SKELETON PARALLEL PROGRAMMING
AND
PARALLEL OBJECTS

Marcelo Pasin

CoreGRID fellow

on leave from Universidade Federal de Santa Maria
Santa Maria RS, Brasil

pasin@inf.ufsm.br

Pierre Kuonen

Haute Ecole Specialisée de Suisse Occidentale
Ecole d'ingénieurs et d’architects de Fribourg
Fribourg, Suisse

pierre.kuonen@eif.ch

Marco Danelutto and Marco Aldinucci
Universita di Pisa

Dipartimento d’'Informatica

Pisa, Italia

marcod@di.unipi.it

aldinuc@di.unipi.it

Abstract This paper describes the ongoing work aimed at integrati@@OP-C++ parallel
object programming environment with the ASSIST componexged parallel
programming environment. Both these programming enviemtsare shortly
outlined, then several possibilities of integration aresidered. For each one of
these integration opportunities, the advantages andgigsdhat can be possibly
achieved are outlined and discussed.

The text explains how GEA, the ASSIST deployer can be comsitlas the
basis for the integration of such different systems. Aniéeckure is proposed,
extending the existing tools to work together. The curréatus of integration of
the two environments is discussed, along with the expe&sualts and fallouts
on the two programming environments.

Keywords: Parallel, programming, grid, skeletons, object-orientEghloyment, execution.

60 INTEGRATED RESEARCH IN GRID COMPUTING

1. I ntroduction

This is a prospective article on the integration of ASSIST &DP-C++
tools for parallel programming. POP-C++ is a C++ extensmrparallel pro-
gramming, offering parallel objects with asynchronoushudtcalls. Section
2 describes POP-C++. ASSIST is a skeleton parallel progiameystem that
ofers a structured framework for developing parallel aggilons starting from
sequential components. ASSIST is described in Section 3Hsaw some of
its components, namely ADHOC and GEA.

This paper also describes some initial ideas of cooperatbr& on integrat-
ing parts of ASSIST and POP-C++, in order to obtain a broadebatter range
of parallel programming tools. It has been clearly idendifigat the distributed
resource discovery and matching, as well as the distriboibgett deployment
found in ASSIST could be used also by POP-C++. An architedauevised in
order to support the integration. An open question, and &mdating research
problem, is whether POP-C++ could be used inside skeletorpooents for
ASSIST. Section 4 is consacrated to these discussions.

2. Parallel Object-Oriented Programming

Itis a very common sense in software engineering today thjattoriented
programming and its abstractions improve software devetop. Besides that,
the own nature of objects incorporate many possibilitiggrofram parallelism.
Several objects can act concurrently and independentiy fach other, and
several operations in the same object can be concurremtigd@aut. For these
reasons, a parallel object seems to be a very general aightfivavard model
to express concurrency, and thus to parallel programming.

POP stands for Parallel Object Programming, a programmaougiin which
parallel objects are generalizations of traditional setjaeobjects. POP-C++
is an extension of C++ that implements the POP model, intiegrdistributed
objects, several remote method invocations semanticsyesulirce require-
ments. The extensionis keptas close as possible to C++gwtigrammers can
easily learn POP-C++ and existing C++ libraries can be [sdizzdd with little
effort. It results in an object-oriented system for deveigpigh-performance
computing applications for the Grid [13].

POP-C++ incorporates a runtime system in order to execytécapions
on different distributed computing tools [10][17]. Thisntime system has a
modular object-oriented service structure. Servicesratantiated inside each
application and can be combined to perform specific taskgukfferent lower
level services (middleware, operating system). This aesém be used to glue
current and future distributed programming toolkits thgeto create a broader
environment for executing high performance computing igppbns.

Skeleton Parallel Programming and Parallel Objects 61

Parallel objects have all the properties of traditional objects, added te dis
tributed resource-driven creation and asynchronous atimt. Each object
creation has the ability to specify its requirements, mgliassible transparent
optimized resource allocation. Each object is allocated separate address
space, but references to an object are shareable, alloaingrhote invocation.
Shared objects with encapsulated data allow programmaérgtement global
data sharing in distributed environments. In order to sipamllel objects,
POP-C++ programs can arbitrarily pass their references &oe place to an-
other as arguments of method invocations. The runtime syisteesponsible
for managing parallel object references.

