ANABSTRACT SCHEMAMODELING ADAPTIVITY
MANAGEMENT

Marco Aldinucci and Sonia Campa and Massimo Coppola andd/@anelutto

and Corrado Zoccolo

University of Pisa

Department of Computer Science

Largo B. Pontecorvo 3, 56127 Pisa, Italy
aldinuc@di.unipi.it

campa@di.unipi.it

coppola@di.unipi.it

marcod@di.unipi.it

zoccolo@di.unipi.it

Francoise André and Jérémy Buisson
IRISA / University of Rennes 1

avenue du Géneéral Leclerc, 35042 Rennes, France
fandre @irisa.fr

jbuisson@irisa.fr

Abstract Nowadays, component application adaptivity in Grid envinents has been af-
forded in different ways, such those provided by the Dyn&E®AC framework
and by the ASSIST environment. We propose an abstract scti@haatches
all the designing aspects a model for parallel componenticgipns on Grid
should define in order to uniformly handle the dynamic betraef comput-
ing resources within complex parallel applications. Thstittion is validated
by demonstrating how two different approaches to adaptiiSSIST and Dy-
naco/AFPAC, easily map to such schema.

Keywords: Abstract schema, component adaptivity, Grid parallel comemt application.

90 INTEGRATED RESEARCH IN GRID COMPUTING

1. An Abstract Schema for Adaptation

Adapitivityis a concept that recent framework proposals for Compunatio
Grid take into great account. In fact, due to the unstablereadf the Grid
(nodes that disappear because of network problems, chamgssr require-
ments/computing power, variations in network bandwidtb.)eeven assuming
a perfect initial mapping of an application over the compgtiesources, the
performance level could be suddenly compromised and tmeefreork has to
be able to take reconfiguring decisions in order to keep theard QoS.

The need to handle adaptivity has been already addressedarasprojects
(AppLeS [6], GrADS [12], PCL [9], ProActive [5]). These waKocus on
several aspects of reconfiguration, e.g. adaptation tgabsi(GrADS, PCL,
ProActive), strategies to decide reconfigurations (GrAR®S)Y how to mod-
ify the application configuration to optimize the runningohpation (AppLes,
GrADS, PCL). In these projects concrete problems posed bptadty have
been faced, but little investigation has been done on cormabstractions and
methodology [10].

In this work we discuss, at a very high level of abstractiogemeral model of
the activities we need to perform to handle adaptivity iraiarand distributed
programs.

Our intention is to start drawing a methodology for desigraaptive com-
ponent environments, leaving in the meanwhile a high degfdeeedom in
the implementation and optimization choices. In fact, owded is abstract
with respect to the implemented adaptation techniquesjtororg infrastruc-
ture and reconfiguration strategy; in this way we can uncelvercommon
aspects that have to be addressed when developing a prograrimtamework
for reconfigurable applications.

Moreover, we will validate our abstract schema by demotisggghow two
completely different approaches to adaptivity fit its sttwe. We will discuss
the Dynaco/AFPAC [7]approach and the ASSIST [4]approachvawill show
how, despite several differences in the implementatiohrelogies used, they
can be firmly abstracted by the schema we propose.

Before demonstrating its suitability to the two implemehtemeworks, we
exemplify its application in a significant case study: comga-based, high-
level parallel programs. The adaptive behavior is derivedecializing the
abstract model introduced here. We get significant resulthe® performance
side, thus showing that the model maps to worthwhile and&fimplemen-
tations [4].

This work is structured as follows. Sec. 2 introduces thdrabsmodel.
The various phases required by the general schema areedetaih an exam-
ple in Sec. 3. Sec. 4 explains how the schema is mapped in th@ddyAFPAC
framework, where self-adapting code is obtained by sendraated restruc-

An abstract schema modeling adaptivity management 91

Generic Adaptation Process
- 2 N ~

S _ A PRCW————— |
| Application] - J 1 S) o0
H F;geciﬁc Deglde Phase i E Comn/nt P\hase Implementation specific |
i —il | i i 2 N i
! Trigger Policy I ! Plan Execute i
! | - :
———————————————————————— I | T |
: ! ~-

Domain specific I N_I ?c_h_a_n_ls_njs_ ______ Tl_nllil_g_,.

