
Skeleton Parallel Programming and Parallel Objects

Marcelo Pasin1, Pierre Kuonen2, Marco Danelutto3, and Marco Aldinucci4

1 CoreGRID fellow, on leave from Universidade Federal de Santa Maria, Brazil
2 Haute Ecole Specialisée de Suisse Occidentale (HES-SO/EIA-FR), Fribourg, Switzerland

3 Departimento d’Informatica, Univesità di Pisa, Italy
4 Istituto di Scienza e Tecnologia dell’Informazione (CNR/ISTI), Pisa, Italy

Abstract. We describe here the ongoing work aimed at integrating the POP-C++
parallel object programming environment with the ASSIST component based
parallel programming environment. Both these programmingenvironments are
shortly outlined, first. Then several possibilities of integration are considered. For
each one of these integration opportunities, the advantages and synergies that can
be possibly achieved are outlined and discussed. Eventually, the current status of
integration of the two environments is discussed, along with the expected results
and fallouts on the two programming environments.

1 Introduction

This is a prospective paper on the integration of ASSIST and POP-C++ tools for parallel
programming. POP-C++ is a C++ extension for parallel programming, offering parallel
objects with asynchronous method calls. Section 2 describes POP-C++. ASSIST is a
skeleton parallel programming system that ofers a structured framework for developing
parallel applications starting from sequential components. ASSIST is described in sec-
tion 3 and some of its components, namely GEA and ADHOC, are described in sections
3.1 and 3.2 respectively.

This paper describes some initial ideas of cooperative workon integrating parts
of ASSIST and POP-C++, in order to obtain a broader and betterrange of parallel
programming tools. It has been clearly identified that the distributed resource discovery
and matching, as well as the distributed object deployment found in ASSIST could
be used also by POP-C++. An open question, and an interestingresearch problem, is
whether POP-C++ could be used inside skeleton components for ASSIST. Section 4 is
consacrated to these discussions.

2 Parallel Object-Oriented Programming

It is a very common sense in software engineering today that object-oriented program-
ming and its abstractions improves software development. Besides that, the own nature
of objects incorporate many possibilities of program parallelism. Several objects can
act concurrently and independently from each other, and several operations in the same
object can be concurrently carried out. For these reasons, aparallel object seems to be
a very general and straightforward model for parallel programming.



POP stands for Parallel Object Programming, a programming model in which par-
allel objects are generalizations of traditional sequential objects. POP-C++ is an ex-
tension of C++ that implements the POP model, integrating distributed objects, several
remote method invocations semantics, and resource requirements. The extension is kept
as close as possible to C++ so that programmers can easily learn POP-C++ and existing
C++ libraries can be parallelized with little effort. It results in an object-oriented system
for developing high-performance computing applications for the grid [13].

POP-C++ incorporates a runtime system in order to execute applications on dif-
ferent distributed computing tools [10,17]. This runtime system has a modular object-
oriented service structure. All services are instantiatedinside each application and can
be combined to perform specific tasks using different systemservices. This design can
be used to glue current and future distributed programming toolkits together to create a
broader environment for executing high performance computing applications.

Parallel objects have all the properties of traditional objects, added to distributed
resource-driven creation and asynchronous invocation. Each object cration has the abil-
ity to specify its requirements, making possible transparent optimized resource aloca-
tion. Each object is allocated on a separate address space, but references to an object are
shareable, allowing for remote invocation. Shared objectswith encapsulated data allow
programmers to implement global data sharing in distributed environments. In order to
share parallel objects, POP-C++ can arbitrarily pass them from one place to another
as arguments of method invocations. The runtime system is responsible for managing
parallel object references.

Parallel objects support any mixture of synchronous, asynchronous, exclusive or
concurrent method invocations. Without an invocation, a parallel object lies in an in-
active state, only being activated a method invocation request. Syntactically, method
invocations on POP objects are identical to those on traditional sequential objects. How-
ever, each method has its own invocation semantics, specified by the programmer. These
semantics define different behaviours at both sides of the parallel object, called the in-
terface and the object-side semantics.

The interface semantics affect the caller of a method invocation, which can be either
synchronous or asynchronous. Withsynchronous invocation, the caller blocks until the
execution of the requested method on the object side is finished. This corresponds to
the traditional (remote) method invocations.Asynchronous invocations, on the con-
trary, return immediately after sending the request to the remote object. Asynchronous
invocation is important to exploit the parallelism becauseit enables to overlap com-
putations and communications. No computing result is available when the invocation
returns to the caller, so, under the current model, it cannotproduce results.

The object-side semantics rule the execution of methods inside each object. A
method can be of one of three types: concurrent, sequential,or mutex. Invocations
to concurrent methods are executed concurrently if no mutex invocation iscurrently
running. The concurrent invocation is important to achievethe parallelism inside each
parallel object and to improve overlapping between computation and communication.

