
TOWARDS THE AUTOMATIC MAPPING OF ASSIST
APPLICATIONS FOR THE GRID

Marco Aldinucci
Computer Science Departement, University of Pisa
Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
aldinuc@di.unipi.it

Anne Benoit
LIP, Ecole Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France
Anne.Benoit@ens-lyon.fr

Abstract One of the most promising technical innovations in present-day computing is the
invention of grid technologies which harness the computational power of widely
distributed collections of computers. However, the programming and optimisa-
tion burden of a low level approach to grid computing is clearly unacceptable for
large scale, complex applications. The development of grid applications can be
simplified by using high-level programming environments. In the present work,
we address the problem of the mapping of a high-level grid application onto the
computational resources. In order to optimise the mapping of the application, we
propose to automatically generate performance models from the application us-
ing the process algebra PEPA. We target in this work applications written with the
high-level environment ASSIST, since the use of such a structured environment
allows us to automate the study of the application more effectively.

Keywords: high-level parallel programming, grid, ASSIST, PEPA, automatic model gener-
ation, skeletons.

74 INTEGRATED RESEARCH IN GRID COMPUTING

1. Introduction
A grid system is a geographically distributed collection of possibly parallel,

interconnected processing elements, which all run some form of common grid
middleware (e.g. Globus services) [16]. The key idea behind grid-aware ap-
plications is to make use of the aggregate power of distributed resources, thus
benefiting from a computing power that falls far beyond the current availability
threshold in a single site. However, developing programs able to exploit this
potential is highly programming intensive. Programmers must design concur-
rent programs that can execute on large-scale platforms that cannot be assumed
to be homogeneous, secure, reliable or centrally managed. They must then im-
plement these programs correctly and efficiently. As a result, in order to build
efficient grid-aware applications, programmers have to address the classical
problems of parallel computing as well as grid-specific ones:

1. Programming: code all the program details, take care about concurrency
exploitation, among the others: concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation.

2. Mapping & Deploying: deploy application processes according to a
suitable mapping onto grid platforms. These may be highly heterogeneous
in architecture and performance. Moreover, they are organised in a cluster-
of-clusters fashion, thus exhibiting different connectivity properties among all
pairs of platforms.

3. Dynamic environment: manage resource unreliability and dynamic avail-
ability, network topology, latency and bandwidth unsteadiness.

Hence, the number and quality of problems to be resolved in order to draw
a given QoS (in term of performance, robustness, etc.) from grid-aware appli-
cations is quite large. The lesson learnt from parallel computing suggests that
any low-level approach to grid programming is likely to raise the programmer’s
burden to an unacceptable level for any real world application.

Therefore, we envision a layered, high-level programming model for the
grid, which is currently pursued by several research initiatives and programming
environments, such as ASSIST [22], eSkel [10], GrADS [20], ProActive [7],
Ibis [21], Higher Order Components [13–14]. In such an environment, most of
the grid specific efforts are moved from programmers to grid tools and run-time
systems. Thus, the programmers have only the responsibility of organising the
application specific code, while the programming tools (i.e. the compiling tools
and/or the run-time systems) deal with the interaction with the grid, through
collective protocols and services [15].

In such a scenario, the QoS and performance constraints of the application can
either be specified at compile time or varying at run-time. In both cases, the run-
time system should actively operate in order to fulfil QoS requirements of the
application, since any static resource assignment may violate QoS constraints

Towards the Automatic Mapping of ASSIST Applications for the Grid 75

due to the very uneven performance of grid resources over time. As an example,
ASSIST applications exploit an autonomic (self-optimisation) behavior. They
may be equipped with a QoS contract describing the degree of performance
the application is required to provide. The ASSIST run-time environment tries
to keep the QoS contract valid for the duration of the application run despite
possible variations of platforms’ performance at the level of grid fabric [6, 5].
The autonomic features of an ASSIST application rely heavily on run-time
application monitoring, and thus they are not fully effective for application
deployment since the application is not yet running. In order to deploy an
application onto the grid, a suitable mapping of application processes onto grid
platforms should be established, and this process is quite critical for application
performance.

