Using Code Parameters for Component Adaptations

Jan Diinnweber, Sergei Gorlat¢i$onia Campa, Marco Daneluttand Marco Aldinucd

1 Dept. of Computer Science — University of Munster — Germany
2 Dept. of Computer Science — University of Pisa — Italy
3 Inst. of Information Science and Technologies — CNR, Pisdy |

Abstract. Adaptation means that the behavior of a software comporseat-
justed to application- or platform-specific requirementsy components required
in a particular application do not need to be developed froratsh when avail-
able components can be adapted accordingly. Instead ofluting a new adap-
tation syntax (as itis done, e.g., in AOP), we describe adepts in the context
of Java-based Higher-Order Components (HOCs).

HOCs incorporate a code parameter plugin mechanism egaddiaptations on
the grid. Our approach is illustrated using a case study qiiesece alignment.
We show how a HOC with the required provisions for data depeai@s in this
application can be generated by adapting a farm compondmthvis "embar-
rassingly parallel”, i. e., free of data dependencies. Wag, we could reuse the
efficient farm implementation from the Lithium library, attugh our case study
exhibits the wavefront pattern of parallelism which is éiint from the farm.

1 Introduction

This paper addresses grid application programming usingnaponent framework,

where applications are built lsglecting, customizing andcombining components. Se-
lecting means choosing appropriate components from tineefnaork repository, which

may contain several ready-made implementations of conynesdd parallel comput-

ing schemata, e. g., algorithmic skeletons (farm, dividd-eonquer, etc.) [4]. By cus-
tomization, we mean specifying application-specific opers to be executed within
the processing schema of a component, e. g., parallel fgrofimpplication-specific

tasks. Combining various parallel components togethebeatone, e. g., via Web ser-
vices.

As our main contribution, we introdu@elaptations of software components, which
extends the traditional notion efistomization: while customization applies a compo-
nent’s computing schema in a particular context, adaptatiodifies the very schema
of a component, with the purpose of incorporating new cdjigisi Our thrust to use
more flexible, adaptable components is motivated by thetfadta fixed component
framework is hardly able to cover all possible processirngatata. The sequential and
parallel behavior of adaptable components can be altdrad,allowing to apply them
in use cases for which they have not been originally desigivedlemonstrate that both,
traditional customization and adaptation of componemntdogarealized in a grid-aware
manner using code parameters that can be shipped over therkeif a grid.

50

As a case study, we take a component that was originally degifpr dependency-
freetask farming. By means of an additional code parameter, we adapt this coent
for the parallel processing exhibiting data dependenci#sawavefront structure.

In Section 2, we explain outligher-Order Components (HOCs) and how they can
be made adaptable. Section 3 describes our applicatiorstiadeused throughout the
paper: the alignment of sequence pairs, which is a wavefyqet, time-critical prob-
lem in computational molecular biology [7]. In Section 4, sleow how the HOC-
framework enables the use of mobile code, as it is requira@gpdy a component adap-
tation in the grid context, and present our grid-like tedf{l@ghlighting the settings
relevant for the system’s adaptivity. Section 5 shows ost 8xperimental results for
the alignment problem in different, grid-like infrastruocgs. Section 6 summarizes the
contributions of this paper in the context of related work.

2 Higher-Order Components (HOCs) and the Farm pattern

Higher-Order Components (HOCSs) [6] are called so becawseddn be parameterized
not only with data but also with code. We illustrate the HO@a&pt using a particular
component, the Farm-HOC, which will be our example throudioe paper.

The farm pattern is a popular pattern of “embarrassing [&disah”, without depen-
dencies between tasks. There may be different implementatif the farm, depending
on the target computer platform; all these implementatiase, however, in common
that the input data are partitioned using a code unit calledlist er and the tasks on
the data parts are processed in parallel using a code ulatidakeVr ker . The com-
ponent expressing the farm schema, the Farm-HOC, has dher®io so-callectus-
tomization code parameters, theMast er -parameter and th&r ker -parameter, defining
the corresponding code units in the farm implementation.