S ————————

Figure 1. Abstract schema of an adaptation manager.

turing of existing code. Sec. 5 describes how the same scliwegrraployed
in the ASSIST programming environment, exploiting explmiogram struc-
ture to automatically generate autonomic dynamicity-fiagdcode. Sec. 6
summarizes those two mappings of the abstract schema.

2. Adaptivity

The abstract model of dynamicity management we proposevsrsim Fig. 1,
where high-level actions rely on lower-level actions andchamisms. The
model is based on the separation of application-orientetratiions and im-
plementation mechanisms, and is also deliberately speaifiminimal way, in
order not to introduce details that may constrain possibf@ementations. As
an example, the schema does not impose a strict time ordaringg its leaves.
The process of adapting the behavior of a parallel/disietbapplication to the
dynamic features of the target architecture is built of tvistidct phases: a
decision phase, and aommit phase, as outlined in Fig. 1. The outcome of
the decide phase is an abstract adaptation strategy thebtheit phase has
to implement. We separate the decisions on the strategy tsdx to adapt
the application behavior from the way this strategy is dttymerformed. The
decide phase thus represents an abstraction related to the djmplisructure

and behavior, whileommit phase concerns the abstraction of the run-time

support needed to adapt. Both phases are split into difféesns. Thedecide
phase is composed of:

m trigger—Itis essentially aninterface towards the external waddgessing
the need to perform corrective actions. Triggering eveatsresult from
various monitoring activities of the platform, from the usequesting
a dynamic change at run-time, or from the application itssdicting to
some kind of algorithm-related load unbalance.

= policy — It is the part of the decision process where it is chosen laow t
deal with the triggering event. The aim of the adaptationcyas to find
out what behavioral changes are needed, if any, based omd¢wdddge
of the application structure and of its issues. Policiesalaa differ in

92 INTEGRATED RESEARCH IN GRID COMPUTING

the objectives they pursue, e.g. increasing performarmiracy, fault
tolerance, and thus in the triggering events they choosestct to.
Basic examples of policy are “increase parallelism dedréeiapplica-
tion is too slow”, or “reduce parallelism to save resource€hoosing
when to re-balance the load of different parts of the apfitioaby redis-
tributing data is a more significant and less obvious policy.

In order to provide thalecide phase with gpolicy, we must identify in
the code a pattern of parallel computation, and evaluatsilplesstrategies to
improve/adapt the pattern features to the current targéitacture. This will
result either in specifying a user-defined policy or pickome from a library
of policies for common computation patterns. Ideally, thla@tationpolicy
should depend on the chosen pattern and not on its impletimmtketails.

In thecommit phase, the decision previously taken is implemented. lerord
to do that, some assessgldn of execution has to be adopted.

= plan - It states how the decision can be actually implementedwibat
list of steps has to be performed to come to the new configurati the
running application, and according to which control flowtdtamr partial
order).

m execute — Once the detailed plan has been devisedekeeute phase
takes it in charge, relying on two kinds of functionalitiefstioe support
code

— the differentmechanisms provided by the underlying target archi-
tecture, and

— atiming functionality to activate the elementary steps in the plan,
taking into account their control flow and the needed synulaes
tions among processes/threads in the application.

The actual adapting action depends on both the way the afiplchas
been implemented (e.g. message passing or shared memdriheamecha-
nisms provided by the target architecture to interact vinértinning application
(e.g. adding and removing processes to the applicationjngalata between
processing nodes and so on). The general schema does nivacotie adap-
tation handling code to a specific form. It can either considibrary calls,
or be template-generated, it can result from instrumeritiegapplication or as
a side effect of using explicit code structures/librarynptives in writing the
application. The approaches clearly differ in the degreasafr intervention
required to achieve dynamicity.