This problem can be addressed by defining a performance model of an AS-
SIST application in order to statically optimise the mapping of the application
onto a heterogeneous environment, as shown in [1]. The model is generated
from the source code of the application, before the initial mapping. It is ex-
pressed with the process algebra PEPA [18], designed for performance evalu-
ation. The use of a stochastic model allows us to take into account aspects of
uncertainty which are inherent to grid computing, and to use classical techniques
of resolution based on Markov chains to obtain performance results. This static
analysis of the application is complementary with the autonomic reconfigura-
tion of ASSIST applications, which works on a dynamic basis. In this work
we concentrated on the static part to optimise the mapping, while the dynamic
management is done at run-time. It is thus an orthogonal but complementary
approach.

Structure of the paper. The next section introduces the ASSIST high-level
programming environment and its run-time support. Section 4.2 introduces the
Performance Evaluation Process Algebra PEPA, which can be used to model
ASSIST applications. These performance models help to optimise the mapping
of the application. We present our approach in Section 4, and give an overview
of future working directions. Finally, concluding remarks are given in Section 5.

2. The ASSIST environment and its run-time support
ASSIST (A Software System based on Integrated Skeleton Technology) is a

programming environment aimed at the development of distributed high-perfor-
mance applications [22, 3]. ASSIST applications should be compiled in binary
packages that can be deployed and run on grids, including those exhibiting
heterogeneous platforms. Deployment and run is provided through standard
middleware services (e.g. Globus) enriched with the ASSIST run-time support.

76 INTEGRATED RESEARCH IN GRID COMPUTING

2.1 The ASSIST coordination language
ASSIST applications are described by means of a coordination language,

which can express arbitrary graphs of modules, interconnected by typed streams
of data. Each stream realises a one-way asynchronous channel between two
sets of endpoint modules: sources and sinks. Data items injected from sources
are broadcast to all sinks. All data items injected into a stream should match
the stream type.

Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the
parallel execution of a number of sequential functions that are activated and
run as Virtual Processes (VPs) on items arriving from input streams. The VPs
may synchronise with the others through barriers. The sequential functions can
be programmed by using a standard sequential language (C, C++, Fortran). A
parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-to-all) or task-
parallel (e.g. farm) way and it may exploit a distributed shared state that survives
the VPs lifespan. A module can nondeterministically accept from one or more
input streams a number of input items according to a CSP specification included
in the module [19]. Once accepted, each stream item may be decomposed in
parts and used as function parameters to instantiate VPs according to the input
and distribution rules specified in the parmod. The VPs may send items or parts
of items onto the output streams, and these are gathered according to the output
rules. Details on the ASSIST coordination language can be found in [22, 3].

2.2 The ASSIST run-time support
The ASSIST compiler translates a graph of modules into a network of pro-

cesses. As sketched in Fig. 1, sequential modules are translated into sequential
processes, while parallel modules are translated into a parametric (w.r.t. the
parallelism degree) network of processes: one Input Section Manager (ISM),
one Output Section Manager (OSM), and a set of Virtual Processes Managers
(VPMs, each of them running a set of Virtual Processes). The ISM implements
a CSP interpreter that can send data items to VPMs via collective communica-
tions. The number of VMPs gives the actual parallelism degree of a parmod
instance. Also, a number of processes are devoted to application dynamic
QoS control, e.g. a Module Adaptation Manager (MAM), and an Application
Manager (AM) [6, 5].

The processes that compose an ASSIST application communicate via AS-
SIST support channels. These can be implemented on top of a number of
grid middleware communication mechanisms (e.g. shared memory, TCP/IP,
Globus, CORBA-IIOP, SOAP-WS). The suitable communication mechanism
between each pair of processes is selected at launch time depending on the
mapping of the processes.

