
Using Code Parameters for Component Adaptations

Jan Dünnweber, Sergei Gorlatch1, Sonia Campa, Marco Danelutto2, and Marco Aldinucci3

1 Dept. of Computer Science – University of Münster – Germany
2 Dept. of Computer Science – University of Pisa – Italy

3 Inst. of Information Science and Technologies – CNR, Pisa, Italy

Abstract. Adaptation means that the behavior of a software component is ad-
justed to application- or platform-specific requirements:new components required
in a particular application do not need to be developed from scratch when avail-
able components can be adapted accordingly. Instead of introducing a new adap-
tation syntax (as it is done, e. g. , in AOP), we describe adaptations in the context
of Java-based Higher-Order Components (HOCs).
HOCs incorporate a code parameter plugin mechanism enabling adaptations on
the grid. Our approach is illustrated using a case study of sequence alignment.
We show how a HOC with the required provisions for data dependencies in this
application can be generated by adapting a farm component, which is ”embar-
rassingly parallel”, i. e. , free of data dependencies. Thisway, we could reuse the
efficient farm implementation from the Lithium library, although our case study
exhibits the wavefront pattern of parallelism which is different from the farm.

1 Introduction

This paper addresses grid application programming using a component framework,
where applications are built byselecting, customizing andcombining components. Se-
lecting means choosing appropriate components from the framework repository, which
may contain several ready-made implementations of commonly used parallel comput-
ing schemata, e. g. , algorithmic skeletons (farm, divide-and-conquer, etc.) [4]. By cus-
tomization, we mean specifying application-specific operations to be executed within
the processing schema of a component, e. g. , parallel farming of application-specific
tasks. Combining various parallel components together canbe done, e. g. , via Web ser-
vices.

As our main contribution, we introduceadaptations of software components, which
extends the traditional notion ofcustomization: while customization applies a compo-
nent’s computing schema in a particular context, adaptation modifies the very schema
of a component, with the purpose of incorporating new capabilities. Our thrust to use
more flexible, adaptable components is motivated by the factthat a fixed component
framework is hardly able to cover all possible processing schemata. The sequential and
parallel behavior of adaptable components can be altered, thus allowing to apply them
in use cases for which they have not been originally designed. We demonstrate that both,
traditional customization and adaptation of components can be realized in a grid-aware
manner using code parameters that can be shipped over the network of a grid.

As a case study, we take a component that was originally designed for dependency-
freetask farming. By means of an additional code parameter, we adapt this component
for the parallel processing exhibiting data dependencies with a wavefront structure.

In Section 2, we explain ourHigher-Order Components (HOCs) and how they can
be made adaptable. Section 3 describes our application casestudy used throughout the
paper: the alignment of sequence pairs, which is a wavefront-type, time-critical prob-
lem in computational molecular biology [7]. In Section 4, weshow how the HOC-
framework enables the use of mobile code, as it is required toapply a component adap-
tation in the grid context, and present our grid-like testbed, highlighting the settings
relevant for the system’s adaptivity. Section 5 shows our first experimental results for
the alignment problem in different, grid-like infrastructures. Section 6 summarizes the
contributions of this paper in the context of related work.

2 Higher-Order Components (HOCs) and the Farm pattern

Higher-Order Components (HOCs) [6] are called so because they can be parameterized
not only with data but also with code. We illustrate the HOC concept using a particular
component, the Farm-HOC, which will be our example throughout the paper.

The farm pattern is a popular pattern of “embarrassing parallelism”, without depen-
dencies between tasks. There may be different implementations of the farm, depending
on the target computer platform; all these implementationshave, however, in common
that the input data are partitioned using a code unit called theMaster and the tasks on
the data parts are processed in parallel using a code unit called theWorker. The com-
ponent expressing the farm schema, the Farm-HOC, has therefore two so-calledcus-
tomization code parameters, theMaster-parameter and theWorker-parameter, defining
the corresponding code units in the farm implementation.

