
SKELETON PARALLEL PROGRAMMING
AND
PARALLEL OBJECTS

Marcelo Pasin
CoreGRID fellow
on leave from Universidade Federal de Santa Maria
Santa Maria RS, Brasil

pasin@inf.ufsm.br

Pierre Kuonen
Haute Ecole Specialisée de Suisse Occidentale
École d’ingénieurs et d’architects de Fribourg
Fribourg, Suisse

pierre.kuonen@eif.ch

Marco Danelutto and Marco Aldinucci
Università di Pisa
Dipartimento d’Informatica
Pisa, Italia

marcod@di.unipi.it

aldinuc@di.unipi.it

Abstract This paper describes the ongoing work aimed at integrating the POP-C++ parallel
object programming environment with the ASSIST component based parallel
programming environment. Both these programming environments are shortly
outlined, then several possibilities of integration are considered. For each one of
these integration opportunities, the advantages and synergies that can be possibly
achieved are outlined and discussed.

The text explains how GEA, the ASSIST deployer can be considered as the
basis for the integration of such different systems. An architecture is proposed,
extending the existing tools to work together. The current status of integration of
the two environments is discussed, along with the expected results and fallouts
on the two programming environments.

Keywords: Parallel, programming, grid, skeletons, object-oriented, deployment, execution.



60 INTEGRATED RESEARCH IN GRID COMPUTING

1. Introduction

This is a prospective article on the integration of ASSIST and POP-C++
tools for parallel programming. POP-C++ is a C++ extension for parallel pro-
gramming, offering parallel objects with asynchronous method calls. Section
2 describes POP-C++. ASSIST is a skeleton parallel programming system that
ofers a structured framework for developing parallel applications starting from
sequential components. ASSIST is described in Section 3 as well as some of
its components, namely ADHOC and GEA.

This paper also describes some initial ideas of cooperativework on integrat-
ing parts of ASSIST and POP-C++, in order to obtain a broader and better range
of parallel programming tools. It has been clearly identified that the distributed
resource discovery and matching, as well as the distributedobject deployment
found in ASSIST could be used also by POP-C++. An architecture is devised in
order to support the integration. An open question, and an interesting research
problem, is whether POP-C++ could be used inside skeleton components for
ASSIST. Section 4 is consacrated to these discussions.

2. Parallel Object-Oriented Programming

It is a very common sense in software engineering today that object-oriented
programming and its abstractions improve software development. Besides that,
the own nature of objects incorporate many possibilities ofprogram parallelism.
Several objects can act concurrently and independently from each other, and
several operations in the same object can be concurrently carried out. For these
reasons, a parallel object seems to be a very general and straightforward model
to express concurrency, and thus to parallel programming.

POP stands for Parallel Object Programming, a programming model in which
parallel objects are generalizations of traditional sequential objects. POP-C++
is an extension of C++ that implements the POP model, integrating distributed
objects, several remote method invocations semantics, andresource require-
ments. The extension is kept as close as possible to C++ so that programmers can
easily learn POP-C++ and existing C++ libraries can be parallelized with little
effort. It results in an object-oriented system for developing high-performance
computing applications for the Grid [13].

POP-C++ incorporates a runtime system in order to execute applications
on different distributed computing tools [10][17]. This runtime system has a
modular object-oriented service structure. Services are instantiated inside each
application and can be combined to perform specific tasks using different lower
level services (middleware, operating system). This design can be used to glue
current and future distributed programming toolkits together to create a broader
environment for executing high performance computing applications.



Skeleton Parallel Programming and Parallel Objects 61

Parallel objects have all the properties of traditional objects, added to dis-
tributed resource-driven creation and asynchronous invocation. Each object
creation has the ability to specify its requirements, making possible transparent
optimized resource allocation. Each object is allocated ina separate address
space, but references to an object are shareable, allowing for remote invocation.
Shared objects with encapsulated data allow programmers toimplement global
data sharing in distributed environments. In order to shareparallel objects,
POP-C++ programs can arbitrarily pass their references from one place to an-
other as arguments of method invocations. The runtime system is responsible
for managing parallel object references.

Parallel objects support any mixture of synchronous, asynchronous, exclu-
sive or concurrent method invocations. Without an invocation, a parallel ob-
ject lies in an inactive state, only being activated a methodinvocation request.
Syntactically, method invocations on POP objects are identical to those on
traditional sequential objects. However, each method has its own invocation
semantics, specified by the programmer. These semantics define different be-
haviours at both sides (caller and object) of a method call. Even though these
semantics are important to define the POP model, they are irrelevant for the
scope of this paper and will not be detailed here.