Towards the Automatic Mapping of ASSIST Applications for the Grid 77

ASSIST
compiler

seq P1

parmod

VP VP
VPprogram

codes
(exe)

QoS
contract

ASSIST program

program
meta-data

(XML)

VPVPVP
VPVPVP

VPVPVP output
section

input
section

binary code+XML
(network of processes)

ISM OSMP1 P2VP
VPVP

VP
VP

VPM
VP

MAM

seq P2

AM

source
code

Figure 1. An ASSIST application and a QoS contract are compiled in a set of executable codes
and its meta-data [3]. This information is used to set up a processes network at launch time.

2.3 Towards fully grid-aware applications
ASSIST applications can already cope with platform heterogeneity [2], ei-

ther in space (various architectures) or in time (varying load) [6]. These are
definite features of a grid, however they are not the only ones. Grids are usu-
ally organised in sites on which processing elements are organised in networks
with private addresses allowing only outbound connections. Also, they are
often fed through job schedulers. In these cases, setting up a multi-site par-
allel application onto the grid is a challenge in its own right (irrespectively of
its performance). Advance reservation, co-allocation, multi-site launching are
currently hot topics of research for a large part of the grid community. Nev-
ertheless, many of these problems should be targeted at the middleware layer
level and they are largely independent of the logical mapping of application
processes on a suitable set of resources, given that the mapping is consistent
with deployment constraints.

In our work, we assume that the middleware level supplies (or will supply)
suitable services for co-allocation, staging and execution. These are actually
the minimal requirements in order to imagine the bare existence of any non-
trivial, multi-site parallel application. Thus we can analyse how to map an
ASSIST application, assuming that we can exploit middleware tools to deploy
and launch applications [12].

3. Introduction to performance evaluation and PEPA
In this section, we briefly introduce the Performance Evaluation Process

Algebra PEPA [18], with which we can model an ASSIST application. The
use of a process algebra allows us to include the aspects of uncertainty relative
to both the grid and the application, and to use standard methods to easily and
quickly obtain performance results.

78 INTEGRATED RESEARCH IN GRID COMPUTING

The PEPA language provides a small set of combinators. These allow lan-
guage terms to be constructed defining the behavior of components, via the
activities they undertake and the interactions between them. We can for in-
stance define constants, express the sequential behavior of a given component,
a choice between different behaviors, and the direct interaction between com-
ponents. Timing information is associated with each activity. Thus, when
enabled, an activity a = (α, r) will delay for a period sampled from the neg-
ative exponential distribution which has parameter r. If several activities are
enabled concurrently, either in competition or independently, we assume that a
race condition exists between them.

The dynamic behavior of a PEPA model is represented by the evolution of
its components, as governed by the operational semantics of PEPA terms [18].
Thus, as in classical process algebra, the semantics of each term is given via
a labelled multi-transition system (the multiplicity of arcs are significant). In
the transition system a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes one derivative
to evolve into another. The complete set of reachable states is termed the
derivative set and these form the nodes of the derivation graph, which is formed
by applying the semantic rules exhaustively. The derivation graph is the basis
of the underlying Continuous Time Markov Chain (CTMC) which is used to
derive performance measures from a PEPA model. The graph is systematically
reduced to a form where it can be treated as the state transition diagram of the
underlying CTMC. Each derivative is then a state in the CTMC. The transition
rate between two derivatives P and Q in the derivation graph is the rate at
which the system changes from behaving as component P to behaving as Q.
Examples of derivation graphs can be found in [18].

It is important to note that in our models the rates are represented as ran-
dom variables, not constant values. These random variables are exponentially
distributed. Repeated samples from the distribution will follow the distribution
and conform to the mean but individual samples may potentially take any pos-
itive value. The use of such distribution is quite realistic and it allows us to
use standard methods on CTMCs to readily obtain performance results. There
are indeed several methods and tools available for analysing PEPA models.
Thus, the PEPA Workbench [17]allows us to generate the state space of a PEPA
model and the infinitesimal generator matrix of the underlying Markov chain.
The state space of the model is represented as a sparse matrix. The PEPA Work-
bench can then compute the steady-state probability distribution of the system,
and performance measures such as throughput and utilisation can be directly
computed from this.