Parallel objects support any mixture of synchronous, daymous, exclu-
sive or concurrent method invocations. Without an invaxgtia parallel ob-
ject lies in an inactive state, only being activated a methwdcation request.
Syntactically, method invocations on POP objects are idainto those on
traditional sequential objects. However, each method tsaswn invocation
semantics, specified by the programmer. These semantice dfierent be-
haviours at both sides (caller and object) of a method calenBhough these
semantics are important to define the POP model, they atevarg for the
scope of this paper and will not be detailed here.

Prior to allocate a new POP object it is necessary to selecdaquate
placeholder. Similarly, when an objectis nolonger in usaList be destroyedto
release the resources itis occupying. POP-C++ providds fimntime system)
automatic placeholder selection, object allocation, djdat destruction. This
automatic features result in a dynamic usage of computti@sources and
gives to the applications the ability to adapt to change®th the environment
and application behaviour.

Resource requirements can be expressed by the qualityvideséinat com-
ponents require from the environment. POP-C++ integrétesdquirements
into the code under the form of resource descriptions. Eacllpl object con-
structor is associated with abject description that depicts the characteristics
of the resources needed to create the object. Currentbyimes requirements
are expressed in terms of resource hame, computing poweudrdiof memory,
expected communication bandwidth and latency. Work isgbdiime in order
do broaden the expressiveness of the resource requirements

The runtime system incorporates a server process galtethanager, im-
plementing services for object creation and for resourseadiery. A simple
distributed peer-to-peer resource discovery model ignated, yet it does not
scale well. Object creation is seen as a new process, whithecatarted with
different management systems such as LSF [9], PBS [12] ar &kebus [10].

62 INTEGRATED RESEARCH IN GRID COMPUTING

3. Structured parallel programming with ASSIST

The development of efficient parallel programs is especidifficult with
large-scale heterogeneous and distributed computingoptad as the Grid.
Previous research on that subject exploigkdletons as a parallel coordina-
tion layer of functional modules, made of conventional ssqial code [3].
This model allows to relieve the programmer from many coneef classical,
non structured parallel programming frameworks. With stais, mapping,
scheduling, load balancing and data sharing, and maybe carde managed
by either the compiler or the runtime system. In additiorhaitusing skeletons
several optimizations can be efficently implemented, beedle source code
contains a description of the structure for the paralleliSimat is much harder
to do automatically when the parallelism pattern is unknown

ASSIST is a parallel programming environment providing @leston based
coordination language. It includes a skeleton compiler rmtime libraries.
Parallel application are structured as generic graphs. ribiies are either
parallel modules or sequential code. The edges are datarstreSequential
code can be written in C, C++ and Fortran, allowing to reusstieg code. The
programmer can experiment different parallelisationtsgii@s just changing a
few lines of code and recompiling.

A parallel moduleis used to model the parallel activities of an ASSIST pro-
gram. It can be specialized to behave as the most commongbiaralpatterns
as farms, pipelines, or geometric and data parallel cortiputa Skeletons and
coordination technology are exploited in such a way thaalfgrapplications
with complex parallelism patterns can be implemented witth@andling error
prone details as process and communication setup, schgdaibpping, etc.

The language allows to define, inside a parallel module, afgirtual
processors and to assign them tasks. The same task can geedst all
virtual processors or to a certain group of them, or even tmglesone. A
parallel module can concurrently access state variabfescan interact with
the external world using standard object access methdds QORBA, for
instance). A parallel module can handle as many input angubstreams as
needed. Non deterministic control is provided to accepttsfrom different
streams and explicit commands are provided to output itemthe output
streams.

