Skeleton Parallel Programming and Parallel Objects

Marcelo Pasih, Pierre Kuoneh, Marco Daneluttd, and Marco Aldinucci

1 CoreGRID fellow, on leave from Universidade Federal de Safaria, Brazil
2 Haute Ecole Speciak® de Suisse Occidentale (HES-SO/EIA-FR), Fribourg, $wand
3 Departimento d’Informatica, Univesitdi Pisa, Italy
4 |stituto di Scienza e Tecnologia dell'Informazione (CNRT), Pisa, Italy

Abstract. We describe here the ongoing work aimed at integrating the-E®+
parallel object programming environment with the ASSISThponent based
parallel programming environment. Both these programnaémgronments are
shortly outlined, first. Then several possibilities of gmation are considered. For
each one of these integration opportunities, the advast@gye synergies that can
be possibly achieved are outlined and discussed. Evepttladl current status of
integration of the two environments is discussed, along Wié expected results
and fallouts on the two programming environments.

1 Introduction

This is a prospective paper on the integration of ASSIST @B+ ++ tools for parallel
programming. POP-C++ is a C++ extension for parallel prognéng, offering parallel
objects with asynchronous method calls. Section 2 desci#@P-C++. ASSIST is a
skeleton parallel programming system that ofers a stradttramework for developing
parallel applications starting from sequential composeASSIST is described in sec-
tion 3 and some of its components, namely GEA and ADHOC, aserteed in sections
3.1 and 3.2 respectively.

This paper describes some initial ideas of cooperative workntegrating parts
of ASSIST and POP-C++, in order to obtain a broader and bedtgge of parallel
programming tools. It has been clearly identified that tts¢riiuted resource discovery
and matching, as well as the distributed object deploymenind in ASSIST could
be used also by POP-C++. An open question, and an interastsggrch problem, is
whether POP-C++ could be used inside skeleton componen#sSIBIST. Section 4 is
consacrated to these discussions.

2 Parallel Object-Oriented Programming

It is a very common sense in software engineering today thjactoriented program-

ming and its abstractions improves software developmesgid@s that, the own nature
of objects incorporate many possibilities of program galiain. Several objects can
act concurrently and independently from each other, angrakgperations in the same
object can be concurrently carried out. For these reasque;adlel object seems to be
a very general and straightforward model for parallel progming.

116

POP stands for Parallel Object Programming, a programmiogetrin which par-
allel objects are generalizations of traditional sequrdbjects. POP-C++ is an ex-
tension of C++ that implements the POP model, integratistfiduted objects, several
remote method invocations semantics, and resource regemts. The extension is kept
as close as possible to C++ so that programmers can easiyR&P-C++ and existing
C++ libraries can be parallelized with little effort. It tdts in an object-oriented system
for developing high-performance computing applicaticmsthe grid [13].

POP-C++ incorporates a runtime system in order to execuytécapons on dif-
ferent distributed computing tools [10,17]. This runtinystem has a modular object-
oriented service structure. All services are instantiatsile each application and can
be combined to perform specific tasks using different systemices. This design can
be used to glue current and future distributed programnantkits together to create a
broader environment for executing high performance comgupplications.

Parallel objects have all the properties of traditional objects, added ttridisted
resource-driven creation and asynchronous invocatioch Bhject cration has the abil-
ity to specify its requirements, making possible transpaoptimized resource aloca-
tion. Each object is allocated on a separate address spacefdrences to an object are
shareable, allowing for remote invocation. Shared objedts encapsulated data allow
programmers to implement global data sharing in distridbetevironments. In order to
share parallel objects, POP-C++ can arbitrarily pass them bne place to another
as arguments of method invocations. The runtime systensporesible for managing
parallel object references.

Parallel objects support any mixture of synchronous, asymous, exclusive or
concurrent method invocations. Without an invocation, &lba object lies in an in-
active state, only being activated a method invocation estjusyntactically, method
invocations on POP objects are identical to those on tawitisequential objects. How-
ever, each method has its own invocation semantics, spekbifithe programmer. These
semantics define different behaviours at both sides of thadlphobject, called the in-
terface and the object-side semantics.

The interface semantics affect the caller of a method imvmcawhich can be either
synchronous or asynchronous. W&mchronous invocation, the caller blocks until the
execution of the requested method on the object side is &dishhis corresponds to
the traditional (remote) method invocatiomssynchronous invocations, on the con-
trary, return immediately after sending the request to émeate object. Asynchronous
invocation is important to exploit the parallelism becausenables to overlap com-
putations and communications. No computing result is alséel when the invocation
returns to the caller, so, under the current model, it capraduce results.