These two parameters specify how the general farm schemedshe applied in
a particular situation. Th&hst er parameter must containspl i t -method for par-
titioning the input data and a corresponding n method for recombining it, while
theWor ker parameter must containcanput e-method for task processing. To use the
Farm-HOC in our Java-based, grid-aware component framewae programmer must
provide implementations of the following two interfaces:

1. public interface Master {

public E[][] split(E[] input, int grain);
public E[] join(E[][] results); }
public interface Worker<E> {

public E[] conmpute(E[] input); }

TheMast er (line 1-3) determines how an input array of some tipe split into inde-
pendent subsets and tidér ker (line 4-5) describes how a single subset is processed
as a task in the farm. While th#r ker -parameter differs in most applications, a spe-
cific implementation of théast er only has to be provided, if the input of a particular
application should not be subdivided regularly, but it ieggia special decomposition
algorithm, e. g., for preserving certain data correlatidims, in most applications, the
user will only specify thé\r ker and pick a defaulvast er implementation from our
framework.

51
3 Case Study: Sequence Alignment

We illustrate the motivation for adaptation and its use leyftillowing application case
study.

One of the fundamental algorithms in bioinformatics is tamputation ofdistances
between DNA sequences, i. e., finding the minimum number sdriron, deletion or
substitution operations needed to transform one sequetz@mnother. Sequences are
encoded using the alphabpA,C,G, T}, where each letter stands for one of the nu-
cleotide types [3].

The distance, which is the total number of the required fansations, quantifies
the similarity of sequences [8] and is often callglidbal alignment [12]. Mathemati-
cally, global alignment can be expressed using a so-callaidlarity matrix S, whose
elements j are defined as follows:

s, = max(sj_1+plt,5_1j-1+8(i,j),S—1;+plt) (1)
where fenli) (0
L L ife(i) = &2(]

8(i,]) := {—1 , otherwise (2)

In Definition2 g (b) denotes thé-th element of sequende andplt is a constant
that weighs the costs for inserting a space into one of theesesps (typicallyplt = -2,
the “double price” of a mismatch).

The wavefront pattern of parallel computation is not speafly to the sequence
alignment problem, but is used also in other popular apiidioa: searching in graphs
represented via their adjacency matrices, system soleleasacter stream conversion
problems, motion planning algorithms in robotics etc. Efiere, programmers would
benefit if a standard component, such as a HOC, would captanedvefront pattern.

Our approach is to take the Farm-HOC, as introduced in Se&ti@dapt it to the
required wavefront structure of parallelism and then auste it to the sequence align-
ment application.

Fig. 1 schematically shows this two-step procedure. Ringt,workspace, holding
the partitioned tasks for farming, is sorted according &otavefront pattern, whereby a
new processing order is fixed, which is optimal with respetité degree of parallelism.
Then, the alignment definitions (1) and (2) are employederdgning how to process
single input data elements. Finally, this adapted compiorembe used for processing
the sequence alignment application.

4 Adaptation with Globus & WSRF

Let us take a closer look at the currently most modern versiothhe Globus mid-
dleware and the enclosed implementation of Wb Services Resource Framework
(WSRF) [9], before we present our extensions of this middlesor simplifying ap-
plication development and for enabling component adaptatiWwSRF allows to set
up stateful resources and connect them to Web services.8schrces can represent
application state data and thereby make Web services amdXikid.-based commu-
nication protocol (SOAP) more suitable for grid computindrile usual Web services

52

component selection farm adaptation farm customization application executiol
‘ worker ‘ ‘ worker ‘ sij 1= max(s;j
/ , GGACTAAT
| scheduler | > AW | sty = 0 | |]
T —1 otherwis
‘ worker ‘ ‘ worker ‘ N GTTCTAAT
farm wavefront distance definition sequence alignme

Fig. 1. Two-step process: adaptation and customization

offer only self-contained operations, which are decoufiech each other and from the
caller, Web services hosted with Globus include the notica @context; i. e., multiple
operations can affect the same data and changes withinatascdn trigger callbacks
to the service consumer avoiding blocking invocations.