3. Example of the abstract decomposition

We exemplify the abstract adaptation schema on a tasklgazamputation
organized around a centralized task scheduler, contimpdispatching works
to be performed to the set of available processing elemérus this kind of

An abstract schema modeling adaptivity management 93

pattern, both a performance model and a balancing policwaliknown, and
several different implementations are feasible (e.g.irtluleaded on SMP ma-
chines, or processes in a cluster and/or on the Grid). Adgtstate, maximum
efficiency is achieved when the overall service time of theo$grocessing
elements is slightly less than the service time of the didpatelement.

Triggers are activated, for instance, when (1) the averatge-arrival time of
task incoming is much lower/higher than the service timéefdystem, (2) on
explicit user request to satisfy a new performance coriteaet of performance,
(3) when built-in monitoring reports increased load on safihe processing
elements, even before service time increases too much.

Assuming we care first for computation performance and teeaurce uti-
lization, the adaptation policy could be like the followiniyywhen steady state
is reached, no configuration change is needi¢df the set of processing ele-
ments is slower than the dispatcher, new processing elemsbatld be added
to support the computation and reach the steady sigfiéthe processing el-
ements are much faster than the dispatcher, reduce theiaruim increase
efficiency.

Applying this policy, the decide phase will eventually deteéne the in-
crease/decrease of a certain magnitude in the allocateputomg power, inde-
pendently of the kind of computing resources.

This decision is passed to the commit phase, where we mudtigeoa
detailed plan to implement it (finding/choosing resourcksjsing a mapping
of application processes where appropriate).

Assuming we want to increase the parallelism degree, weoft¢h come
up with a simple plan like the followinga) find a set of available processing
elementd P, }; b)install code to be executed at the cho$éh; (i.e. application
code, code that interacts with the task scheduler and famdiicity handling)
;C) register with the scheduler all tHe?; } for task dispatchingd) inform the
monitoring system that new processing element have joimedxtecution. Itis
worthwhile that the given plan is general enough to be cugtedndepending
on the implementation, that is it could be rewritten/reoedeon the basis of
the desired target.

Once the detailed plan has been devised, it has to be exeandéts actions
have to be orchestrated, choosing proper timing in orderttiey do not to
interfere with each other and with the ongoing computation.

Abstracttiming depends on the implementation of the mechanisms, and on
the precedence relationship that may be given in the platmelgiven example,
steps 1 and 2 can be executed in sequence, but without ihnatraint
on timing. Step 3 requires a form of synchronization with soheduler to
update its data, or to suspend all the computing elemernpgndiéng on actual
implementation of the scheduler/worker synchronizatiéor the same reason,

94 INTEGRATED RESEARCH IN GRID COMPUTING

execution of step 4 also may/may not require a restart/epafahe monitoring
subsystem to take into account the new resources.

We also want to point out that in case of data parallel contjouigas a fast
Fourier transformation, as instance), we could again ubei@®like i)-iii and
plans likea-d.

4. Dynaco/AFPAC: a generic framework for developers to
manage adaptation

Dynaco is a framework allowing developers to add dynamiqtadality
to software components without constraining the programgrpiaradigms and
tools that can be used. While Dynaco aims at addressing @jeamaptability
problems, AFPAC focuses on the specific case of parallel coens.

4.1 Dynaco: generic dynamic adaptation framework

Dynaco provides the major functional decomposition of ayitaadaptabil-
ity. It is the part that is the closest from the abstract scheescribed in sec-
tion 2. Its design has benefited from the joint work about th&tract schema.
As depicted by Fig. 2, Dynaco defines 3 major functions foresyit adaptabil-
ity: decision-making, planning and execution. Coarsélyst decision-making
and execution functions match respectively deeide andcommit phases of
the abstract schema.