The object-side semantics rule the execution of methoddgansach object. A
method can be of one of three types: concurrent, sequeatiahutex. Invocations
to concurrent methods are executed concurrently if no mutex invocaticrursently
running. The concurrent invocation is important to achignesparallelism inside each
parallel object and to improve overlapping between contputaand communication.

Usingsequential invocation, methods are executed in mutual exclusionpfotig
the requests’ arrival order. Several simultaneous se@ienethods invocations are
served sequentially (see Fig. 1). Concurrent methods thad heen previously started

117

can still continue their normal execution. This guarantbesserializable consistency
of all sequential invocations in the same object.

Invocations tomutex methods are executed in complete exclusion with all other
methods of the same object. A request is executed only if herabvocation are run-
ning. Otherwise, the current method will be blocked untiliavocations (including
concurrent ones) are terminated (see Fig. 1). Mutex iniarcsiare important to syn-
chronize concurrencies and to assure the correctness dstata state inside the
parallel object.

Fig. 1. Exampe of different invocation requests

object o

Figure 1 illustrates different invocation semantics. Sadial invocationSeql()
is served immediately, running concurrently wigonc1() . Although the sequential
invocationSeq2() arrives before the concurrent invocati@onc?2(), it is delayed
due to the current execution 8qgl() (no order between concurent and sequential
invocations). When the mutex invocatidut ex1() arrives, it has to wait for other
running methods to finish. During this waiting, it also bleakther invocation requests
arriving later, asConc 3() , until the mutex invocation request completes its exeaoutio

Prior to allocate a new object it is necessary to select aguste placeholder. Sim-
ilarly, when an object is no longer in use, it must be destuidgerelease the resources
it is occupying. POP-C++ provides in the runtime system iaaticc placeholder se-
lection, object allocation, and object destruction. Thisoanatic features result in a
dynamic usage of computational resources and gives to thiecapons the ability to
adapt to changes in both the environment and applicatioavoetr.

Resource requirements can be expressed by the qualityvaéesdhat components
require from the environment. POP-C++ integrates the reqments into parallel ob-
jects under the form of resource descriptions. Each paddject constuctor is associ-
ated with arobject description that depicts the characteristics of the resources needed
to create the object. The resource requirements in objectrigiions are expressed in
terms of resource (host) name, computing power, amount ofiong expected com-
munication bandwidth and latency.

3 Structured parallel programming with ASSIST

The development of efficient parallel programs is espacidifficult with large-scale
heterogeneous and distributed computing platforms asrille Brevious research on
that subject exploitedkeletons as a parallel coordination layer of functional modules,

118

made of conventional sequential code [3]. This model alltaveelieve programmer
from many concerns of classical, non structured paral@@mming frameworks. As
an example, scheduling, mapping, load balancing and datanghare all managed
by either the compile tools or the runtime systems of stmectyarallel programming
frameworks. In addition to that, due to the exposition bygregrammer in the program
source code of the structure of parallelism exploitati@vesal optimizations can be
efficently implemented at either compiler or runtime levehat is not applicable in
case the parallellism exploitation pattern is not avadad it has to be mined from
source code.

ASSIST is a parallel programming environment providing alston based coor-
dination language. A compiler and a set of runtime toolsval®SSIST programs
to be run on clusters, networks of workstations and gridseféé optimizations are
performed that allow to achieve high efficiency in the exegubf ASSIST programs
[15,1]. Its programming environment was recently extentesupport GRID.it com-
ponents [2]. They can as well be used to interact with non GiRE@mponents, in
particular with CORBA components and with Web Services. IKSSGRID.it compo-
nents are supplied with autonomic managers [4] that adeptdmponent execution to
dynamic changes in the grid features (node or link faultfégdint load levels, etc.).

Fig. 2. ASSIST structure

ASSIST

source
code

/ \ \ /
[Object code

(C++ & ASSISTIib)

>
(2]
>
o
A
v}
\/

The structure of the ASSIST programming environment isioed in Fig. 2. Source
code is processed by the ASSIST compiler, producing C++,aod&efiles to be used
to produce the actual object code for several differentitectures, and an XML config-
uration file that represent the descriptor of the paralleliaption. To run the program,
this XML file is processed by the GEA tool (see section 3.Ring care of all the ac-
tivities needed to stage the code at remote nodes, statkilipay runtime processes,
starting application code and gathering results back tmtitkee where the program has
been launched. Some parts of the system processes launithebderapplication code
of an ASSIST program are related to ADHOC ASSIST subsysteBHAC is basi-

119

cally a shared data resource that is used to support bothreladsitory and stream
communication.