Several optimizations are performed to efficiently exe@&8&IST programs
[15][1]. The environment was recently extended to suppodraponent model
(GRID.it) [2], that can interact with foreign component netg] as CORBA
CCM and Web Services. ASSIST components are supplied wittmamic
managers [4] that adapt the execution to dynamic changé® igrid features
(node or link faults, different load levels, etc.).

Skeleton Parallel Programming and Parallel Objects 63

Along with binary executable files, the compiler generaeX®IL config-
uration file that represent the descriptor of the parallgliaption. GEA (see
Section 3.1) is a deployer built to run the program based erXiiL file. It
takes care of all the activities needed to stage the codematteenodes, to start
auxiliary runtime processes, to run the application coditagather the results
back to the node where the program has been launched.

Grid applications often need access to fast, scalable diadbleedata stor-
age. ADHOC (Adaptive Distributed Herd of Object Caches) disdributed
persistent object repository toolkit [5], conceived in tuatext of the ASSIST
project. ADHOC creates a single distributed data repostigrthe cooperation
between multiple local memories. It separates managenfertnoputation
and storage, supporting a broad class of parallel apmitsitivhile achieving
good performance. Clients access objects through prdkiascan implement
protocols as complex as needed (e.g. distributed agregnieme toolkit en-
ables object creation, set, get, removal and method ca#l.fGllowing section
presents GEA in more detail.

3.1 Grid Application Deployment

ASSIST applications are deployed using GEA, the Grid Exenukgent. It
is a parallel process launcher targeting distinct archutes, as clusters and the
Grid. It has a modular design, intended for aggressive atlaptto different
system architectures and to different application stmestuGEA deploys appli-
cations and its infrastructure based on XML descriptiorsfilkmakes possible
to configure and lauch processes in virtually any combinadind order needed,
adapting to different types of applications.

GEA has already been adapted for deployment on Globus gnidsJaix
computers supporting SSH access. Other different enviemtsrcan be added
without any modification in GEA's structure, because it igpilemented us-
ing the Commodity Grid toolkit [16]. It currently supportse deployment of
three different flavors of ASSIST applications, each onéwidifferent process
startup scheme. In the deployment of ASSIST applicatidrescompiler gen-
erates the necessary XML files, creating an automatic psdoedescribe and
launch applications. Besides the work described in thigpdbe deployment
of GridCCM components [8]is as well under way.

At the deployment of an application, after parsing the XMe that describe
the resources needed, a suitable number of computing peso(modes) are
recruited to host the application processes. The appitatde is deployed to
the selected remote nodes, by transferring the neededdites appropriated
places in the local filesystems. Data files and result filestraresfered as
well, respectively prior and after the execution of the ajgtion processes.

64 INTEGRATED RESEARCH IN GRID COMPUTING

The necessary support processes to run the applicatiorsdsarstarted at the
necessary nodes.

The procedure for launching and connecting these procestbetie applica-
tion processes is automatized inside customized deploymedules. For ex-
ample, ASSIST applications need processes to implemedathdlow streams
interconnecting their processes. ASSIST components reed@pplementary
processes for adaptation and dynamic connection. Otheredit launching
patterns can be added with new modules, without any modditan GEA's
structure.

4. Objectsand skeletons getting along

Work is under progress within the CoreGRID network of exametie in order
to establish a common programming model for the Grid. Thislehonust
implement a component system that keeps interoperabilitly the systems
currently in use. ASSIST and POP-C++ have been designed eralogped
with different programming models in mind, but with a commguwal: pro-
vide grid programmers with advanced tools suitable to agvelfficient grid
applications. They together represent two major and diffgparallel program-
ming models (skeletons and distributed objects). Everelf thay conduct the
construction of the CoreGRID programming model to différdinections, the
set of issues addressed in both contexts has a large irtterse€ompile or
runtime enhancements made for any of them may be easilyetiappbe used
by other programming systems (possibly not only skeletalopect-oriented).
Many infrastructural tools can be shared, as presenteditetieis text.