For the decision-making function, tlieciderdecides whether the compo-
nent should adapt itself or not. If it should, a strategy adoiced that describes
the configuration the component should adopt. The framewiates that the
decideris independent from the actual component: it is a genericsiber
making engine. It is specialized to the actual component pglay, which
plays the same role as its homonym in the abstract schemade Whiabstract
schema reifies inrigger the events triggering the decision-making, Dynaco
does not: thelecideronly exports interfaces to the outside of the component.

External
probes

i

‘ Decider }—+ Planner }—+ Executor ‘ Executor BMI‘

T CompoﬂeTcndcpcndcm Component-independent
‘ Policy ‘ ‘ Guide ‘ Action Parallel action
Component-specilic Component-speciic
e R LR R Service -~ 1C Service
unct unctional

Figure 2. Overall architecture of a Dynaco com-Figure 3. Architecture of AFPAC
ponent. as a specialization of Dynaco.

An abstract schema modeling adaptivity management 95

Monitoring engines are considered to be external to the compt and to its
adaptability, even if the component can bind to itself inesrtb be one of its
monitors.

The planning function is implemented by thianner. Given astrategythat
has been previously decided, it aims at determinimdga that indicates how
to adopt thestrategy The plan matches exactly its homonym of the abstract
schema. Similarly to thdecider the planneris a generic engine that is spe-
cialized to the actual component byaide

While not being a phase in the abstract schema, planningdeasgyomoted
to a major function within Dynaco, at the same level as deoishaking and
execution. As a consequence, Dynaco introduces a plarmiitig in order
to specialize the planning function in the same way thatetlherapolicy that
specializes the decision-making function. On the contithieyabstract schema
exhibits aplan which actually links thedecide and commit phases. This
vision is consistent with the goal of not constraining pblesimplementations.
Dynaco is one interpretation of the abstract schema, whid¢heer would have
been to have thdecide phase directly produce thgan, for example.

The execution function is realized by teeecutorthat interprets the instruc-
tions of theplan. Two kinds of instructions can be usedplans: invocations
of elementaryactiors, which match thenechanisms of the abstract schema,;
and control instructions, which match thiening functionality of the abstract
schema. While the former are provided by developers as coemespecific
entities, the latter are implemented by éxecutorin a component-independent
manner.

4.2 AFPAC: dynamic adaptation of parallel components

As seen by AFPAC, parallel components are components tlapsuolate
a parallel code, such as GridCCM [11] components: they haveral pro-
cesses that execute tkervicethey provides. AFPAC is depicted by Fig. 3.
It is a specialization of Dynaco'executorfor parallel components. Through
its coordinator component, which partly implements ttiming functionality
of the abstract schema, AFPAC provides an additional cbimstruction for
expressingplans. This instruction makes all aferviceprocesses execute an
actionin parallel. Such an action is labelga@rallel actionon Fig. 3. This
kind of instruction is particularly useful to execute radisution in the case of
data-parallel applications.

AFPAC addresses the consistency problems of the globakdtaim which
the parallebhctiors are executed. Those problems have beendiscussedin[7]; we
have proposed in [8] an algorithm that chooses the next upgpoonsistent
global state. To do so, it relies adaptation poins: a global state is said
consistent if every service process is at such a point. dt @dgquires control

96 INTEGRATED RESEARCH IN GRID COMPUTING

=777 B

1 second ; SCSCIIKK
—————L TR RS,
4 \it———— /////////////////§%§§ SRS %§

spawned processes

spawn

SRS, %Mi ‘Nt:::ﬁ/ T s SRR

matrix redistribution
initialization of spawned processes initial processes

Timing phase \‘ process spawn (with MPI_Comm_spawn)
) |
SRR BNV 7777777 R 833888885
,,,,, N N o

normal exection with 2 processes Execution of ada;}gﬁon mechanisms normal exection with 4 processes

Figure 4. Scenario of an adaptation with AFPAC

structures to be annotated thanks to aspect-orientedgimoging in order to
locateadaptation poing as the execution progresses. The algorithm and the
consistency criterion it implements suits well to SPMD codach as the ones
using MPI.