3.1 Grid Application Deployment

The GEA ASSIST tool is a parallel process launcher targetuagdistinct architectures:
Globus grids and POSIX/TCP workstation networks and ctestapporting SSH ac-
cess. GEA takes as an input an XML file generated by the ASSt&Ipier out of the
ASSIST source code and an AAR file (Assist ARchive file), hagthe code and the
libraries needed to deploy the ASSIST program on a remote.nod

The XML file is parsed by GEA, then a suitable number of comqmutiesources
(nodes) are recruited to host the application processesada of Globus, resource re-
cruitement is performed interacting with standard MDS & In case of POSIX/TCP
SSH architectures, POSIX commands are used in conjuncitbnS8H. The applica-
tion code is deployed to the selected remote nodes, by &aimgj to them the proper
AAR files, then the archive files are uncompressed and unpadke object code and
libraries are then trasferred to the proper places in thal fldesystems.

The necessary support processes to run the applicatiorsdsarstarted at the se-
lected nodes. In particular, the HOC processes used to imgplethe data flow streams
interconnecting ASSIST processes are started in this Btemtually, the processes de-
rived from and implementing the user code are run. They pariaser defined code
upon the data received from the HOC implemented data flowsisewhich eventually
deliver results again on the HOC channels.

All these steps can be performed exploiting two differemidki of technologies:
Globus and SSH. WitlGlobus (toolkit 2.4, currently moving to toolkit 4), the re-
source lookup is performed exploiting MDS facilities, datad code (AAR) staging
Is performed via GlobusFTP and processes are run remotplgierg Globus remote
commanding facilitiesSSH is a standard mechanism to run remote commands and to
transfer files, natively available by classical POSIX opiagasystems and supported,
non natively, also by Windows. Code and data staging is pe€d usingscp, remote
processes are started Wah and resources are looked for by inspecting a file or by a
special lookup process testing access to the machines doctdenetwork.

The whole process not only supports the user code launchl|dmthe management
of all the runtime processes needed to monitor ASSIST progrrformance and pos-
sibly to force the program to terminate, or even to adapt (&agying its parallelism
degree) to changements in the grid architecture featuésiain the perfromance con-
tracts issued by the users.

ASSIST GEA is currently being engineered by separating tltke @erforming ac-
tions from the code planning the application deployment fitain GEA code imple-
ments aplugin manager built on top of the COG toolkit [16]. The plugin manager
basically is able to load and run a module configured accgrttirthe XML file tags.
The plugin, in turn, is able to perform all the actions neettedeploy and run a code
developed with a particular environment. As an example AB8IST plugin works as
described above, by first stagin and running the ADHOC cda $taging and running
the ASSIST user code. A CORBA/CCM [11] plugin first sets up @@RBA frame-
work and then launches the CCM code wrapped in the ASSISTranog

120
3.2 Distributed Data Collections

To profit from the large processing potential of the grid, leggions cannot assume
the platform to be neither homogeneous, secure, reliabileerdrally managed. Also,
these applications should be fed with large distributetectibns of data.

ADHOC (Adaptive Distributed Herd of Object Caches), is drilisited object repos-
itory [5]. It has been conceived in the context of the ASSIS0jgxt, as a distributed
persistent virtual storage. It provides the applicationigigers with a toolkit to solve
data storage problems in a grid framework. In particulgsravides building blocks to
set up client-server and service-oriented infrastrustuvkich can cope with the grid
characteristics. Its underlying design principle corssistdecoupling the management
of computation and storage in distributed applications.

Parallel grid applications often need processing largeuantsoof data. Data storages
for such applications are required to be fast, dynamicaatable and enough reliable
to survive to some failures. Decoupling helps in providingraad class of parallel
applications with these features while achieving goodgrerances. ADHOC creates a
local virtual memory associated with every processing el@imA common distributed
data repository is provided by the cooperation betweenipheliocal memories.