Towards the Automatic Mapping of ASSIST Applications for the Grid 79

M3

M4M2M1 s1 s4

s2 s3

Figure 2. Graph representation of our example application.

4. Performance models of ASSIST applications
PEPA can easily be used to model an ASSIST application since such appli-

cations are based on stream communications, and the graph structure deduced
from these streams can be modelled with PEPA. Given the probabilistic infor-
mation about the performance of each of the ASSIST modules and streams,
we then aim to find information about the global behavior of the application,
which is expressed by the steady-state of the system. The model thus allows us
to predict the run-time behavior of the application in the long time run, taking
into account information obtained from a static analysis of the program. This
behavior is not known in advance, it is a result of the PEPA model.

4.1 The ASSIST application
As we have seen in Section 2, an ASSIST application consists of a series of

modules and streams connecting the modules. The structure of the application
is represented by a graph, where the modules are the nodes and the streams the
arcs.

We illustrate in this paper our modeling process on an example of a graph,
but the process can be easily generalized to any ASSIST applications since
the information about the graph can be extracted directly from ASSIST source
code, and the model can be generated automatically from the graph.

A model of a data mining classification algorithm has been presented in [1],
as well as the corresponding ASSIST source code. For the purpose of our
methodology and in order to generalize our approach, we concentrate here only
on the graph of an application.

The graph of the application that we consider in this paper is similar to the
one of [1], consisting of four modules. Figure 2 represents the graph of this
application.

4.2 The PEPA model
Each ASSIST module is represented as a PEPA component, and the different

components are synchronised through the streams of data to model the overall

80 INTEGRATED RESEARCH IN GRID COMPUTING

application. The performance results obtained are the probabilities to be in
either of the states of the system. From this information, we can determine the
bottleneck of the system and decide the best way to map the application onto
the available resources.

The PEPA model is generated automatically from the ASSIST source code,
during a pre-compilation phase. The information required for the generation
is provided by the user directly in the source code, and particularly the rates
associated to the different activities of the PEPA model. These rates are related
to the theoretical complexity of the modules and of the communications. In
particular, rates of the communications depend on: a) the speed of the links
and b) data size and communications frequencies. A module may include a
parallel computation, thus its rate depend on a)computing power of the platforms
running the module and b) parallel computation complexity, its size, its parallel
degree, and its speedup.

Observe that aspect a) of both modules and communications rates strictly
depend on mapping, while aspect b) is much more dependent by application
logical structure and algorithms.

The PEPA components of the modules are shown in Fig. 3. The modules are
working in a sequential way: the module MX (X= 1..4) is initially in the state
MX1, waiting for data on its input streams. Then, in the state MX2, it processes
the piece of data and evolves to its third state MX3. Finally, the module sends
the output data on its output streams and goes back into its first state.

The system evolves from one state to another when an activity occurs. The
activity sX (X = 1..4) represents the transfer of data through the stream X, with
the associated rate λX . The rate reflects the complexity of the communication.
The activity pX (X = 1..4) represents the processing of a data by module MX,
which is done at a rate µX . These rates are related to the theoretical complexity
of the modules.

The overall PEPA model is then obtained by a collaboration of the different
modules in their initial states: M11 BC

s1
M21 BC

s2,s3
M31 BC

s4
M41.

The performance results obtained are the probability to be in either of the
states of the system. We compute the probability to be waiting for a processing
activity pX, or to wait for a transfer activity sX. From this information, we can
determine the bottleneck of the system and decide the best way to map the
application onto the available resources.

4.3 Automatic generation of the model
To allow an automatic generation of the PEPA model from the ASSIST source

code, we ask the user to provide some information directly in the main procedure
of the application. This information must specify the rates of the different
activities of the PEPA model. We are interested in the relative computational

Towards the Automatic Mapping of ASSIST Applications for the Grid 81

M11 def= M12
M12 def= (p1, µ1).M13
M13 def= (s1, λ1).M11

M21 def= (s1,>).M22 + (s2,>).M22
M22 def= (p2, µ2).M23
M23 def= (s3, λ3).M21 + (s4, λ4).M21

M31 def= (s3,>).M32
M32 def= (p3, µ3).M33
M33 def= (s2, λ2).M31

M41 def= (s4,>).M42
M42 def= (p4, µ4).M43
M43 def= M41

Figure 3. PEPA model for the example

and communication costs of the different parts of the system, but we define
numerical values to allow a numerical resolution of the PEPA model.