Prior to allocate a new POP object it is necessary to select anadequate
placeholder. Similarly, whenanobject is no longer in use, it must be destroyed to
release the resources it is occupying. POP-C++ provides (inits runtime system)
automatic placeholder selection, object allocation, and object destruction. This
automatic features result in a dynamic usage of computational resources and
gives to the applications the ability to adapt to changes in both the environment
and application behaviour.

Resource requirements can be expressed by the quality of service that com-
ponents require from the environment. POP-C++ integrates the requirements
into the code under the form of resource descriptions. Each parallel object con-
structor is associated with anobject description that depicts the characteristics
of the resources needed to create the object. Currently, resource requirements
are expressed in terms of resource name, computing power, amount of memory,
expected communication bandwidth and latency. Work is being done in order
do broaden the expressiveness of the resource requirements.

The runtime system incorporates a server process calledjob manager, im-
plementing services for object creation and for resource discovery. A simple
distributed peer-to-peer resource discovery model is integrated, yet it does not
scale well. Object creation is seen as a new process, which can be started with
different management systems such as LSF [9], PBS [12] or even Globus [10].



62 INTEGRATED RESEARCH IN GRID COMPUTING

3. Structured parallel programming with ASSIST

The development of efficient parallel programs is especially difficult with
large-scale heterogeneous and distributed computing platforms as the Grid.
Previous research on that subject exploitedskeletons as a parallel coordina-
tion layer of functional modules, made of conventional sequential code [3].
This model allows to relieve the programmer from many concerns of classical,
non structured parallel programming frameworks. With skeletons, mapping,
scheduling, load balancing and data sharing, and maybe more, can be managed
by either the compiler or the runtime system. In addition to that, using skeletons
several optimizations can be efficently implemented, because the source code
contains a description of the structure for the parallelism. That is much harder
to do automatically when the parallelism pattern is unknown.

ASSIST is a parallel programming environment providing a skeleton based
coordination language. It includes a skeleton compiler andruntime libraries.
Parallel application are structured as generic graphs. Thenodes are either
parallel modules or sequential code. The edges are data streams. Sequential
code can be written in C, C++ and Fortran, allowing to reuse existing code. The
programmer can experiment different parallelisation strategies just changing a
few lines of code and recompiling.

A parallel module is used to model the parallel activities of an ASSIST pro-
gram. It can be specialized to behave as the most common parallelism patterns
as farms, pipelines, or geometric and data parallel computations. Skeletons and
coordination technology are exploited in such a way that parallel applications
with complex parallelism patterns can be implemented without handling error
prone details as process and communication setup, scheduling, mapping, etc.

The language allows to define, inside a parallel module, a setof virtual
processors and to assign them tasks. The same task can be assigned to all
virtual processors or to a certain group of them, or even to a single one. A
parallel module can concurrently access state variables, and can interact with
the external world using standard object access methods (like CORBA, for
instance). A parallel module can handle as many input and output streams as
needed. Non deterministic control is provided to accept inputs from different
streams and explicit commands are provided to output items on the output
streams.

Several optimizations are performed to efficiently executeASSIST programs
[15][1]. The environment was recently extended to support acomponent model
(GRID.it) [2], that can interact with foreign component models, as CORBA
CCM and Web Services. ASSIST components are supplied with autonomic
managers [4] that adapt the execution to dynamic changes in the grid features
(node or link faults, different load levels, etc.).



Skeleton Parallel Programming and Parallel Objects 63

Along with binary executable files, the compiler generates an XML config-
uration file that represent the descriptor of the parallel application. GEA (see
Section 3.1) is a deployer built to run the program based on the XML file. It
takes care of all the activities needed to stage the code at remote nodes, to start
auxiliary runtime processes, to run the application code and to gather the results
back to the node where the program has been launched.

Grid applications often need access to fast, scalable and reliable data stor-
age. ADHOC (Adaptive Distributed Herd of Object Caches) is adistributed
persistent object repository toolkit [5], conceived in thecontext of the ASSIST
project. ADHOC creates a single distributed data repository by the cooperation
between multiple local memories. It separates management of computation
and storage, supporting a broad class of parallel applications while achieving
good performance. Clients access objects through proxies,that can implement
protocols as complex as needed (e.g. distributed agreement). The toolkit en-
ables object creation, set, get, removal and method call. The following section
presents GEA in more detail.