The possible relations between POP-C++ and ASSIST, onetetjiented
and another based on skeletons are being studied insid&Rdde Work has
been done to identify the possibilities to integrate bothidan such a way
that effectively improve each one of them exploiting thgral results already
achieved in the other. Three possibilities that seem toigecsuitable solutions
have been studied:

1 Deploy POP-C++ objects using ASSIST deployment;
2 Adapt both to use the same type of shared memory;
3 Build ASSIST components of POP-C++ objects.

The first two cases actually improve the possibilities @fteby POP-C++
by exploiting ASSIST technology. The third case improves plossibilities
offered by ASSIST to assemble complex programs out of compisnwritten
accordingly to different models. Currently such composen only be writ-
ten using the ASSIST coordination language or inheritechf@CM or Web
Services. The following sections detail these three pds&b and discuss
their relative advantages.

Skeleton Parallel Programming and Parallel Objects 65

4.1 Samememory for ASSIST and POP-C++

POP-C++ implements asynchronous remote method invosatiming very
basic system features, as TCP/IP sockets and POSIX threetisad of using
those natively implemented parallel objects, POP-C++abaladapted to use
ADHOC objects. Callsto POP objects would be converted ialis to ADHOC
objects. This would have the added advantage of being pegsilsomehow
mix ADHOC applications and POP-C++ as they would share theedstpe of
distributed object. This would as well add persistence t®RD-+ objects.

ADHOC objects are shared in a distributed system, as PORtslges. But
they do not incorporate any concurrent semantics on thecobide, neither
their calls are asynchronous. In order to offer the same seosa ADHOC
objects (at both caller and callee sides) would have to beped in jackets,
which would implement the concurrent semantics using soimglike POSIX
threads. This does not appear to be a good solution, neiboert performance
nor about elegance.

ADHOC has been implemented in C++. It should be relativetypdée to
extend its classes to be used inside a POP-C++ program, asilifl with any
other C++ class libraries. It means that it is already pdsddouse the current
version of ADHOC to share data between POP-C++ and ASSISlicapipns.
For all these reasons the idea of adopting ADHOC to implemamilar POP-
C++ objects has been precluded.

4.2 ASSIST componentswritten in POP-C++

Currently, the ASSIST framework allows component programise devel-
oped with two type of componentsiative components andirapped legacy
components. Native components can either be sequentiadratigd. They
provide both a functional interface, exposing the comgutapabilities of the
component, and a non functional interface, exposing methwat can be used
to control the component (e.g. to monitor its behaviour)eyrprovide as well
a performance contract that the component itself ensures by exploiting its
internal autonomic control features implemented in the fumttional code.
Wrapped legacy components, on the other hand, are either €@iNbvonents
or plain Web Services that can be automatically wrapped®ABSIST frame-
work tools to look like a native component.

The ASSIST framework can be extended in such a way that POPpb*+
grams can also be wrapped to look like native components lesrgfore be
used in plain native component programs. As the parallgtiatterns allowed
in native components are restricted to the ones providetidASSIST coor-
dination language, POP-C++ components introduce in the @B8amework
the possibility of having completely general parallel caments. Of course,

66 INTEGRATED RESEARCH IN GRID COMPUTING

the efficiency of POP-C++ components would be completelharge of POP-
C++ compiler and its runtime environment.

Some interesting possibilities appear when exploring cilpeiented pro-
gramming technigues to implement the non functional pdrtseonative com-
ponent. In other words, one could try to fully exploit POP+Cfeatures to
implement a customizable autonomic application managriiging the same
non functional interface of native ASSIST components. Ehedensions, ei-
ther in ASSIST or in POP-C++ can be subject to further reeaspecially in
the context of CoreGRID, when its component model would beenctearly
defined.

If eventually an ASSIST component should be written in POR-@ will be
necessary to deploy and launch it. To launch an applicatiiffierent types of
components will have to be deployed. ASSIST has a deplogeisthot capable
of dealing with POP-C++ objects. One first step to enabler iiggration
should be the construction of a common deployment tool, ldepe executing
both types of components.