Fig. 4 shows the sequence of actions when a data-parallelwotking on
matrices adapts itself thanks to AFPAC. In this exampleatim@ication spawns
2 new processes in order to increase its parallelism degrée 41 Firstly, the
timing phase of the abstract schema is executed bgdbedinatorcomponent
concurrently to the normal execution of the parallel codewriny this phase,
thecoordinatortakes a rendez-vous with every executiggviceprocess at an
adaptation point Whenserviceprocesses reach the rendez-vagsptation
point, they execute the requestadtiors. Once every action of thglan has
been executed, thserviceresumes its normal execution. This experiment
shows well that most of the overhead lies in incompressibters like matrix
redistribution.

5. ASSIST: Managing dynamicity using language and
compilation approaches

ASSIST applications are described by means of a coordimddioguage,
which can express arbitrary graphs of (possibly) paralletintes, intercon-
nected by typed streams of data. A parallel modpliod coordinates a set
of concurrent activities calledirtual Processe$VPs). Each VP execute a se-
guential function (that can be programmed using standayaesgial languages
e.g. C, C++, Fortran) on input data and internal state.

Groups of VPs are grouped together in processes cslhtghal Processes
Manager (VPM). VPs assigned to the same VPM execute sequentialljgewh

An abstract schema modeling adaptivity management 97

different VPMs run in parallel: therefore the actual paidim exploited in a
parmodis given by the number of VPMs that are allocated.

Overall, aparmodmay behave in a data-parallel (e.g. SPMD/for-all/apply-
to-all) or task-parallel way (e.g. farm, pipeline), anddhmondeterministically
accept from one or more input streams a number of input itevhgsh may
be decomposed in parts and used as function parametersvatedtPs. A
parmod may also exploit a distributed shared state, which survibatsreen
VP activations related to different stream items. More itletan the ASSIST
environment can be found in [13, 3].

An ASSIST module (or a graph of modules) can be declared asp@aent,
which is characterized hyrovideanduseports (both one-way and RPC-like),
and byNon-Functionalports. The latter are responsible of specifying those
aspects related to the management/coordination of the watigm, as well
as the required performance level of the whole applicatiomfahe single
component. As instance, among the non-functional integfdbere are those
related to QoS control (performance, reconfiguration efjatand allocation
constraints).

Each ASSIST module in the graph encapsulated by the comp@eon-
trolled by its own MAM (Module Adaptation Manager), a prosefat co-
ordinates the configuration and adaptation of the modudf.itsThe MAM
dynamically decides the number of allocated VPMs and thepmping onto the
processing elements acquired through a retargetable enwdalle, that can be
adapted to exploit clusters as well as grid platforms.

Hierarchically, the set of MAMs is coordinated by the ComgotrAdaptation
Manager (CAM) that manages the configuration of the wholepmmment. Ata
higher level, these lower-level entities are coordinatea (possibly distributed)
Application Manager (AM), to pursue a global QoS for the vehapplication.

The starting configuration is determined at load time byarigrically split-
ting the user provided QoS contract between each compondnnhadule. In
case of a QoS contract violation during the application nianaging processes
react by issuing (asynchronous) adaptation requests tooded entities [4].
According to the locality principle, violations and cortiee actions are de-
tected and issued as near as possible to the leaves of tlaechier(i.e. the
modules with their MAM). Higher-level managers are notifigfdviolations
when lower-level managers cannot handle them locally. ésd¢icases, CAMs
or the AM can coordinate the actions of several MAMs and CA®lg.(by re-
negotiating contracts with them) in order to implement a-fowal adaptation
strategy.

The corrective actions that can be undertaken in order fil fide con-
tracts, eventually lead to the adaptation of component gordtions, in terms
of parallelism degree, and process mapping [4].