3.1 Grid Application Deployment

ASSIST applications are deployed using GEA, the Grid Execution Agent. It
is a parallel process launcher targeting distinct architectures, as clusters and the
Grid. It has a modular design, intended for aggressive adaptation to different
system architectures and to different application structures. GEA deploys appli-
cations and its infrastructure based on XML description files. It makes possible
to configure and lauch processes in virtually any combination and order needed,
adapting to different types of applications.

GEA has already been adapted for deployment on Globus grids and Unix
computers supporting SSH access. Other different environments can be added
without any modification in GEA’s structure, because it is implemented us-
ing the Commodity Grid toolkit [16]. It currently supports the deployment of
three different flavors of ASSIST applications, each one with a different process
startup scheme. In the deployment of ASSIST applications, the compiler gen-
erates the necessary XML files, creating an automatic process to describe and
launch applications. Besides the work described in this paper, the deployment
of GridCCM components [8]is as well under way.

At the deployment of an application, after parsing the XML file that describe
the resources needed, a suitable number of computing resources (nodes) are
recruited to host the application processes. The application code is deployed to
the selected remote nodes, by transferring the needed files to the appropriated
places in the local filesystems. Data files and result files aretransfered as
well, respectively prior and after the execution of the application processes.



64 INTEGRATED RESEARCH IN GRID COMPUTING

The necessary support processes to run the applications arealso started at the
necessary nodes.

The procedure for launching and connecting these processeswith the applica-
tion processes is automatized inside customized deployment modules. For ex-
ample, ASSIST applications need processes to implement thedata flow streams
interconnecting their processes. ASSIST components need also supplementary
processes for adaptation and dynamic connection. Other different launching
patterns can be added with new modules, without any modification in GEA’s
structure.

4. Objects and skeletons getting along

Work is under progress within the CoreGRID network of excellence in order
to establish a common programming model for the Grid. This model must
implement a component system that keeps interoperability with the systems
currently in use. ASSIST and POP-C++ have been designed and developed
with different programming models in mind, but with a commongoal: pro-
vide grid programmers with advanced tools suitable to develop efficient grid
applications. They together represent two major and different parallel program-
ming models (skeletons and distributed objects). Even if they may conduct the
construction of the CoreGRID programming model to different directions, the
set of issues addressed in both contexts has a large intersection. Compile or
runtime enhancements made for any of them may be easily adapted to be used
by other programming systems (possibly not only skeletal orobject-oriented).
Many infrastructural tools can be shared, as presented later in this text.

The possible relations between POP-C++ and ASSIST, one object-oriented
and another based on skeletons are being studied inside CoreGRID. Work has
been done to identify the possibilities to integrate both tools in such a way
that effectively improve each one of them exploiting the original results already
achieved in the other. Three possibilities that seem to provide suitable solutions
have been studied:

1 Deploy POP-C++ objects using ASSIST deployment;

2 Adapt both to use the same type of shared memory;

3 Build ASSIST components of POP-C++ objects.

The first two cases actually improve the possibilities offered by POP-C++
by exploiting ASSIST technology. The third case improves the possibilities
offered by ASSIST to assemble complex programs out of components written
accordingly to different models. Currently such components can only be writ-
ten using the ASSIST coordination language or inherited from CCM or Web
Services. The following sections detail these three possibilities and discuss
their relative advantages.



Skeleton Parallel Programming and Parallel Objects 65

4.1 Same memory for ASSIST and POP-C++

POP-C++ implements asynchronous remote method invocations, using very
basic system features, as TCP/IP sockets and POSIX threads.Instead of using
those natively implemented parallel objects, POP-C++ could be adapted to use
ADHOC objects. Calls to POP objects would be converted into calls to ADHOC
objects. This would have the added advantage of being possible to somehow
mix ADHOC applications and POP-C++ as they would share the same type of
distributed object. This would as well add persistence to POP-C++ objects.

ADHOC objects are shared in a distributed system, as POP objects are. But
they do not incorporate any concurrent semantics on the object side, neither
their calls are asynchronous. In order to offer the same semantics, ADHOC
objects (at both caller and callee sides) would have to be wrapped in jackets,
which would implement the concurrent semantics using something like POSIX
threads. This does not appear to be a good solution, neither about performance
nor about elegance.