ADHOC implements an external repository for arbitrary légngpjects. Clients may
access objects through different protocols, implemenitgdmproxy libraries. Proxies
may act as a simple adaptors, or exploit complex behaviees, @operating with other
proxies (e.g. distributed agreement). An object cannopbessl across different nodes,
but it can be replicated. Objects can be grouped in orderégkttions of objects, which
can be spread across different nodes.

Objects and collections are identified by keys. The actui beation is found at
execution time through a distributed hash table. ADHOC Afdldes to get, put and
remove objects, and it provides remote execution of objaethods. This operation is
initially meant as mechanism to extend server core funatites for specific needs, as
for example lock and unlock the object for consistency managnt.

4 Exploiting POP-C++ and ASSI ST synergies

POP-C++ and ASSIST have been designed and developed wehedif programming
models in mind, but with a common goal: provide grid prograamsnwith advanced
tools suitable to be used to develop efficient grid apploceti Some of the problems
addressed and (partially) solved in the two contexts ametbe common problems. In
particular, the way active entities (objects in POP-C++ pratesses in ASSIST) are
deployed to the grid processing nodes, the kind of supp@tee to efficiently share
data and the way parallelism can be exploited in a singlefedram component are
all subject of design and implementation efforts in botrsthenvironments.

In this section, we want to address the synergies that cargdeieed among POP-
C++ and ASSIST. We want to consider the possibilities ofgraging the POP-C++ and
the ASSIST environments and, in particular, the integrgpiossibilities that effectively
improve one of the two environments exploiting the origiregults already achieved
in the other environment. Three kind of possibilities haeerexplored, that seem to
provide suitable improvements in either the ASSIST or th& R+ environments:

121

1. to exploit the ASSIST GEA deployment tool to deploy and aggnPOP-C++ pro-
grams

2. to exploit ASSIST ADHOC shared memory support to impletstrared state in
POP-C++ programs

3. to use POP-C++ to implement GRID.it components in the A3Stamework

The former two cases actually improve the possibilitiesi@d by POP-C++ by ex-
ploiting ASSIST technology. The latter case improves thespulities offered by AS-
SIST to assemble complex programs out of components watteardingly to different
models. Currently such components can only be written usie@SSIST coordination
language or inherited from CCM or Web Services. The follaysections detail these
three possibilities and discuss their relative advataligsdvantages.

4.1 Exploiting ASSIST GEA in POP-C++

POP-C++ comprises a runtime library that implements somecgs for launching
remote processes and for resource discovery. Launchingtegpnocesses is provided
by ajob manager, which has two main functionalities: launching the patallgect and
managing the resources. It allows to submit jobs with deéifermanagement systems
such as LSF [9], PBS [12] or even Globus [10]. It does not mlevauthentication
services and relies on the security infrastructure of theagament system used.

A distributed resource discovery is integrated in the PGR-@intime system. It
differs from the centralized approach such as in GlobusSblee [8] or Condor [14].
Information about the POP-C++ resources is fully distidolénd accessed on demand,
configuring an adaptive peer-to-peer model. Though, thidehbas shown some scal-
ability problems and it is a good candidate for a replacement

GEA provides a comprehensive infrastuture for launchingcesses, integrated
with functions for matching needs to resouces capabilifié® integration of POP-
C++ with GEA could be done in different levels. The most gfidiiorward would be
to replace the parts of the job manager related to objecirigaahd running and the
resource discovery with calls to GEA, which would perforrhlalinching and all re-
source management. In any case, POP object files would hbegtacked into ASSIST
application packages, which is the file format understooGBA.

In order to assess the implications of the integration pseddiere, the object cre-
ation procedure inside the job manager has to be seen maraatail. Initially, a
proxy object is created, called interface. The interfacdueates the object description
and calls the resource discovery service to find a suitaleuree. The interface then
launches an object server in the given resource. The olgeetisnow running in the
resource takes care of all other tasks, as downloading arnthgtthe executable code,
setting the connection with the interface, receiving thestactor arguments and sig-
nalling the interface about the end of the creation.

The discovery service as required by the interface is notmyelemented in GEA.
If implemented, GEA, should return an access point to theue® found. As GEA
can be instructed to load and launch a program in a specifsaliree, the interface
algorithm could stay as it is. On the other hand, instead dfreda discovery call to
GEA, the interface algorithm could be changed. It couldalyeask GEA to launch the

122

new object using a resource description. This is also ptas&EA, but only could be
used with some modification.