98 INTEGRATED RESEARCH IN GRID COMPUTING

New Contract
(from user or L
root manager) Triggered QoS
data

Triogerintertace n
Monitoring data Set new triggers Execution New
(exploiting configuration
mechanisms)

Reconfiguration
commands

Decision
(exploiting
policies)

Committed
decision

Controlled elements

Figure 5. ASSIST framework.

Reconfiguration requests to the adaptation mechanismiggerted by new
QoS needs or by monitoring feedbacks. Such requests flow aueimomic
manner through the AM to the lower level managers of the heésa(or vice
versa). If the contract is broken a new configuration is deftmeevaluating the
related performance model. Itisthenapplied at each imdybarty (component
or module), in order to reach a state in which the contraailfgléd.

The adaptation mechanisms adopted in ASSIST completdigntiates the
abstract schema provided above by organizing its leafistdefght in an au-
tonomic control loop (see Fig.5). Thagger functionality is represented by
the collection of the stream of monitoring data. Such dataeérom the run-
ning environment and can cause a framework reaction if a@cintiolation is
observed. A component performance model is evalugtelicy phase) on the
basis of the collected monitoring data, according to a sedegoal (currently,
in ASSIST we implemented two predefined policies, pursuing different
goals; for special needs, user-defined policies can be gmuged).

If the QoS contract is broken,decision has to be taken about how to adapt
the component: such decision could involve a single comioorea compound
component. In the latter case, the decision has to flow thirdlig hierarchy
of managers in order to harmonize the whole applicationoperdnce. The
decision phase uses the policies in order to reach the contract esgaints.
Examples of policies are: reachingdasired service timéas seen above, it
could happen if one VPM becomes overloaded), or realizied#dst effortin
the performance/resource trade-off (by releasing unugg@®instance). The
decision phase result is a target for themmit phase (increasing of computing
power, as an example). Such target is represented by a paided by the
homonymous phase that lists the actions (e.g. add or remegeeince to/from

An abstract schema modeling adaptivity management 99

)

= gl s s : s i

o

g N N 3 n

S 7r | 1 : 3 :

Z 6 ‘ ‘ N. of VPMs in parmod E
I I I I

o ,\'/{ R . VPMs aggregated power = = = -

g F o §|' - \,\/\ill\/\“ﬁi~~\/’-~’i\ e =]

t 7 7 N 7
L/ :

wWhoo

: : QoS cohtract

50 100 150 200
Wall Clock Time (s)

Figure 6. MAM's reaction to a contract violation

computation and computation remapping, with associatéal mégration and
global state consolidation) to be taken.

Finally, theexecute functionality exploits support code statically generated
by the ASSIST compiler, and coordinates it with serviceviaied by the com-
ponent framework to interface to the middle-ware (e.g. ésource recruiting),
according to the schedule provided faying functionality.

Timing functionality is related to the so-calledconf-safepoints [4], i.e.
points in the application code where the distributed comjiut and state are
known to be consistent and can be efficiently synchronizexthEnechanism
that is exploited to reconfigure the application at run tirae take advantage
(e.g. can be optimized) of reconf-safe points to approglgjiadrchestrate syn-
chronizations in a transparent manner. Moreover, the géetcode is tailored
for the given application structure and features, expigitihe set of concrete
mechanisms provided by the language run-time support. For instance, no
state migration code is inserted for stateless computgtiand depending on
the parallelism pattern (e.g. stream versus data patallelyis involved in the
synchronization can be a subset of those within the compidoedng reconfig-
ured.

Our experiments [4]show that the adaptation mechanismotmmoduce
overhead with respect to non-adaptive versions of the sade, avhen no
configuration change is performed, and that issued adapsatire achieved
with minimal (of the order of milliseconds) impact on the oirgy computation.