The complexity of the modules depends on the number of computations
done, and also on the degree of parallelism used for a parallel module. It is
directly related to the time needed to compute one input. The rates associated
with the streams depends on the amount of the data transiting on each stream.
In ASSIST, the object transiting on the stream is often a reference to the real
object, since the actual data is available in a shared memory, and this is beyond
the scope of our PEPA model.

This information is defined directly in the ASSIST source code of the appli-
cation, by calling a rate function, which takes as a parameter the name of the
modules and streams. This function should be called once for each module and
each stream to fix the rates of the corresponding PEPA activities.

The PEPA model is generated during a precompilation of the source code
of ASSIST. The parser identifies the main procedure and extracts the useful
information from it: the modules and streams, the connections between them,
and the rates of the different activities. The main difficulty consists in identi-
fying the schemes of input and output behavior in the case of several streams.
This information can be found in the input and output section of the parmod
code. Regarding the input section, the parser looks at the guards. Details on
the different types of guards can be found in [22, 3].

82 INTEGRATED RESEARCH IN GRID COMPUTING

As an example, a disjoint guard means that the module takes input from
either of the streams when some data arrives. This is translated by a choice in
the PEPA model, as illustrated in our example. However, some more complex
behavior may also be expressed, for instance the parmod can be instructed to
start executing only when it has data from both streams. In this case, the PEPA
model is changed with some sequential composition to express this behavior.
For example, M21 def= (s1,>).(s2,>).M22 + (s2,>).(s1,>).M22.

Another problem may arise from the variables in guards, since these may
change the frequency of accessing data from a stream. Since the variables may
depend on the input data, we cannot automatically extract static information
from them. They are currently ignored, but we plan to address this problem
by asking the programmer to provide the relative frequency of the guard. The
considerations for the output section are similar.

4.4 Performance results
Once the PEPA model has been generated, performance results can be ob-

tained easily with the PEPA Workbench [17]. Some additional information is
generated in the PEPA source code to specify the performance results that we
are interested in. This information is the following:

moduleM1 = 100 * {M12 || ** || ** || ** };
moduleM2 = 100 * {** || M22 || ** || ** };
moduleM3 = 100 * {** || ** || M32 || ** };
moduleM4 = 100 * {** || ** || ** || M42};

stream1 = 100 * {M13 || M21 || ** || ** };
stream2 = 100 * {** || M21 || M33 || ** };
stream3 = 100 * {** || M23 || M31 || ** };
stream4 = 100 * {** || M23 || ** || M41};

The expression in brackets describes the states of the PEPA model corre-
sponding to a particular state of the system. For each module MX (X= 1..4),
the result moduleMX corresponds to the percentage of time spent waiting to
process and processing this module. The steady-state probability is multiplied
by 100 for readability and interpretation reasons. A similar result is obtained
for each stream.

We expect the complexity of the PEPA model to be quite simple and the
resolution straightforward for most of the ASSIST applications. In our example,
the PEPA model consists in 36 states and 80 transitions, and it requires less than
0.1 seconds to generate the state space of the model and to compute the steady
state solution, using the linear biconjugate gradient method [17].