Requests to launch processes have some restrictions on I@EALrrently struc-
tured model matches the structured model of ASSIST. Nodedigided into domains.
The ASSIST model dictates a fixed structure for parallel pots, which are formed
by parallel modules, that are connected in a predefined waguMs are divided into
processes, which are assigned to resources when the exestaits. All resources as-
signed to a single parallel module must belong to the sameadtortt is eventually
possible to adjust on the number of processes inside of amgparallel module, but
the new processes must be started in the same domain.

POP-C++ needs a completely dynamic model to run paralletaidj An object
running in a domain must be able to start new objects in @iffedomains. In order to
support that, GEA has to be extended to a more flexible modhes. Gan be done by
making a process launching interface accessible fromensidomain. Also, resource
discovery for new processes must take into account the resein all domains (not
only the local one). This functionalities can be added to GfAer as plugins or as a
separate process, as is the case of the ADHOC server.

In most grid systems, node allocation is based on some sappiication require-
ments and on resource capabilities. In the context of POP-@# in other similar
systems, as ProActive [7], for instance), the allocatiorsiine done dynamically. This
is clearly an optimisation problem, that could eventualey dnlved with distributed
heuristics expoiting a certain degree of locality. In orttedo that, requirements and
resource sets must be split into parts and mixed and matotredistributed and incre-
mental (partial) fashion. Requirements sould be express@dedicates that evaluate to
a certain degree of satisfaction [6]. Resources should beritbed without a predefined
structure (descriptions could be of any type, not just mgmOPU and network). The
languages needed to express requirements and resouraesl] as good distributed
resource matching algorithms are interesting researdbignts.

4.2 Datasharing in POP-C++ through ADHOC

POP-C++ implements asynchronous remote method invostimsmng very basic sys-
tem features, as TCP/IP sockets and POSIX threads. Insteathg those implemented
parallel objects, POP-C++ could be adapted to use ADHOCcthj€alls to POP ob-
jects would be converted into calls to ADHOC objects. Thisiddhave the added ad-
vantage of being possible to somehow mix ADHOC applicateom$ POP-C++ as they
would share the same type of distributed object. This wosld/i@ll add persistence to
POP-C++ objects.

ADHOC objects are shared in a distributed system, as PORtsgee. But they
do not incorporate any concurrent semantics on the objdet seither their calls are
asynchronous. In order to offer the same semantics, ADHQ€xtsh(in the caller and
in the callee side) would have to be wrapped in jackets, whiobld implement the
concurrent semantics using something like POSIX threakis. does not appear to be
a good solution.

123
4.3 Parallel POP-C++ componentsin the ASSI ST framework

Currently, the ASSIST framework allows component prograobe developed with

two type of componentsiative GRID.it components andr apped legacy components.
GRID.it components can either be sequential or paralledyTirovide both a functional

interface, exposing the computing capabilities of the congmt, and a non functional
interface, exposing methods that can be used to controlifmpanent (e.g. to monitor
its behaviour). They provide as wellp& for mance contract that the component itself
takes ensures by exploiting its internal autonomic corfgatures implemented in the
non functional code. Wrapped legacy components, on the btied, are either CCM

components or plain Web Services that can be automaticadpped by the ASSIST
framework tools to look like a GRID.it native component.

The ASSIST framework can be extended in such a way that POPptagrams
can also be wrapped to look like GRID.it components and fbezebe used in plain
GRID.it component programs. As the parallelism explaitatpatterns allowed in na-
tive GRID.it components are restricted to the ones providethe ASSIST coordina-
tion language, POP-C++ components introduce in the ASSi&hdwork the possi-
bility of having completely general parallel component$.cOurse, the efficiency of
the POP-C++ components is completely in charge of the POPg¢@mpiler/runtime
environment. Some interesting possibilities also comaisdase from the exploitation
of object oriented programming technigues to implemennthrefunctional part of the
GRID.it component. In other words, trying to exploit full PEC++ features to imple-
ment a customizable autonomic application manager pnogithie same non functional
interface provided by ASSIST/GRID.it components.

5 Conclusion

The questions discussed in this paper entail a CoreGRIDBwiship. All the possibili-
ties described in the previous sections are currently beomgidered. The main focus
of interest is clearly the integration of GEA as the POP-Caunkcher and resource
manager. This will impose modifications on POP-C++ runtirbealy and new fun-
cionalities for GEA. Both systems are expected to improankis to this interaction,
as POP-C++ will profit from better resource discovery and G&Wimplement a less
restricted model. A running prototype is expected for the efnthe year.