While making Web services more eligible for performancéeal applications,
Globus is still too low-level to be used directly by applicatprogrammers: it requires
the programmer to manually write multiple XML-configuratibles and to place them
properly within the grid servers’ installation directaiel hese files must explicitly de-
clare all resources, the services used to connect to then,ititerfaces and the cor-
responding bindings to the employed protocol, in order tien@lobus applications
accessible in a platform- and programming language-inudget manner.

4.1 Enabling Mobile Code

Programming with adaptable and customizable componeqtsres, besides the ex-
change of data, the exchangenadbile code across network boundaries. Therefore, we
provide a special class-loading mechanism allowing cla$mitions to be exchanged
among distributed servers. Interconnections betweersgmhich execute HOCs, and
clients are established according to the WSRF standard.

Users of the HOC-framework are completely freed from the glosated WSRF-
setup described above, as all the required files, which areifspfor each HOC but
independent from applications, are provided for all thelalsee HOCs in advance.

In the following, we illustrate the two-step process of ad#pn and customiza-
tion shown in Fig. 1. For the sake of explanation, we starhwhe second step (HOC
customization), and then consider the farm adaptation.

4.2 Customizing the Farm-HOC for Sequence Alignment

The farm pattern is only one of many possible patterns oflledissm, arguably one
of the simplest, which is available in many parallel comparfeameworks. When an
application requires another component, which is not glediby the employed frame-
work, there are two possibilities: either to code the regglitomponent anew or to try
and derive it from another available component. The fornossibility is more direct,
but it has to be done repeatedly for each new application |dtker possibility, which
we call adaptation, provides more flexibility and potent@ reuse of components.

53

However, it requires from the employed framework to have ecgh mechanism for
enabling such adaptations.

Our framework includes a straightforwakist er implementation for matrices,
which partitions matrices into equally sized submatriced eecombines the subma-
trices after they have been processed. So, in the case ofix eqgtlication, we do not
need to write our owivast er code parameter for partitioning the input data, but we can
fetch the framework procedure from the code service by pgsts ID (matri xSplit)
to the Farm-HOC. The only code parameter we must write anewdmputing the
similarity matrix in our sequence alignment applicatiothis\Wr ker code. In our case
study this parameter implements, instead of the gendnader -interface, the alter-
nativeBi nder -interface, which describes, specifically for matrix apations, how an
element is computed depending on its indices:

1. public interface Binder<E> ({
2: public E bind(int i, int j); }

Before the HOC computes the matrix elements, it assigns gtyanorkspace ma-
trix to the code parameter; i.e. natri x reference is passed to the parameter object
and, thus, made available to the customizing parameter foodecessing the matrix
elements.

Our code parameter implementation for calculating materents, accordingly to
definition (1) from section 3, reads as follows:

1. new BinderParameter<integer>() {

2: public Integer bind(int i, int j) {

3: return max(matrix.get(i, j - 1) + penalty,
4 matrix.get(i - 1, j - 1) + delta(i, j),

5 matrix.get(i - 1, j) + penalty); } }

The helper methodel t a, used in line 4 of the above code, implements defini-
tion (2). The speciadiat r i x-type used for representing the distributed matrix datagei
split up among the workers by the HOC is provided by our fraorvand it facilitates
full location transparency, i. e., it allows to use the samerface for accessing remote
elements and local elements. Actuadiit ri x is an abstract class and our framework in-
cludes two concrete implementatiohscal Mat ri x andRenot eMat ri x. These classes
allow to access elements in neighboring submatrices usiaghang-indices (including
negatives), which further simplifies the programming otritisited matrix algorithms.
Obviously, these framework-specific utilities are quitdpld in the presented case
study. Anyway, they are not necessary neither for custeminior for adapting soft-
ware components on the grid. Therefore, the implementatidinese auxiliary classes
Is beyond the scope of this paper.

Farming the tasks described by the abBveder Par anet er, i.e., the matrix ele-
ment computations, does not allow data dependencies betiveelements. Therefore
any farm implementation, including the one available in Lhiium library used in
our case, would compute the alignment result as a single wagiout parallelization,
which is unsatisfactory and will be addressed by means gitatian.