Towards the Automatic Mapping of ASSIST Applications for the Grid 83

Experiment 1 For the purpose of our example, we choose the following rates,
meaning that the module M3 is computationally more intensive than the other
modules. In our case, M3 has an average duration of 1 sec. compared to
0.01 sec. for the others: µ1 = 100;µ2 = 100;µ3 = 1;µ4 = 100;

The rates for the streams correspond to an average duration of 0.1 sec:
λ1 = 10;λ2 = 10;λ3 = 10;λ4 = 10;

The results for this example are shown in Table 1 (row Case 1).
These results confirm the fact that most of the time is spent in module M3,

which is the most computationally demanding. Moreover, module M1 (respec-
tively M4) spends most of its time waiting to send data on s1 (respectively
waiting to receive data from s4). M2 is computing quickly, and this module
is often receiving/sending from stream s2/s3 (little time spent waiting on these
streams in comparison with streams s1/s4).

If we study the computational rate, we can thus decide to map M3 alone
on a powerful processor because it has the highest value between the different
steady states probabilities of the modules. One should be careful to map the
streams s1 and s4 onto sufficiently fast network links to increase the overall
throughput of the network. A mapping that performs well can thus be deduced
from this information, by adjusting the reasoning to the architecture of the
available system.

Experiment 2 We can reproduce the same experiment but for a different ap-
plication: one in which there are a lot of data to be transfered inside the loop.
Here, for one input on s1, the module M2 makes several calls to the server M3
for computations. In this case, the rates of the streams are different, for instance
λ1 = λ4 = 1000 and λ2 = λ3 = 1.

The results for this experiment are shown in Table 1 (row Case 2). In this
table, we can see that M3 is quite idle, waiting to receive data 89.4% of the time
(i.e. this is the time it is not processing). Moreover, we can see in the stream
results that s2 and s3 are busier than the other streams. In this case a good
solution might be to map M2 and M3 on to the same cluster, since M3 is no
longer the computational bottleneck. We could thus have fast communication
links for s2 and s3, which are demanding a lot of network resources.

Table 1. Performance results for the example.

Modules Streams

M1 M2 M3 M4 s1 s2 s3 s4

Case 1 4.2 5.1 67.0 4.2 47.0 6.7 6.7 47.0
Case 2 52.1 52.2 10.6 52.1 5.2 10.6 10.6 5.2

84 INTEGRATED RESEARCH IN GRID COMPUTING

4.5 Analysis summary
As mentioned in Section 4.2, PEPA rates model both aspects strictly related

to the mapping and to the application’s logical structure (such as algorithms
implemented in the modules, communication patterns and size). The predictive
analysis conducted in this work provides performance results which are related
only to the application’s logical behavior. On the PEPA model this translates
on the assumption that all sites includes platforms with the same computing
power, and all links have an uniform speed. In other words, we assume to deal
with a homogeneous grid to obtain the relative requirements of power among
links and platforms. This information is used as a hint for the mapping in a
heterogeneous grid.

It is of value to have a general idea of a good mapping solution for the
application, and this reasoning can be easily refined with new models including
the mapping peculiarities, as demonstrated in our previous work [1]. However,
the modeling technique exposed in the present paper allows us to highlight
individual resources (links and processors) requirements, that are used to label
the application graph.

These labels represent the expected relative requirements of each module
(stream) with respect to other modules (streams) during the application run.
In the case of a module the described requirement can be interpreted as the
aggregate power of the site on which it will be mapped. On the other hand, a
stream requirement can be interpreted as the bandwidth of the network link on
which it will be mapped. The relative requirements of parmods and streams
may be used to implement mapping heuristics which assign more demanding
parmods to more powerful sites, and more demanding streams to links exhibiting
higher bandwidths. When a fully automatic application mapping is not required,
modules and streams requirements can be used to drive a user-assisted mapping
process.

Moreover, each parmod exhibits a structured parallelism pattern (a.k.a. skele-
ton). In many cases, it is thus possible to draw a reliable relationship between
the site fabric level information (number and kind of processors, processors and
network benchmarks) and the expected aggregate power of the site running a
given parmod exhibiting a parallelism pattern [5, 4, 9]. This may enable the
development of a mapping heuristic, which needs only information about sites
fabric level information, and can automatically derive the performance of a
given parmod on a given site.

The use of models taking into account both of the system architecture char-
acteristics can then eventually validate this heuristic, and give expected results
about the performance of the application for a specified mapping.