ADHOC has been implemented in C++. It should be relatively simple to
extend its classes to be used inside a POP-C++ program, as it would with any
other C++ class libraries. It means that it is already possible to use the current
version of ADHOC to share data between POP-C++ and ASSIST applications.
For all these reasons the idea of adopting ADHOC to implementregular POP-
C++ objects has been precluded.

4.2 ASSIST components written in POP-C++

Currently, the ASSIST framework allows component programsto be devel-
oped with two type of components:native components andwrapped legacy
components. Native components can either be sequential or parallel. They
provide both a functional interface, exposing the computing capabilities of the
component, and a non functional interface, exposing methods that can be used
to control the component (e.g. to monitor its behaviour). They provide as well
a performance contract that the component itself ensures by exploiting its
internal autonomic control features implemented in the nonfunctional code.
Wrapped legacy components, on the other hand, are either CCMcomponents
or plain Web Services that can be automatically wrapped by the ASSIST frame-
work tools to look like a native component.

The ASSIST framework can be extended in such a way that POP-C++ pro-
grams can also be wrapped to look like native components and therefore be
used in plain native component programs. As the parallelismpatterns allowed
in native components are restricted to the ones provided by the ASSIST coor-
dination language, POP-C++ components introduce in the ASSIST framework
the possibility of having completely general parallel components. Of course,



66 INTEGRATED RESEARCH IN GRID COMPUTING

the efficiency of POP-C++ components would be completely in charge of POP-
C++ compiler and its runtime environment.

Some interesting possibilities appear when exploring object oriented pro-
gramming techniques to implement the non functional parts of the native com-
ponent. In other words, one could try to fully exploit POP-C++ features to
implement a customizable autonomic application manager providing the same
non functional interface of native ASSIST components. These extensions, ei-
ther in ASSIST or in POP-C++ can be subject to further research, especially in
the context of CoreGRID, when its component model would be more clearly
defined.

If eventually an ASSIST component should be written in POP-C++, it will be
necessary to deploy and launch it. To launch an application,different types of
components will have to be deployed. ASSIST has a deployer that is not capable
of dealing with POP-C++ objects. One first step to enable their integration
should be the construction of a common deployment tool, capable of executing
both types of components.

4.3 Deploying ASSIST and POP-C++ alike

ASSIST provides a large set of tools, including infrastructure for launching
processes, integrated with functions for matching needs toresouces capabilities.
The POP-C++ runtime library could hook up with GEA, the ASSIST deployer,
in different levels. The most straightforward is to replacethe parts of the POP-
C++ job manager related to object creation and resource discovery with calls
to GEA.

As seen in Section 3.1, GEA was build to be extended. It is currently able
to deploy ASSIST applications, each type of it being handledby a different
deployer module. Adding support for POP-C++ processes, or objects, can
be done by writing another such module. POP-C++ objects are executed by
independent processes that depend on very little. Basically, the newly created
process has to allocate the new object, use the network to connect with the
creator, and wait for messages on the connection. The connection to establish
is defined by arguments in the command line, which are passed by the caller
(the creator of the new object). The POP-C++ deployer moduleis actually a
simplified version of those used for ASSIST applications.

Process execution and resource selection in both ASSIST andPOP-C++
happen in very different patterns. ASSIST relies on the structure of the appli-
cation and is performance contract to specify the type of theresources needed
to execute it. This allows for a resource allocation strategy based on graphs,
specified ahead of the whole execution. Chosen a given set of resources, all
processes are started. The adaptation follow certain rulesand cannot happen
without boundaries. POP-C++ on the other hand does not impose any program



Skeleton Parallel Programming and Parallel Objects 67

structure. A new resource must be located on-the-fly for every new object cre-
ated. The characteristics of the resources are completely variable, and cannot
be determined previous to the object creation.

It seems clear that a good starting point for integration of POP-C++ and
ASSIST is the deployer, and some work has been done in that direction. The
next section of this paper discusses the architecture of theextensions designed to
support the deployment of POP objects with with GEA, the ASSIST deployer.

5. Architecture for a common deployer

The modular design of GEA allows for extensions. Nevertheless, it is written
in Java. The runtime of POP-C++ was written in C++ and it must be able to reach
code running in Java. Anticipating such uses, GEA was built to run as a server,
exporting a TCP/IP interface. Client libraries to connect and send requests to it
were written in both Java and C++. The runtime library of POP-C++ has then
to be extended to include calls to GEA’s client library.

In order to assess the implications of the integration proposed here, the object
creation procedure inside the POP-C++ runtime library has to be seen more into
detail. The steps are as following:

1 A proxy object is created inside the address space of the creator process,
calledinterface.

2 The interface evaluates the object description (written in C++) and calls
a resource discovery service to find a suitable resource.

