSIST: Managing dynamicity using language and
compilation approaches

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of (possibly) parallel modules, interconnected by
typed streams of data. A parallel module (parmod) coordinates a set of concur-
rent activities which are performed by Virtual Processes (VPs). VPs execute a
set of sequential activities on their input data and internal state, activities which
are selected on item arrival from the input streams. The sequential functions can
be programmed using standard sequential languages (C, C++, Fortran).

Overall, a parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-
to-all) or task-parallel way (e.g. farm, pipeline), and it can nondeterministically
accept from one or more input streams a number of input items, which may
be decomposed in parts and used as function parameters to activate VPs. A
parmod may also exploit a distributed shared state, which survives between
VP activations related to different stream items. More details on the ASSIST
environment can be found in [12, 3].

An ASSIST module (or a graph of modules) can be declared as a component,
which is characterized by provide and use ports (both one-way and RPC-like),
and by Non-Functional ports. Among the non-functional interfaces there are
those related to QoS control.
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At any moment during an ASSIST application run, components can be as-
signed a new QoS contract, e.g. specifying a performance requirement. In order
to fulfill the contracts, the component framework continuously adapts compo-
nent configurations, in terms of parallelism degree, and process mapping [4]. The
adaptation mechanism relies on automatic user code instrumentation, and on a
hierarchy of Application Managers [2].

Grid middleware
(ASSIST Grid 

Abstract Machine)

Managed Elements
(component network of 

processes)

QoS
data

execute
next

config

broken
contracts

policy

plantrigger Manager

Launch

Reconf. commands
Monitor data

Queries of 
new resources

New QoS
contract arrival

Fig. 7. ASSIST framework.

Each component has a Compo-
nent Adaptation Manager (CAM)
entity coordinating its adaptation.
An Application Manager (AM),
possibly distributed, enforces QoS
of the application in the whole,
by coordinating and leveraging on
CAMs. As sketched in Fig. 7,
ASSIST implements the abstract
adaptation schema by organizing

its leaves, left to right (compare with Fig. 1) in an autonomic control loop.
CAM managed entities are processes within a component, while the AM applies
the abstract model to application components. In the following we describe the
CAM case.

The trigger functionality has to (1) collect a stream of monitoring data from
the running program, as a feedback to the autonomic behaviour of AMs, and (2)
to react to QoS contract changes when they trigger the need for adaptation.

The policy phase in Fig. 7 evaluates a component performance model over
the monitoring data, to find out the amount/allocation of resources that can
match the assigned QoS contract. In the case the QoS contract is broken, the
decide phase will set a target for the commit phase, e.g. the additional amount of
required computing power. The ASSIST compiler synthesizes the performance
model from static information on the parallel pattern exploited by the compo-
nent. Application programmers can also override standard performance models
with custom ones.

The plan phase in Fig. 7 reconveys component performance within its contrac-
tually specified values by exploiting the set of actions available as mechanisms.
Plan templates are instantiated as partially ordered sets of actions, which are
performed according to the schedule provided by timing. ASSIST implements
two layers of adaptation mechanisms: parallelism degree management (add or
remove resource to/from computation), and computation (VP) remapping, with
associated data migration and global state consolidation.

The timing functionality, not shown in Fig. 7, involves a distributed agree-
ment among a set of VPs on the point where the reconfiguration must happen. In
ASSIST the migration process can be performed in so-called reconf-safe points
[4], i.e. points in the application code where the distributed computation and
state are known to be consistent, and can be efficiently synchronized. Placement
and use of reconf-safe points are automated, so that different mechanisms avail-
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able to the execute phase (reconfiguration commands in Fig.7) automatically get
the appropriate kind of synchronization.

The execute functionality thus exploits support code built within the VPs,
and coordinates it with services provided by the component framework to inter-
face to Grid middleware (e.g. for resource recruiting).

Observe that all the code needed to perform the timing and execute phases is
automatically generated by the ASSIST compiler, that instruments the applica-
tion code in a fully transparent manner for the application developer. ASSIST
reconf-safe points are designed to exploit synchronization points already needed
to ensure the correctness of the parallel application code. Moreover, the ASSIST
high-level structured nature enables the compiler to automatically select the op-
timal implementation of mechanisms for each application and reconf-safe point.
For instance, no state migration code is inserted for stateless computations, and
depending on the parallelism pattern (e.g. stream versus data parallel), VPs in-
volved in the synchronisation can be a subset of those within the component
being reconfigured.

In this way ASSIST adaptive components run with no overhead with respect
to non-adaptive versions of the same code, when no configuration change is
performed [4].

6 Conclusions

We have described a general model to provide adaptive behaviour in Grid-
oriented component-based applications. The general schema we have shown is
independent of implementation choices, such as the responsibility for inserting
the adaptatation code (either left to the programmer, as it happens in the AF-
PAC framework, or performed by exploiting knowledge of the high level program
structure, as it happens in the ASSIST context). The model also encompasses
user-driven as well as autonomic adaptation.

The abstract model helps in separating application and run-time program-
ming concerns of adaptation, exposing adaptive behaviour as an aspect of appli-
cation programming, formalizing the concerns to be addressed, and encouraging
an abstract view of the run-time mechanisms for dynamic reconfiguration.

This formalization gives the basis for defining a methodology. The given
case studies provide with valuable clues about how to solve different concerns,
and how to identify common parts of the adaptation that can be generalized in
support frameworks. The model can be thus also usefully applied within other
programming frameworks, like GrADS, which do not enforce a strong separation
of adaptivity issues into design and implementation.

We expect that such a methodology will lead to more portable and under-
standable adaptive applications and components, and it will also promote lay-
ered software architectures for adaptation, simplifying implementation of both
the programming framework and the applications.
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8. J. Buisson, F. André, and J.-L. Pazat. Enforcing consistency during the adaptation
of a parallel component. In The 4th Int.l Symposium on Parallel and Distributed
Computing, July 2005.

9. B. Ensink, J. Stanley, and V. Adve. Program control language: a programming
language for adaptive distributed applications. Journal of Parallel and Distributed
Computing, 63(11):1082–1104, November 2003.

10. M. McIlhagga, A. Light, and I. Wakeman. Towards a design methodology for
adaptive applications. In Mobile Computing and Networking, pages 133–144, May
1998.

11. S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. International
Journal Computation and Currency: Practice and Experience, 2005. To appear.

12. M. Vanneschi. The programming model of ASSIST, an environment for paral-
lel and distributed portable applications. Parallel Computing, 28(12):1709–1732,
December 2002.

104