These two parameters specify how the general farm schema should be applied in
a particular situation. TheMaster parameter must contain asplit-method for par-
titioning the input data and a correspondingjoin method for recombining it, while
theWorker parameter must contain acompute-method for task processing. To use the
Farm-HOC in our Java-based, grid-aware component framework, the programmer must
provide implementations of the following two interfaces:

1: public interface Master<E> {
2: public E[][] split(E[] input, int grain);
3: public E[] join(E[][] results); }
4: public interface Worker<E> {
5: public E[] compute(E[] input); }

TheMaster (line 1–3) determines how an input array of some typeE is split into inde-
pendent subsets and theWorker (line 4–5) describes how a single subset is processed
as a task in the farm. While theWorker-parameter differs in most applications, a spe-
cific implementation of theMaster only has to be provided, if the input of a particular
application should not be subdivided regularly, but it requires a special decomposition
algorithm, e. g. , for preserving certain data correlations. Thus, in most applications, the
user will only specify theWorker and pick a defaultMaster implementation from our
framework.

50

3 Case Study: Sequence Alignment

We illustrate the motivation for adaptation and its use by the following application case
study.

One of the fundamental algorithms in bioinformatics is the computation ofdistances
between DNA sequences, i. e. , finding the minimum number of insertion, deletion or
substitution operations needed to transform one sequence into another. Sequences are
encoded using the alphabet{A,C,G,T}, where each letter stands for one of the nu-
cleotide types [3].

The distance, which is the total number of the required transformations, quantifies
the similarity of sequences [8] and is often calledglobal alignment [12]. Mathemati-
cally, global alignment can be expressed using a so-calledsimilarity matrix S, whose
elementssi, j are defined as follows:

si,j := max
(

si,j−1+plt,si−1,j−1+δ(i, j),si−1,j+plt
)

(1)

where

δ(i, j) :=

{

+1 , if ε1(i) = ε2(j)
−1 , otherwise

(2)

In Definition2εk(b) denotes theb-th element of sequencek, andplt is a constant
that weighs the costs for inserting a space into one of the sequences (typically,plt =−2,
the “double price” of a mismatch).

The wavefront pattern of parallel computation is not specific only to the sequence
alignment problem, but is used also in other popular applications: searching in graphs
represented via their adjacency matrices, system solvers,character stream conversion
problems, motion planning algorithms in robotics etc. Therefore, programmers would
benefit if a standard component, such as a HOC, would capture the wavefront pattern.

Our approach is to take the Farm-HOC, as introduced in Section 2, adapt it to the
required wavefront structure of parallelism and then customize it to the sequence align-
ment application.

Fig. 1 schematically shows this two-step procedure. First,the workspace, holding
the partitioned tasks for farming, is sorted according to the wavefront pattern, whereby a
new processing order is fixed, which is optimal with respect to the degree of parallelism.
Then, the alignment definitions (1) and (2) are employed, determining how to process
single input data elements. Finally, this adapted component can be used for processing
the sequence alignment application.

4 Adaptation with Globus & WSRF

Let us take a closer look at the currently most modern versionof the Globus mid-
dleware and the enclosed implementation of theWeb Services Resource Framework
(WSRF) [9], before we present our extensions of this middleware for simplifying ap-
plication development and for enabling component adaptations. WSRF allows to set
up stateful resources and connect them to Web services. Suchresources can represent
application state data and thereby make Web services and their XML-based commu-
nication protocol (SOAP) more suitable for grid computing:while usual Web services

51

GTTCTAAT

GGACTAAT
{
−1

+1
δ(i, j) :=

otherwise

if ǫ1(i) = ǫ2(j)

si,j := max(si,j−1 + penalty,

si−1,j−1 + δ(i, j),
si−1,j + penalty)

workerworker

workerworker

scheduler

sequence alignmentfarm distance definitionwavefront

component selection application executionfarm adaptation farm customization

Fig. 1. Two-step process: adaptation and customization

offer only self-contained operations, which are decoupledfrom each other and from the
caller, Web services hosted with Globus include the notion of a context; i. e. , multiple
operations can affect the same data and changes within this data can trigger callbacks
to the service consumer avoiding blocking invocations.