3 The interface launches a remote process to host the new object in the
given resource and waits.

4 The new process running remotely connects with the interface, receives
the constructor arguments, creates the object in the local address space
and tells the interface that the creation ended.

5 The interface returns the proxy object to the caller.

GEA can currently only be instructed to, at once, choose an adequate re-
source, then load and launch a process. An independant discovery service, as
required by the POP-C++ interface, is not yet implemented inGEA. On the
other hand, in can be used as it is just rewriting the calls in the POP-C++ object
interface. The modifications are:

The resource discovery service call has to be rewritten to just build an
XML description of the resource based on the object description.

The remote process launch should be rewritten to call the GEAC++ client
library, passing the XML description formrly built.



68 INTEGRATED RESEARCH IN GRID COMPUTING

Requests to launch processes have some restrictions on GEA.Its currently
structured model matches the structured model of ASSIST. Nodes are divided
into administrative domains, and each domain is managed by asingle GEA
server. The ASSIST model dictates a fixed structure, with parallel modules
connected in a predefined way. All processes of parallel modules are assigned
to resources when the execution starts. It is eventually possible to adjust on the
number of processes inside of a running parallel module, butthe new processes
must be started in the same domain.

POP-C++ needs a completely dynamic model to run parallel objects. An
object running in a domain must be able to start new objects indifferent domains.
Even a sigle server for all domains is not a good idea, as it maybecome a
bottleneck. In order to support multiple domains, GEA has tobe extended to a
more flexible model. GEA servers must forward execution calls between each
other. Resource discovery for new processes must also take into account the
resources in all domains (not only the local one). That is a second reason why
the resource discovery and the process launch were left to bedone together.

GEA is build to forward a call to create a process to the corresponding process
type module, calledgear. With POP-C++, the POP gear will be called by GEA
for every process creation. The POP gear inspects all resources available and
associates the process creation request with a suitable resource. The CoG kit
will eventually be called to launch the process in the associated resource. This
scenario is illustrated in Figure 1. A problem arises when nosuitable resource
is available in the local domain, as GEA does not share resource information
with other servers.

Figure 1. GEA with a cetralized POP-C++ gear

POP gear
run

POP object
running

POP object
new

CoG kit
run

GEA

run run

By keeping together the descriptions of the program and the resource, the
mapping decision can be postponed to the last minute. The Figure 2 shows a
scenario, where a POP gear does not find a suitable resource locally. A peer-to-
peer network, established with GEA servers and their POP gears would forward
the request until it is eventually satisfied, or a timeout is reached. A similar
model was proposed as a Grid Information Service, using routing indexes to
improve performance [14].

In the context of POP-C++ (and in other similar systems, as ProActive [7],
for instance), the allocation is dynamic, with every new process created idepen-
dently of the others. Structured systems as ASSIST need to express application



Skeleton Parallel Programming and Parallel Objects 69
Figure 2. GEA with a peer-to-peer POP-C++ gear

POP object
running

POP object
new

POP gear
run

GEA

POP gear
run

GEA

POP gear
run

CoG kit
run

GEA

run

run

forward

forward

needs as a whole prior to the execution. Finding good mappings in a distributed
algorithm is clearly an optimisation problem, that could eventually be solved
with heuristics expoiting a certain degree of locality. Requirements and re-
source sets must be split into parts and mixed and matched in adistributed and
incremental (partial) fashion [11].

In either contexts (static or dynamic), resources would better be described
without a predefined structure. Descriptions could be of anytype, not just
amounts of memory, CPU or network capacity. Requirements sould be ex-
pressed as predicates that evaluate to a certain degree of satisfaction [6]. The
languages needed to express requirements and resources, aswell as efficient
distributed resource matching algorithms are still interesting research problems.

6. Conclusion

The questions discussed in this paper entail a CoreGRID fellowship. All the
possibilities described in the previous sections were considered, and the focus
of interest was directed to the integration of GEA as the POP-C++ launcher and
resource manager. This will impose modifications on POP-C++runtime library
and new funcionalities for GEA. Both systems are expected toimprove thanks
to this interaction, as POP-C++ will profit from better resource discovery and
GEA will implement a less restricted model.

Further research on the matching model will lead to new approaches on
expressing and matching application requirements and resource capabilities.
This model should allow a distributed implementation that dynamically adapt
the requirements as well as the resource availability, being able to express both
ASSIST and POP-C++ requirements, and probably others.