4.3 Deploying ASSIST and POP-C++ alike

ASSIST provides a large set of tools, including infrastowetfor launching
processes, integrated with functions for matching neegstmuces capabilities.
The POP-C++ runtime library could hook up with GEA, the ASBt&ployer,
in different levels. The most straightforward is to repl#oe parts of the POP-
C++ job manager related to object creation and resource\tisg with calls
to GEA.

As seen in Section 3.1, GEA was build to be extended. It isectiy able
to deploy ASSIST applications, each type of it being handigda different
deployer module. Adding support for POP-C++ processes,bfgcts, can
be done by writing another such module. POP-C++ objects xaeuted by
independent processes that depend on very little. Bagitlal newly created
process has to allocate the new object, use the network toecbmvith the
creator, and wait for messages on the connection. The ctionéc establish
is defined by arguments in the command line, which are pasgdiaebcaller
(the creator of the new object). The POP-C++ deployer moudetually a
simplified version of those used for ASSIST applications.

Process execution and resource selection in both ASSISTP&#RIC++
happen in very different patterns. ASSIST relies on thectiine of the appli-
cation and is performance contract to specify the type oféseurces needed
to execute it. This allows for a resource allocation strhategsed on graphs,
specified ahead of the whole execution. Chosen a given sesofirces, all
processes are started. The adaptation follow certain amdscannot happen
without boundaries. POP-C++ on the other hand does not iengimg program

Skeleton Parallel Programming and Parallel Objects 67

structure. A new resource must be located on-the-fly foryewew object cre-
ated. The characteristics of the resources are compledeigble, and cannot
be determined previous to the object creation.

It seems clear that a good starting point for integration OPFC++ and
ASSIST is the deployer, and some work has been done in thettidin. The
next section of this paper discusses the architecture ektiemsions designed to
support the deployment of POP objects with with GEA, the ASSdleployer.

5. Architecturefor a common deployer

The modular design of GEA allows for extensions. Nevertbgeli is written
inJava. The runtime of POP-C++was written in C++ and it mastiile to reach
code running in Java. Anticipating such uses, GEA was hiltih as a server,
exporting a TCP/IP interface. Client libraries to connewt aend requests to it
were written in both Java and C++. The runtime library of POP*+ has then
to be extended to include calls to GEA's client library.

In order to assess the implications of the integration pseddiere, the object
creation procedure inside the POP-C++ runtime library bégtseen more into
detail. The steps are as following:

1 A proxy object is created inside the address space of tla¢ocrprocess,
calledinterface.

2 The interface evaluates the object description (writte@++) and calls
a resource discovery service to find a suitable resource.

3 The interface launches a remote process to host the newt abjthe
given resource and waits.

4 The new process running remotely connects with the interfeeceives
the constructor arguments, creates the object in the |lalthkeas space
and tells the interface that the creation ended.

5 The interface returns the proxy object to the caller.

GEA can currently only be instructed to, at once, choose @wuj@ate re-
source, then load and launch a process. An independanidigceervice, as
required by the POP-C++ interface, is not yet implementeGEA. On the
other hand, in can be used as it is just rewriting the calle&ROP-C++ object
interface. The modifications are:

m The resource discovery service call has to be rewrittendbluild an
XML description of the resource based on the object desoript

m Theremote process launch should be rewritten to call the GEAclient
library, passing the XML description formrly built.

68 INTEGRATED RESEARCH IN GRID COMPUTING

Requests to launch processes have some restrictions on IGEAIrrently
structured model matches the structured model of ASSISdiellare divided
into administrative domains, and each domain is managed 9igge GEA
server. The ASSIST model dictates a fixed structure, witkalfrmodules
connected in a predefined way. All processes of parallel hesdare assigned
to resources when the execution starts. It is eventuallgiplesto adjust on the
number of processes inside of a running parallel modulethlieutew processes
must be started in the same domain.