54

Grid hosts . Lithium Subsystem Worker Hosts
Server Y =

: - |'Farm-HOC |
. . . I
Client : : " steering thread ,

S F @ = e
. ; !
Sg:jggt ?on'lp:)nent : I scheduler threads :

a ntroller : ;

start [A]]
|

Controller B

------------------- i == -1———|———|—|'| ’—.
Code param A : @Tl ' —

remote
class loader

Fig. 2. Running the adapted component on the grid

4.3 Adapting the Farm-HOC to the Wavefront Pattern

In this section, we adapt the Farm-HOC to the wavefront patteo that it can be
used for our example application. Like the farm customaatiescribed in the pre-
ceding section, the adaptation of the farm’s parallel batras handled by means of
code parameters, which are handled using our remote cladsriand the code service
providing a grid-aware code transfer mechanism as intredabtove.

For the parallel processing of submatrices, the adapteghonant must, initially,
fix the “wavefront order” for processing individual taskdhiah is done by sorting the
partitions of the workspace matrix arranged by tteeri xSplit-Master from the
HOC-framework, such that independent submatrices arepgbin one wavefront.
We compute this sorted partitioning, while iterating oviee tatrix-antidiagonals as
a preliminary step of the adapted farm, similar to the lok@wsng algorithm described
in[11].

The central role in our adaptation approach is played bypleeialsteering thread
that is installed by the user and runs the wavefront-sogmgedure in its initialization
method. In this method, we also initialize the border row aaldimn of the similarity
matrix S, in our implementation.

4.4 Configuring the
Runtime Environment

The client starts the configuring the runtime environmentipipading two code pa-
rameters|A | and[B], to the code service (stép in Fig. 2). ParametelA | is the
farm worker parameter applying tie nd-method from section 4.2; parame IS

the steering thread; i.e., it defines the adaptation of tha far wavefront process-
ing. ParametefC) , which represents thést er , is the only parameter not uploaded

95

by the client, but readily provided by thmat ri xSpl i t -implementation in our frame-
work. In the final configuration stelg, Server Y retrieves the code parame
and(C) from the code service and installs them using the remoss tteder.

Our Farm-HOC, which is now adapted to wavefront computatemd customized
for sequence alignment, then handles the whole distribotedputation process on
behalf of the client, which receives a notification once thepss is finished.

5 Experimental Results

To investigate the scalability of our implementation owve&rezal servers, we ran it using
two Pentium Il servers under Linux at B00MHz. In the leftiglan Fig. 3, we investi-
gated the scalability using two multiprocessor serversitB80 plus a second SunFire
6800 with 24 1350 Mhz UltraSPARC-IV processors. As can ba sée performance
of our applications is significantly increased for the 32gassor configuration, since
the SMP-machine-interconnection does not require thestngssion of all tasks over
the network, for dispatching them to multiple processorgVv€s for the standard farm
are not shown in these diagrams, since they lie far abovéntherscurves and coincide
for 8 and 32 processors, which only proves again that thisimerdoes not allow for
parallelism within the processing of a single sequence pair

'8 proceséors - ‘ ‘ 8 proceséors —
60 32 processors - 1 60 - 32 processors - ,
50 50
))
& 40 r & 40
[¢3] 3]
IS 30 I e 30 L
= [
20 r 20
10 10
0.5M 2M aM 6M 8M 0.5M 2M aM 6M 8M
similarity matrix size similarity matrix size

Fig. 3. Experimental results on grid-like testbeds. left: muttiphultiprocessor servers; right:
same input, zipped transmission

The right plots in Fig. 3 show the effect of another interggtnodification: When
we compress the submatrices using the Javd . zi p Defl at er -class, before we
transmit them over the network, the curves do not grow sq &uste the compres-
sion procedure slows down the process, for small-sized iyptithe absolute times for
larger matrices are improved.

6 Conclusion and Related Work

As its main contribution, this paper introduced, implenaeirdnd experimentally inves-
tigated a novel method for the adaptation of parallel prognéng components, in order

56

to optimize their behavior for grid applications. We havewh that the code parame-
ter mechanism provided by our Higher-Order Components (8)@ows for building
grid-aware applications via adaptation, which can freepitegrammer from develop-
ing and deploying new components in many use cases. To theteasr knowledge,
adaptations of components have so far not been considezgenin the general com-
ponent model [10] nor in the skeleton approach to paralley@mming [4]. Adaptation
extends the previous notion of component customizatiomghwivas restricted to only
specifying the computation part of a component.