70 INTEGRATED RESEARCH IN GRID COMPUTING

A subsequent step can be a higher level of integration, usingPOP-C++ pro-
grams as ASSIST components. This could allow to exploit fullobject oriented
parallel programming techniques in ASSIST programs on the Grid. The impli-
cations of POP-C++ parallel object oriented modules on the structured model
of ASSIST are not fully identified, especially due to the dynamic aspects of the
objects created. Supplementary study has to be done in orderto devise its real
advantages and consequences.

References

[1] M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini,P. Pesciullesi, L. Potiti,
R. Ravazzoloand M. Torquati, M. Vanneschi, and C. Zoccolo. The Implementation of
ASSIST, an Environment for Parallel and Distributed Programming. In Proc. of Eu-
roPar2003, number 2790 in "Lecture Notes in Computer Science". Springer, 2003.

[2] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for High-Performance Grid Programming in
GRID.it. In Component modes and systems for Grid applications, CoreGRID. Springer,
2005.

[3] M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured
parallel programming in Java.Future Generation Computer Systems, 19(5):611–626,
2003. Elsevier Science.

[4] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applications in ASSIST. In11th Intl
Euro-Par 2005: Parallel and Distributed Computing, number 3149 in "Lecture Notes in
Computer Science". Springer Verlag, 2004.

[5] M. Aldinucci and M. Torquati. Accelerating apache farmsthrough ad-HOC distributed
scalable object repository. In M. Danelutto, M. Vanneschi,and D. Laforenza, editors,10th
Intl Euro-Par 2004: Parallel and Distributed Computing, volume 3149 of"Lecture Notes
in Computer Science", pages 596–605, Pisa, Italy, August 2004. "Springer".

[6] S. Andreozzi, P. Ciancarini, D. Montesi, and R. Moretti.Towards a metamodeling based
method for representing and selecting grid services. In Mario Jeckle, Ryszard Kowalczyk,
and Peter Braun II, editors,GSEM, volume 3270 ofLecture Notes in Computer Science,
pages 78–93. Springer, 2004.

[7] F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and descriptor-
based deployment of object-oriented grid applications. InProceedings of the 11th IEEE
Intl Symposium on High Performance Distributed Computing, pages 93–102, Edinburgh,
Scotland, July 2002. IEEE Computer Society.

[8] Massimo Coppola, Marco Danelutto, Sébastien Lacour, Christian Pérez, Thierry Priol,
Nicola Tonellotto, and Corrado Zoccolo. Towards a common deployment model for
grid systems. In Sergei Gorlatch and Marco Danelutto, editors, CoreGRID Workshop
on Integrated research in Grid Computing, pages 31–40, Pisa, Italy, November 2005.
CoreGRID.

[9] Platform Computing Corporation.Running Jobs with Platform LSF, 2003.

[10] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.Intl Journal
of Supercomputer Applications and High Performance Computing, 11(2):115–128, 1997.



Skeleton Parallel Programming and Parallel Objects 71

[11] Felix Heine, Matthias Hovestadt, and Odej Kao. Towardsontology-driven p2p grid re-
source discovery. In Rajkumar Buyya, editor,GRID, pages 76–83. IEEE Computer Soci-
ety, 2004.

[12] R. Henderson and D. Tweten. Portable batch system: External reference specification.
Technical report, NASA, Ames Research Center, 1996.

[13] T.-A. Nguyen and P. Kuonen. ParoC++: A requirement-driven parallel object-oriented
programming language. InEighth Intl Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS’03), April 22-22, 2003, Nice, France, pages
25–33. IEEE Computer Society, 2003.

[14] Diego Puppin, Stefano Moncelli, Ranieri Baraglia, Nicola Tonellotto, and Fabrizio Sil-
vestri. A grid information service based on peer-to-peer. In Lecture Notes in Computer
Science 2648, Proceeeding of Euro-Par, pages 454–464, 2005.

[15] M. Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and
Distributed Portable Applications .Parallel Computing, 12, December 2002.

[16] Gregor von Laszewski, Ian Foster, and Jarek Gawor. CoG kits: a bridge between com-
modity distributed computing and high-performance grids.In Proceedings of the ACM
Java Grande Conference, pages 97–106, June 2000.

[17] T. Ylonen. SSH - secure login connections over the internet. InProceedings of the 6th
Security Symposium, page 37, Berkeley, 1996. USENIX Association.