Further research on the matching model will lead to new aggdres on expressing
and matching application requirements and resource dépeiThis model should al-
low a distributed implementation that dinamically adag tequirements as well as the
resource availability, being able to express both ASSIST ROP-C++ requirements,
and probably others.

A subsequent step can be a higher level of integration, I3Ig-C++ programs as
GRID.it wrapped legacy components. This could allow to eigdull object oriented
parallel programming techniques in ASSIST programs onsgfidhe implications of
POP-C++ parallel object oriented modules on the structaredel of ASSIST are not
fully identified, especially due to the dynamic aspects ef dbjects created. Supple-
mentary study has to be done in order to devise its real adgastand consequences.

124

References

1.

11.
12.

13.

14.

15.

16.

17.

M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. MaginiPesciullesi, L. Potiti, R. Ravaz-
zoloand M. Torquati, M. Vanneschi, and C. Zoccolo. The Impdatation of ASSIST, an
Environment for Parallel and Distributed Programming.Phoc. of EuroPar2003number
2790 in "Lecture Notes in Computer Science”. Springer, 2003

M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Lafora, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for High-PerfaroeaGrid Programming in
GRID.it. In Component modes and systems for Grid applicati@weGRID. Springer,
2005.

M. Aldinucci, M. Danelutto, and P. Teti. An advanced eamiment supporting structured

parallel programming in Javduture Generation Computer Systerh8(5):611-626, 2003.
Elsevier Science.

M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquat¥). Vanneschi, L. Veraldi, and C. Zoc-
colo. Dynamic reconfiguration of grid-aware applicatiom®\SSIST. In11th Intl Euro-Par
2005: Parallel and Distributed Computingihumber 3149 in "Lecture Notes in Computer
Science”. Springer Verlag, 2004.

M. Aldinucci and M. Torquati. Accelerating apache farimtugh ad-HOC distributed scal-
able object repository. In M. Danelutto, M. Vanneschi, and_Bforenza, editorslOth Intl
Euro-Par 2004: Parallel and Distributed Computingolume 3149 of’Lecture Notes in
Computer Science’pages 596—-605, Pisa, Italy, August 2004. "Springer”.

S. Andreozzi, P. Ciancarini, D. Montesi, and R. Morettowérds a metamodeling based
method for representing and selecting grid services. Inidizeckle, Ryszard Kowalczyk,
and Peter Braun Il, editor&SEM volume 3270 ofLecture Notes in Computer Science
pages 78-93. Springer, 2004.

F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssi Interactive and descriptor-
based deployment of object-oriented grid applications.Ploceedings of the 11th IEEE
Intl Symposium on High Performance Distributed Computipages 93-102, Edinburgh,
Scotland, July 2002. IEEE Computer Society.

H. Casanova and J. Dongarra. NetSolve: A network-enalelegr for solving computational
science problemsThe Intl Journal of Supercomputer Applications and Highf@enance
Computing 11(3):212-223, Fall 1997.

Platform Computing CorporatiofRunning Jobs with Platform LSE2003.

I. Foster and C. Kesselman. Globus: A metacomputingstructure toolkitIntl Journal of
Supercomputer Applications and High Performance Computit(2):115-128, 1997.
Object Management Grou@ORBA Component2002.

R. Henderson and D. Tweten. Portable batch system:riattesference specification. Tech-
nical report, NASA, Ames Research Center, 1996.

T.-A. Nguyen and P. Kuonen. ParoC++: A requirementetrigarallel object-oriented pro-
gramming language. I&ighth Intl Workshop on High-Level Parallel Programming d&ds
and Supportive Environments (HIPS’'03), April 22-22, 2088e, France pages 25-33.
IEEE Computer Society, 2003.

R. Raman, M. Livny, and M.H. Solomon. Resource managéethesugh multilateral match-
making. InHPDC, pages 290-291, 2000.

M. Vanneschi. The Programming Model of ASSIST, an Emmnent for Parallel and Dis-
tributed Portable ApplicationsParallel Computing12, December 2002.

G. von Laszewski, B. Alunkal, K. Amin, J. Gawor, M. Hatagand S. Nijsure. The Java CoG
Kit User Manual. MCS Technical Memorandum ANL/MCS-TM-258gonne National
Laboratory, March 14 2003.

T. Ylonen. SSH - secure login connections over the ieterin Proceedings of the 6th
Security Symposiumpage 37, Berkeley, 1996. USENIX Association.