Towards the Automatic Mapping of ASSIST Applications for the Grid 85

4.6 Future work
The approach described here considers the ASSIST modules as blocks and

does not model the internal behavior of each module. A more sophisticated
approach might be to consider using known models of individual modules and
to integrate these with the global ASSIST model, thus providing a more accu-
rate indication of the performance of the application. At this level of detail,
distributed shared memory and external services (e.g. DB, storage services,
etc) interactions can be taken into account and integrated to enrich the network
of processes with dummy nodes representing external services. PEPA models
have already been developed for pipeline or deal skeletons [8–9], and we could
integrate such models when the parmod module has been adapted to follow
such a pattern.

Analysis precision can be improved by taking into account historical (past
runs) or synthetic (benchmark) performance data of individual modules and
their communications. This kind of information should be scaled with respect
to the expected performances of fabric resources (platform and network perfor-
mances), which can be retrieved via the middleware information system (e.g.
Globus GIS).

We believe that this approach is particularly suitable for modeling applica-
tions that can be described by a graph, not just ASSIST applications (such as
applications described in the forthcoming CoreGrid Grid Component Model
[11]). In particular the technique described here helps to derive some infor-
mation about the pressure (on modules and links) within a loop of the graph.
Loops are quite common patterns; they can be used to describe simple interac-
tions between modules (e.g. client-server RPC behavior) or mutual recursive
dependency between modules. These two cases lead to very different behaviors
in term of pressure or resources within the loop; in the former case this pressure
is variable over time.

The mapping decision is inherently a static process, and especially for loops
in the graph, it is important to make decisions on the expected common case.
This is modeled by the PEPA steady state probabilities, that indeed try to give
some static information on dynamic processes. Observe that PEPA is known to
give much more precise information compared to other known methods, such
as networks of queues, which cannot model finite buffering in queues, but it is
possible with PEPA. Clearly this is important, particularly for loops within the
graph.

5. Conclusions
In this paper we have presented a method to automatically generate PEPA

models from an ASSIST application with the aim of improving the mapping of
the application. This is an important problem in grid application optimisation.

86 INTEGRATED RESEARCH IN GRID COMPUTING

It is our belief that having an automated procedure to generate PEPA models
and obtain performance information may significantly assist in taking mapping
decisions. However, the impact of this mapping on the performance of the
application with real code requires further experimental verification. This work
is ongoing, and is coupled with further studies on more complex applications.

This ongoing research is a collaboration between two CoreGRID partners:
the University of Pisa, Italy (WP3 - Programming Model), and the ENS (CNRS)
in Lyon, France (WP6 - Institute on Resource Management and Scheduling).

Acknowledgments
This work has been partially supported by Italian national FIRB project no.

RBNE01KNFP GRID.it, by Italian national strategic projects legge 449/97 No.
02.00470.ST97 and 02.00640.ST97, and by the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract IST-2002-004265).

References
[1] M. Aldinucci and A. Benoit. Automatic mapping of ASSIST applications using process

algebra. Technical report TR-0016, CoreGRID, Oct. 2005.

[2] M. Aldinucci, S. Campa, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravazzolo,
M. Torquati, and C. Zoccolo. Targeting heterogeneous architectures in ASSIST: Experi-
mental results. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors, Proc. of 10th
Intl. Euro-Par 2004 Parallel Processing, volume 3149 of LNCS, pages 638–643. Springer
Verlag, Aug. 2004.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo. ASSIST as a
research framework for high-performance grid programming environments. In J. C. Cunha
and O. F. Rana, editors, Grid Computing: Software environments and Tools, chapter 10,
pages 230–256. Springer Verlag, Jan. 2006.

[4] M. Aldinucci, M. Danelutto, J. Dünnweber, and S. Gorlatch. Optimization techniques for
skeletons on grid. In L. Grandinetti, editor, Grid Computing and New Frontiers of High
Performance Processing, volume 14 of Advances in Parallel Computing, chapter 2, pages
255–273. Elsevier, Oct. 2005.