Fig. 6 shows the behavior of an ASSIST parallel applicaticth adaptivity
managers enabled, run on a collection of homogeneous Lirarkstations
interconnected by switched Fast Ethernet. In particulahaws the reaction of
a MAM to a sudden contract violation with respect to the nunub&PMs. The
application represents a farm computing a simple functi@h fixed service
time on stream items flowing at a fixed input rate. In this sdena contract
violation occurs when one of the VPMs becomes overloadedicg the VPMs

100 INTEGRATED RESEARCH IN GRID COMPUTING

aggregated power to decrease. The MAM reacts to such dectémnmapping
as many VPMs as needed to satisfy the contract (only one sncise) onto
fresh computing resources.

Inthis example, when anew VPM mapping occurs because oftréoading
of one (or more) of the allocated ones, removing the oveddazhe does not
lead to a contract violation. Therefore the MAM, that is atesponsible to
manage over-dimensioned resource usage, removes theaned PE almost
immediately. The MAM can reduce resource usage also (notrshio this
example) when the incoming data rate decreases or the cbrgguirements
are weakened.

6. A comparative discussion

As it is clear from the previous presentations, Dynaco (dadharallel-
component specialization AFPAC) and ASSIST fit the abstsabema pro-
posed in Section 2 in different manner. The frameworks haen lweveloped
independently with each other but both aim at offering afptat to handle
dynamically adaptable components.

Dynaco can be seen as a pipelined implementation of theaabsichema
feeded by an external monitoring engine. In particular,ttiiee major func-
tions (decision-making, planning and execution) are gpheed by component-
specific sub-phases. On the other hand, ASSIST providesalairimple-
mentation of the schema leafs, whilecision and commit can be seen as
macro-steps of the autonomic loop.

The decision-making functionalities are triggered by th&smnal monitoring
engine in Dynaco, while in ASSIST the concept of performaocetract is
exploited in order to specify the performance level to berguoteed.

In ASSIST the code related to the execution phase is autoaflgtgenerated
at compile time, while the Dynaco developer is asked to jpi®vhe code
for policy, guide and action entities. Both the frameworkigothe possibil-
ity to configure certain points of the code as “safe-pointsif which recov-
ery/reconfiguration is possible. In Dynaco such points a&fendd by aspect-
oriented technologies, while in ASSIST they are defined leylimguage se-
mantics, and determined by the compiler.

From the discussion above, it is clear that each framewdokds the adap-
tivity problem by means of individual solutions. What we wa#m point out
in this work is that, despite their technological divershigth solutions can be
inscribed in the general abstract schema presented im8e&ttiSuch schema
is general enough to abstract from any kind of implemergativution but it
is also sufficiently strong to catch the salient aspects aefnoak to consider
while designing adaptive component frameworks. By summaingit can be
seen as a reference guide for modeling adaptable envirdarmelependently

An abstract schema modeling adaptivity management 101

from the implementations, technologies, languages, canss or architectures
involved.

7. Conclusions

We have described a general model to provide adaptive bmhiaviGrid-
oriented component-based applications. The general schenhave shown is
independent of implementation choices, such as the redpdgpdor inserting
the adaptation code (either left to the programmer, as ip&ap in the Dy-
naco/AFPAC framework, or performed by exploiting knowledaf the high
level program structure, as it happens in the ASSIST cont@kte model also
encompasses user-driven as well as autonomic adaptation.

The abstract model helps in separating application andinum-program-
ming concerns of adaptation, exposing adaptive behavar aspect of applica-
tion programming, formalizing the concerns to be addressed encouraging
an abstract view of the run-time mechanisms for dynamicnigoration.

This formalization gives the basis for defining a methodgloghe given
case study provide with valuable clues about how to solviergifit concerns,
and how to identify common parts of the adaptation that cagdreeralized
in support frameworks. The model can be thus also usefulbjieg within
other programming frameworks, like GrADS, which do not eo#oa strong
separation of adaptivity issues into design and implentiemta

We expect that such a methodology will lead to more portabbtk under-
standable adaptive applications and components, and ialad promote lay-
ered software architectures for adaptation, simplifymglementation of both
the programming framework and the applications.