While making Web services more eligible for performance-critical applications,
Globus is still too low-level to be used directly by application programmers: it requires
the programmer to manually write multiple XML-configuration files and to place them
properly within the grid servers’ installation directories. These files must explicitly de-
clare all resources, the services used to connect to them, their interfaces and the cor-
responding bindings to the employed protocol, in order to make Globus applications
accessible in a platform- and programming language-independent manner.

4.1 Enabling Mobile Code

Programming with adaptable and customizable components requires, besides the ex-
change of data, the exchange ofmobile code across network boundaries. Therefore, we
provide a special class-loading mechanism allowing class definitions to be exchanged
among distributed servers. Interconnections between servers, which execute HOCs, and
clients are established according to the WSRF standard.

Users of the HOC-framework are completely freed from the complicated WSRF-
setup described above, as all the required files, which are specific for each HOC but
independent from applications, are provided for all the available HOCs in advance.

In the following, we illustrate the two-step process of adaptation and customiza-
tion shown in Fig. 1. For the sake of explanation, we start with the second step (HOC
customization), and then consider the farm adaptation.

4.2 Customizing the Farm-HOC for Sequence Alignment

The farm pattern is only one of many possible patterns of parallelism, arguably one
of the simplest, which is available in many parallel component frameworks. When an
application requires another component, which is not provided by the employed frame-
work, there are two possibilities: either to code the required component anew or to try
and derive it from another available component. The former possibility is more direct,
but it has to be done repeatedly for each new application. Thelatter possibility, which
we call adaptation, provides more flexibility and potentialfor reuse of components.

52

However, it requires from the employed framework to have a special mechanism for
enabling such adaptations.

Our framework includes a straightforwardMaster implementation for matrices,
which partitions matrices into equally sized submatrices and recombines the subma-
trices after they have been processed. So, in the case of a matrix application, we do not
need to write our ownMaster code parameter for partitioning the input data, but we can
fetch the framework procedure from the code service by passing its ID (matrixSplit)
to the Farm-HOC. The only code parameter we must write anew for computing the
similarity matrix in our sequence alignment application istheWorker code. In our case
study this parameter implements, instead of the generalWorker-interface, the alter-
nativeBinder-interface, which describes, specifically for matrix applications, how an
element is computed depending on its indices:

1: public interface Binder<E> {
2: public E bind(int i, int j); }

Before the HOC computes the matrix elements, it assigns an empty workspace ma-
trix to the code parameter; i. e. , amatrix reference is passed to the parameter object
and, thus, made available to the customizing parameter codefor accessing the matrix
elements.

Our code parameter implementation for calculating matrix elements, accordingly to
definition (1) from section 3, reads as follows:

1: new BinderParameter<Integer>() {
2: public Integer bind(int i, int j) {
3: return max(matrix.get(i, j - 1) + penalty,
4: matrix.get(i - 1, j - 1) + delta(i, j),
5: matrix.get(i - 1, j) + penalty); } }

The helper methoddelta, used in line 4 of the above code, implements defini-
tion (2). The specialMatrix-type used for representing the distributed matrix data being
split up among the workers by the HOC is provided by our framework and it facilitates
full location transparency, i. e. , it allows to use the same interface for accessing remote
elements and local elements. ActuallyMatrix is an abstract class and our framework in-
cludes two concrete implementations:LocalMatrix andRemoteMatrix. These classes
allow to access elements in neighboring submatrices using overhang-indices (including
negatives), which further simplifies the programming of distributed matrix algorithms.
Obviously, these framework-specific utilities are quite helpful in the presented case
study. Anyway, they are not necessary neither for customizing nor for adapting soft-
ware components on the grid. Therefore, the implementationof these auxiliary classes
is beyond the scope of this paper.

Farming the tasks described by the aboveBinderParameter, i. e. , the matrix ele-
ment computations, does not allow data dependencies between the elements. Therefore
any farm implementation, including the one available in theLithium library used in
our case, would compute the alignment result as a single task, without parallelization,
which is unsatisfactory and will be addressed by means of adaptation.