Our farm implementation was taken from the Java-basedmyist@ium [5]. In [6],
we described an alternative Farm-HOC implementation, iiclwhot only a Web ser-
vice was used to connect to the HOC, but also the communicatithin the farm
itself was realized using Web services deployed into a Glamntainer. Generally any
middleware, e. g., CORBA or MPICH [2], can be used for provgdHOC implementa-
tions, as long as the format used for representing mobile moglipported by the chosen
technology. We use the Java-based Lithium system in thisrpapcause our alignment
application is also written in Java, and because it reqdiisegient communication be-
tween the scheduler and the workers, which can be handleg effasiently via RMI as
done in Lithium than via SOAP. Framework implementationsg Lithium, should be
distinguished from abstract component models, like CCAractal where adaptations
of components are principally possible, but it is not spedifiow to apply them. The
messaging model we used for stopping the farm activity, wliendata dependencies
prevented continuation, does not require anything mone @ah@ossibility for broadcast-
iIng messages among processes. It can therefore be realidelsame way, in a CCA
implementation like CCaffeine or in Julia (The referenceliementation of Fractal).

Possible alternatives to the described adaptation of thefOC for wavefront
algorithms include replacing the Lithium farm schedulerampther one operating in
a wavefront manner or adding a completely new wavefront HOGuUr component
framework. The first alternative would be valid only for thghium system and, more-
over, we would hard-wire the wavefront behavior into therfalhe second alternative
involves more overhead for the programmer than the adaptatian existing compo-
nent.

The use of the wavefront schema for parallel sequence aéghhas been analyzed
before in [1], where it is classified as a design pattern. @/ltheCO,P5S system
the wavefront behavior is a fixed part of the pattern impletagon, in our approach,
it is only one of many possible adaptations that can be appiiea HOC. Since our
wavefront steering thread can also be plugged into the sidedf the Lithium library
without uploading it remotely, our solution can be viewe@da®vel way of introducing
a new skeleton to a skeleton-library, without changingritplementation.

Acknowledgment

This research was conducted within the FP6 Network of Egnet CoreGRID funded
by the European Commission (Contract IST-2002-004265).

57

References

1.

10.

11.

12.

J. Anvik, S. MacDonald, D. Szafron, J. Schaeffer, S. Biogjland K. Tan. Generating
parallel programs from the wavefront design patterrvtini\orkshop on High-Level Parallel
Programming Models and Supportive Environments. IEEE Computer Society Press, 2002.
Argonne National Laboratory. The Message Passing bderf(MPI). http://www-
unix.mcs.anl.gov/mpi.

C.-l. Branden, J. Tooze, and C. Brandbitroduction to Protein Sructure. Garland Science,
1991.

M. I. Cole. Algorithmic Skeletons: A Structured Approach to the Management of Parallel
Computation. Pitman, 1989.

M. Danelutto and P. Teti. Lithium: A structured parallebgramming enviroment in Java. In
Proceedings of Computational Science - ICCS, number 2330 in Lecture Notes in Computer
Science, pages 844-853. Springer-Verlag, Apr. 2002.

S. Gorlatch and J. Dunnweber. From grid middleware to gpiplications: Bridging the gap
with HOCs. InFuture Generation Grids. Springer Verlag, 2005.

D. Gusfield.Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1999.

V. I. Levenshtein. Binary codes capable of correctingiitisns and reversals. [Boviet
Physics Dokl. Volume 10, pages 707-710, 1966.

OASIS Technical Committee. WSRF: The Web Service Resourcamework,
http://www.0asis-open.org/committees/wsrf.

C. SzyperskiComponent software: Beyond object-oriented programming. Addison Wesley,
1998.

M. Wolfe. Loop skewing: the wavefront method revisitdéal.Journal of Parallel Program-
ming, Volume 15, pages 279-293, 1986.

X.Huang, R. Hardison, and W.Miller. A space-efficiergalthm for local similarities. In
Computer Applications in the Biosciences, volume 6(4), pages 373—-381. Oxford University
Press, 1990.