[5] M. Aldinucci, M. Danelutto, and M. Vanneschi. Autonomic QoS in ASSIST grid-aware
components. In Proc. of Intl. Euromicro PDP 2006: Parallel Distributed and network-
based Processing, pages 221–230, Montbéliard, France, Feb. 2006. IEEE.

[6] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST. In J. C.
Cunha and P. D. Medeiros, editors, Proc. of 11th Intl. Euro-Par 2005 Parallel Processing,
volume 3648 of LNCS, pages 771–781. Springer Verlag, Aug. 2005.

[7] F. Baude, D. Caromel, and M. Morel. On hierarchical, parallel and distributed components
for grid programming. In V. Getov and T. Kielmann, editors, Proc. of the Intl. Workshop on
Component Models and Systems for Grid Applications, CoreGRID series, pages 97–108,
Saint-Malo, France, Jan. 2005. Springer Verlag.

[8] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Evaluating the performance of skeleton-
based high level parallel programs. In M. Bubak, D. van Albada, P. Sloot, and J. Dongarra,

Towards the Automatic Mapping of ASSIST Applications for the Grid 87

editors, The Intl. Conference on Computational Science (ICCS 2004), Part III, LNCS,
pages 299–306. Springer Verlag, 2004.

[9] A. Benoit, M. Cole, S. Gilmore, and J. Hillston. Scheduling skeleton-based grid applica-
tions using PEPA and NWS. The Computer Journal, 48(3):369–378, 2005.

[10] M. Cole. Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal Parallel
Programming. Parallel Computing, 30(3):389–406, 2004.

[11] CoreGRID NoE deliverable series, Institute on Programming Model. Deliverable
D.PM.02 – Proposals for a Grid Component Model, Nov. 2005.

[12] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto, S. Orlando, R. Baraglia, T. Fagni,
D. Laforenza, and A. Paccosi. HPC application execution on grids. In V. Getov,
D. Laforenza, and A. Reinefeld, editors, Future Generation Grids, CoreGRID series,
pages 263–282. Springer Verlag, Nov. 2005.

[13] J. Dünnweber and S. Gorlatch. HOC-SA: A grid service architecture for higher-order
components. In IEEE Intl. Conference on Services Computing, Shanghai, China, pages
288–294. IEEE Computer Society Press, Sept. 2004.

[14] J. Dünnweber, S. Gorlatch, S. Campa, M. Aldinucci, and M. Danelutto. Behavior cus-
tomization of parallel components application programming. Technical Report TR-0002,
Institute on Programming Model, CoreGRID - Network of Excellence, Apr. 2005.

[15] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid: Enabling scalable
virtual organization. The Intl. Journal of High Performance Computing Applications,
15(3):200–222, Fall 2001.

[16] I. Foster and C. Kesselmann, editors. The Grid 2: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, Dec. 2003.

[17] S. Gilmore and J. Hillston. The PEPA Workbench: A Tool to Support a Process Algebra-
based Approach to Performance Modelling. In Proc. of the 7th Int. Conf. on Modelling
Techniques and Tools for Computer Performance Evaluation, number 794 in LNCS, pages
353–368, Vienna, May 1994. Springer-Verlag.

[18] J. Hillston. A Compositional Approach to Performance Modelling. Cambridge University
Press, 1996.

[19] C. A. R. Hoare. Communicating Sequential Processes. Communications of ACM,
21(8):666–677, Aug. 1978.

[20] S. Vadhiyar and J. Dongarra. Self adaptability in grid computing. Concurrency & Com-
putation: Practice & Experience, 17(2–4):235–257, 2005.

[21] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Jacobs, T. Kielmann,
and H. E. Bal. Ibis: a flexible and efficient Java-based grid programming environment.
Concurrency & Computation: Practice & Experience, 17(7-8):1079–1107, 2005.

[22] M. Vanneschi. The programming model of ASSIST, an environment for parallel and
distributed portable applications. Parallel Computing, 28(12):1709–1732, Dec. 2002.