53

3

2

Grid hosts

1

RMI

class loader

SOAP

...

Client
...

Code param. A

Controller B

selectComponent
addController
start

SOAP

Code service

Server X

Server Y

remote

Farm−HOC

steering thread

Worker HostsLithium Subsystem

scheduler threads

A AA

A
A

B BB
C

C

A

Fig. 2.Running the adapted component on the grid

4.3 Adapting the Farm-HOC to the Wavefront Pattern

In this section, we adapt the Farm-HOC to the wavefront pattern, so that it can be
used for our example application. Like the farm customization described in the pre-
ceding section, the adaptation of the farm’s parallel behavior is handled by means of
code parameters, which are handled using our remote class loader and the code service
providing a grid-aware code transfer mechanism as introduced above.

For the parallel processing of submatrices, the adapted component must, initially,
fix the “wavefront order” for processing individual tasks, which is done by sorting the
partitions of the workspace matrix arranged by thematrixSplit-Master from the
HOC-framework, such that independent submatrices are grouped in one wavefront.
We compute this sorted partitioning, while iterating over the matrix-antidiagonals as
a preliminary step of the adapted farm, similar to the loop-skewing algorithm described
in [11].

The central role in our adaptation approach is played by the specialsteering thread
that is installed by the user and runs the wavefront-sortingprocedure in its initialization
method. In this method, we also initialize the border row andcolumn of the similarity
matrix S, in our implementation.

4.4 Configuring the
Runtime Environment

The client starts the configuring the runtime environment byuploading two code pa-
rameters, A and B , to the code service (step➀ in Fig. 2). ParameterA is the

farm worker parameter applying thebind-method from section 4.2; parameterB is
the steering thread; i. e. , it defines the adaptation of the farm for wavefront process-
ing. Parameter

�
�

�
�C , which represents theMaster, is the only parameter not uploaded

54

by the client, but readily provided by thematrixSplit-implementation in our frame-
work. In the final configuration step➂, Server Y retrieves the code parametersA , B
and

�
�

�
�C from the code service and installs them using the remote class loader.

Our Farm-HOC, which is now adapted to wavefront computations and customized
for sequence alignment, then handles the whole distributedcomputation process on
behalf of the client, which receives a notification once the process is finished.

5 Experimental Results

To investigate the scalability of our implementation over several servers, we ran it using
two Pentium III servers under Linux at 800MHz. In the left plots in Fig. 3, we investi-
gated the scalability using two multiprocessor servers: the U880 plus a second SunFire
6800 with 24 1350 Mhz UltraSPARC-IV processors. As can be seen, the performance
of our applications is significantly increased for the 32 processor configuration, since
the SMP-machine-interconnection does not require the transmission of all tasks over
the network, for dispatching them to multiple processors. Curves for the standard farm
are not shown in these diagrams, since they lie far above the shown curves and coincide
for 8 and 32 processors, which only proves again that this version does not allow for
parallelism within the processing of a single sequence pair.

60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
[s

ec
]

similarity matrix size

8 processors
32 processors 60

50

40

30

20

10

8M6M4M2M0.5M

T
im

e
[s

ec
]

similarity matrix size

8 processors
32 processors

Fig. 3. Experimental results on grid-like testbeds. left: multiple multiprocessor servers; right:
same input, zipped transmission

The right plots in Fig. 3 show the effect of another interesting modification: When
we compress the submatrices using the Javautil.zip Deflater-class, before we
transmit them over the network, the curves do not grow so fast, since the compres-
sion procedure slows down the process, for small-sized input, but the absolute times for
larger matrices are improved.

6 Conclusion and Related Work

As its main contribution, this paper introduced, implemented and experimentally inves-
tigated a novel method for the adaptation of parallel programming components, in order

55

to optimize their behavior for grid applications. We have shown that the code parame-
ter mechanism provided by our Higher-Order Components (HOCs) allows for building
grid-aware applications via adaptation, which can free theprogrammer from develop-
ing and deploying new components in many use cases. To the best of our knowledge,
adaptations of components have so far not been considered, neither in the general com-
ponent model [10] nor in the skeleton approach to parallel programming [4]. Adaptation
extends the previous notion of component customization, which was restricted to only
specifying the computation part of a component.