POP-C++ needs a completely dynamic model to run paralledotdj An
objectrunning in adomain must be able to start new objecliffarent domains.
Even a sigle server for all domains is not a good idea, as it bempme a
bottleneck. In order to support multiple domains, GEA hasd@xtended to a
more flexible model. GEA servers must forward executionsdaditween each
other. Resource discovery for new processes must alsorigke@dcount the
resources in all domains (not only the local one). That iscase reason why
the resource discovery and the process launch were leftdoie together.

GEA s build to forward a call to create a process to the cpoading process
type module, calledgear. With POP-C++, the POP gear will be called by GEA
for every process creation. The POP gear inspects all res®@vailable and
associates the process creation request with a suitalderces The CoG kit
will eventually be called to launch the process in the asdediresource. This
scenario is illustrated in Figure 1. A problem arises whesuitable resource
is available in the local domain, as GEA does not share resdnformation

with other servers.
Figure 1. GEA with a cetralized POP-C++ gear

GEA

running run run run new
POP object POP gear POP object

run .
—> CoGKkit

By keeping together the descriptions of the program andebeurce, the
mapping decision can be postponed to the last minute. Thed-Bshows a
scenario, where a POP gear does not find a suitable resousdly.|A peer-to-
peer network, established with GEA servers and their PO gezuld forward
the request until it is eventually satisfied, or a timeouteagahed. A similar
model was proposed as a Grid Information Service, usingngluhdexes to
improve performance [14].

In the context of POP-C++ (and in other similar systems, ag\&tive [7],
for instance), the allocation is dynamic, with every newgexss created idepen-
dently of the others. Structured systems as ASSIST neegtegxapplication

Skeleton Parallel Programming and Parallel Objects 69
Figure 2. GEA with a peer-to-peer POP-C++ gear

GEA
running run run new
POP object POP gear POP object
forward
GEA GEA
run run
——> POP gear ——> POP gear run
I
run
forward 5 CoG kit

needs as a whole prior to the execution. Finding good mappimg distributed
algorithm is clearly an optimisation problem, that couleérwally be solved
with heuristics expoiting a certain degree of locality. Riegments and re-
source sets must be split into parts and mixed and matchedigtrébuted and
incremental (partial) fashion [11].

In either contexts (static or dynamic), resources wouldebdie described
without a predefined structure. Descriptions could be of e, not just
amounts of memory, CPU or network capacity. Requiremenifdsoe ex-
pressed as predicates that evaluate to a certain degregstdd@n [6]. The
languages needed to express requirements and resourcesl| as efficient
distributed resource matching algorithms are still irgérg research problems.

6. Conclusion

The questions discussed in this paper entail a CoreGRIDfsHip. All the
possibilities described in the previous sections wereidensd, and the focus
of interest was directed to the integration of GEA as the RB{auncher and
resource manager. This willimpose modifications on POP-@ttime library
and new funcionalities for GEA. Both systems are expectéahpoove thanks
to this interaction, as POP-C++ will profit from better resmudiscovery and
GEA will implement a less restricted model.

Further research on the matching model will lead to new aggres on
expressing and matching application requirements andiresaapabilities.
This model should allow a distributed implementation thatamically adapt
the requirements as well as the resource availability,goairle to express both
ASSIST and POP-C++ requirements, and probably others.

70

INTEGRATED RESEARCH IN GRID COMPUTING

A subsequent step can be a higher level of integration, UB®Ig-C++ pro-
grams as ASSIST components. This could allow to exploitdhject oriented
parallel programming techniques in ASSIST programs on the. G he impli-
cations of POP-C++ parallel object oriented modules on thetsired model
of ASSIST are not fully identified, especially due to the dyii@aspects of the
objects created. Supplementary study has to be done intordewrise its real
advantages and consequences.

References

(1]

(2]

(3]

[4]

[5]

(6]

[7]

(8]

9]
(10]

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magift, Pesciullesi, L. Potiti,
R. Ravazzoloand M. Torquati, M. Vanneschi, and C. Zoccolbe Tmplementation of
ASSIST, an Environment for Parallel and Distributed Prograng. InProc. of Eu-
roPar2003 number 2790 in "Lecture Notes in Computer Science". Sprir2p03.