Acknowledgments

This research work is carried out under the FP6 Network ofelswce
CoreGRIDfunded by the European Commission (Contract IST-2002-65%2
and it was partially supported by the Italian MIUR FIRB prj&rid.it (n.
RBNEO1KNFP) on High-performance Grid platforms and tools.

References

[1] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppda Danelutto, and C. Zoccolo.
Parallel program/component adaptivity management.Proc. of Intl. PARCO 2005:
Parallel Computing Sept. 2005.

[2] M.Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laémza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for high performeagrid programming in
grid.it. In V. Getov and T. Kielmann, editorBroc. of the Intl. Workshop on Component
Models and Systems for Grid Applicatiof@reGRID series, pages 19-38, Saint-Malo,
France, Jan. 2005. Springer.

102

(3]

[4]

(5]

(6]

INTEGRATED RESEARCH IN GRID COMPUTING

M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi,@€. Zoccolo. ASSIST as a
research framework for high-performance grid programreimgronments. InJ. C. Cunha
and O. F. Rana, editor§rid Computing: Software environments and Toalsapter 10,
pages 230-256. Springer, Jan. 2006.

M. Aldinucci, A. Petrocelli, A. Pistoletti, M. TorquatiM. Vanneschi, L. Veraldi, and

C. Zoccolo. Dynamic reconfiguration of Grid-aware applimas in ASSIST. In Joseé.

Cunha and Pedro D. Medeiros, editdEsiro-Par 2005 Parallel Processing: 11th Interna-
tional Euro-Par Conference, Lisbon, Portugal, August 3@pt&mber 2, 2005. Proceed-
ings volume 3648 o£.NCS pages 711-781. Springer-Verlag, August 2005.

F.Baude, D. Caromel, and M. Morel. On hierarchical, flafand distributed components
for Grid programming. In V. Getov and T. Kielmann, editovéorkshop on component
Models and Systems for Grid Application€S '04, Saint-Malo, France, June 2004.

F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G.cSHepplication-level schedul-
ing on distributed heterogeneous networks.Sumpercomputing '96: Proc. of the 1996
ACM/IEEE Conf. on Supercomputing (CDRQMage 39, 1996.

[7] J. Buisson, F. André, and J.-L. Pazat. Dynamic adamteftr grid computing. In P.M.A.

Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld, and M. Bubatiters,Advances in Grid Com-
puting - EGC 2005 (European Grid Conference, Amsterdam Nétherlands, February
14-16, 2005, Revised Selected Papersjume 3470 oLLNCS pages 538-547, Amster-
dam, June 2005. Springer-Verlag.

[8] J. Buisson, F. André, and J.-L. Pazat. Enforcing cdesisy during the adaptation of a

9]

(10]

(11]

(12]

(13]

parallel component. IThe 4th Int.| Symposium on Parallel and Distributed Comuyti
July 2005.

B. Ensink, J. Stanley, and V. Adve. Program control laenggr a programming language
for adaptive distributed applicationslournal of Parallel and Distributed Computing
63(11):1082—-1104, November 2003.

M. Mcllhagga, A. Light, and |I. Wakeman. Towards a desigathodology for adaptive
applications. IrfMobile Computing and Networkingages 133-144, May 1998.

Christian Pérez, Thierry Priol, and André Ribes. Aglkel corba component model for
numerical code couplingThe International Journal of High Performance Computing
Applications (IJHPCA)17(4):417-429, 2003.

S. Vadhiyar and J. Dongarra. Self adaptability in grenputing. International Journal
Computation and Currency: Practice and Experien2@05. To appear.

M. Vanneschi. The programming modelA8SIST, an environment for parallel and dis-
tributed portable application®arallel Computing28(12):1709-1732, December 2002.