Our farm implementation was taken from the Java-based system Lithium [5]. In [6],
we described an alternative Farm-HOC implementation, in which not only a Web ser-
vice was used to connect to the HOC, but also the communication within the farm
itself was realized using Web services deployed into a Globus container. Generally any
middleware, e. g. , CORBA or MPICH [2], can be used for providing HOC implementa-
tions, as long as the format used for representing mobile code is supported by the chosen
technology. We use the Java-based Lithium system in this paper, because our alignment
application is also written in Java, and because it requiresfrequent communication be-
tween the scheduler and the workers, which can be handled more efficiently via RMI as
done in Lithium than via SOAP. Framework implementations, like Lithium, should be
distinguished from abstract component models, like CCA or Fractal where adaptations
of components are principally possible, but it is not specified how to apply them. The
messaging model we used for stopping the farm activity, whenever data dependencies
prevented continuation, does not require anything more then a possibility for broadcast-
ing messages among processes. It can therefore be realised in the same way, in a CCA
implementation like CCaffeine or in Julia (The reference implementation of Fractal).

Possible alternatives to the described adaptation of the Farm-HOC for wavefront
algorithms include replacing the Lithium farm scheduler byanother one operating in
a wavefront manner or adding a completely new wavefront HOC to our component
framework. The first alternative would be valid only for the Lithium system and, more-
over, we would hard-wire the wavefront behavior into the farm. The second alternative
involves more overhead for the programmer than the adaptation of an existing compo-
nent.

The use of the wavefront schema for parallel sequence alignment has been analyzed
before in [1], where it is classified as a design pattern. While in theCO2P3S system
the wavefront behavior is a fixed part of the pattern implementation, in our approach,
it is only one of many possible adaptations that can be applied to a HOC. Since our
wavefront steering thread can also be plugged into the scheduler of the Lithium library
without uploading it remotely, our solution can be viewed asa novel way of introducing
a new skeleton to a skeleton-library, without changing its implementation.

Acknowledgment

This research was conducted within the FP6 Network of Excellence CoreGRID funded
by the European Commission (Contract IST-2002-004265).

56

References

1. J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Bromling, and K. Tan. Generating
parallel programs from the wavefront design pattern. In7th Workshop on High-Level Parallel
Programming Models and Supportive Environments. IEEE Computer Society Press, 2002.

2. Argonne National Laboratory. The Message Passing Interface (MPI). http://www-
unix.mcs.anl.gov/mpi.

3. C.-I. Branden, J. Tooze, and C. Branden.Introduction to Protein Structure. Garland Science,
1991.

4. M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Pitman, 1989.

5. M. Danelutto and P. Teti. Lithium: A structured parallel programming enviroment in Java. In
Proceedings of Computational Science - ICCS, number 2330 in Lecture Notes in Computer
Science, pages 844–853. Springer-Verlag, Apr. 2002.

6. S. Gorlatch and J. Dünnweber. From grid middleware to grid applications: Bridging the gap
with HOCs. InFuture Generation Grids. Springer Verlag, 2005.

7. D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1999.

8. V. I. Levenshtein. Binary codes capable of correcting insertions and reversals. InSoviet
Physics Dokl. Volume 10, pages 707–710, 1966.

9. OASIS Technical Committee. WSRF: The Web Service Resource Framework,
http://www.oasis-open.org/committees/wsrf.

10. C. Szyperski.Component software: Beyond object-oriented programming. Addison Wesley,
1998.

11. M. Wolfe. Loop skewing: the wavefront method revisited.In Journal of Parallel Program-
ming, Volume 15, pages 279–293, 1986.

12. X.Huang, R. Hardison, and W.Miller. A space-efficient algorithm for local similarities. In
Computer Applications in the Biosciences, volume 6(4), pages 373–381. Oxford University
Press, 1990.

57