M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laéoza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for High-PerformeaGrid Programming in

GRID.it. In Component modes and systems for Grid applicati@QueGRID. Springer,

2005.

M. Aldinucci, M. Danelutto, and P. Teti. An advanced exwiment supporting structured
parallel programming in JavaFuture Generation Computer System9(5):611-626,
2003. Elsevier Science.

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. TorquatiM. Vanneschi, L. Veraldi, and
C. Zoccolo. Dynamic reconfiguration of grid-aware applimas in ASSIST. Inl1th Intl
Euro-Par 2005: Parallel and Distributed Computingumber 3149 in "Lecture Notes in
Computer Science". Springer Verlag, 2004.

M. Aldinucci and M. Torquati. Accelerating apache farthsough ad-HOC distributed
scalable object repository. In M. Danelutto, M. Vannesahd D. Laforenza, editor&0th
Intl Euro-Par 2004: Parallel and Distributed Computingolume 3149 ofLecture Notes
in Computer Sciencepages 596—605, Pisa, Italy, August 2004. "Springer".

S. Andreozzi, P. Ciancarini, D. Montesi, and R. MoreTiowards a metamodeling based
method for representing and selecting grid services. Ind/ckle, Ryszard Kowalczyk,
and Peter Braun Il, editor§SEM volume 3270 oLecture Notes in Computer Science
pages 78-93. Springer, 2004.

F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssiémteractive and descriptor-
based deployment of object-oriented grid applicationsProceedings of the 11th IEEE
Intl Symposium on High Performance Distributed Computpages 93—-102, Edinburgh,
Scotland, July 2002. IEEE Computer Society.

Massimo Coppola, Marco Danelutto, Sébastien LacourjsBan Pérez, Thierry Priol,
Nicola Tonellotto, and Corrado Zoccolo. Towards a commoplaenent model for
grid systems. In Sergei Gorlatch and Marco Danelutto, eslittoreGRID Workshop
on Integrated research in Grid Computingages 31-40, Pisa, Italy, November 2005.
CoreGRID.

Platform Computing CorporatiorRunning Jobs with Platform LSR2003.

I. Foster and C. Kesselman. Globus: A metacomputinggtfucture toolkitIntl Journal
of Supercomputer Applications and High Performance Comgut1(2):115-128, 1997.

Skeleton Parallel Programming and Parallel Objects 71

(11]

(12]

(13]

(14]

(15]

(16]

(17]

Felix Heine, Matthias Hovestadt, and Odej Kao. Towardtology-driven p2p grid re-
source discovery. In Rajkumar Buyya, editBRRID, pages 76—83. IEEE Computer Soci-
ety, 2004.

R. Henderson and D. Tweten. Portable batch system:riadteeference specification.
Technical report, NASA, Ames Research Center, 1996.

T.-A. Nguyen and P. Kuonen. ParoC++: A requirement«tti parallel object-oriented
programming language. IBighth Intl Workshop on High-Level Parallel Programming
Models and Supportive Environments (HIPS'03), April 22-2203, Nice, Francepages
25-33. IEEE Computer Society, 2003.

Diego Puppin, Stefano Moncelli, Ranieri Baraglia, dle Tonellotto, and Fabrizio Sil-
vestri. A grid information service based on peer-to-peeiLdcture Notes in Computer
Science 2648, Proceeeding of Euro-Paages 454-464, 2005.

M. Vanneschi. The Programming Model of ASSIST, an Eoniment for Parallel and
Distributed Portable ApplicationsParallel Computing 12, December 2002.

Gregor von Laszewski, lan Foster, and Jarek Gawor. Cits5 & bridge between com-
modity distributed computing and high-performance griolsProceedings of the ACM
Java Grande Conferencpages 97-106, June 2000.

T. Ylonen. SSH - secure login connections over the imger In Proceedings of the 6th
Security Symposiunpage 37, Berkeley, 1996. USENIX Association.