Usingsequential invocation, methods are executed in mutual exclusion, following
the requests’ arrival order. Several simultaneous sequential methods invocations are
served sequentially (see Fig. 1). Concurrent methods that have been previously started

116



can still continue their normal execution. This guaranteesthe serializable consistency
of all sequential invocations in the same object.

Invocations tomutex methods are executed in complete exclusion with all other
methods of the same object. A request is executed only if no other invocation are run-
ning. Otherwise, the current method will be blocked until all invocations (including
concurrent ones) are terminated (see Fig. 1). Mutex invocations are important to syn-
chronize concurrencies and to assure the correctness of shared data state inside the
parallel object.

Fig. 1. Exampe of different invocation requests

o.Seq2()

o.C
onc2()

o.C
onc3()

o.Seq1()

o.M
utex1()

o.C
onc1()

object o
Conc1()

Seq1()

Conc2()

Seq2()

Conc3()

Mutex1()

delay

delay

delay

time

Figure 1 illustrates different invocation semantics. Sequential invocationSeq1()
is served immediately, running concurrently withConc1(). Although the sequential
invocationSeq2() arrives before the concurrent invocationConc2(), it is delayed
due to the current execution ofSeq1() (no order between concurent and sequential
invocations). When the mutex invocationMutex1() arrives, it has to wait for other
running methods to finish. During this waiting, it also blocks other invocation requests
arriving later, asConc3(), until the mutex invocation request completes its execution.

Prior to allocate a new object it is necessary to select an adequate placeholder. Sim-
ilarly, when an object is no longer in use, it must be destroyed to release the resources
it is occupying. POP-C++ provides in the runtime system automatic placeholder se-
lection, object allocation, and object destruction. This automatic features result in a
dynamic usage of computational resources and gives to the applications the ability to
adapt to changes in both the environment and application behaviour.

Resource requirements can be expressed by the quality of service that components
require from the environment. POP-C++ integrates the requirements into parallel ob-
jects under the form of resource descriptions. Each parallel object constuctor is associ-
ated with anobject description that depicts the characteristics of the resources needed
to create the object. The resource requirements in object descriptions are expressed in
terms of resource (host) name, computing power, amount of memory, expected com-
munication bandwidth and latency.

3 Structured parallel programming with ASSIST

The development of efficient parallel programs is especially difficult with large-scale
heterogeneous and distributed computing platforms as the grid. Previous research on
that subject exploitedskeletons as a parallel coordination layer of functional modules,

117



made of conventional sequential code [3]. This model allowsto relieve programmer
from many concerns of classical, non structured parallel programming frameworks. As
an example, scheduling, mapping, load balancing and data sharing are all managed
by either the compile tools or the runtime systems of structured parallel programming
frameworks. In addition to that, due to the exposition by theprogrammer in the program
source code of the structure of parallelism exploitation, several optimizations can be
efficently implemented at either compiler or runtime level.That is not applicable in
case the parallellism exploitation pattern is not available or it has to be mined from
source code.

ASSIST is a parallel programming environment providing a skeleton based coor-
dination language. A compiler and a set of runtime tools allow ASSIST programs
to be run on clusters, networks of workstations and grids. Several optimizations are
performed that allow to achieve high efficiency in the execution of ASSIST programs
[15,1]. Its programming environment was recently extendedto support GRID.it com-
ponents [2]. They can as well be used to interact with non GRID.it components, in
particular with CORBA components and with Web Services. ASSIST GRID.it compo-
nents are supplied with autonomic managers [4] that adapt the component execution to
dynamic changes in the grid features (node or link faults, different load levels, etc.).

Fig. 2. ASSIST structureASSISTsourcecodeastCCObject code(C++ & ASSISTlib) Makefiles XML config fileASAP AARAARAAR
The structure of the ASSIST programming environment is outlined in Fig. 2. Source

code is processed by the ASSIST compiler, producing C++ code, makefiles to be used
to produce the actual object code for several different architectures, and an XML config-
uration file that represent the descriptor of the parallel application. To run the program,
this XML file is processed by the GEA tool (see section 3.1), taking care of all the ac-
tivities needed to stage the code at remote nodes, starting auxiliary runtime processes,
starting application code and gathering results back to thenode where the program has
been launched. Some parts of the system processes launched with the application code
of an ASSIST program are related to ADHOC ASSIST subsystem. ADHOC is basi-

118



cally a shared data resource that is used to support both datarepository and stream
communication.

3.1 Grid Application Deployment

The GEA ASSIST tool is a parallel process launcher targetingtwo distinct architectures:
Globus grids and POSIX/TCP workstation networks and clusters supporting SSH ac-
cess. GEA takes as an input an XML file generated by the ASSIST compiler out of the
ASSIST source code and an AAR file (Assist ARchive file), hosting the code and the
libraries needed to deploy the ASSIST program on a remote node.

The XML file is parsed by GEA, then a suitable number of computing resources
(nodes) are recruited to host the application processes. Incase of Globus, resource re-
cruitement is performed interacting with standard MDS services. In case of POSIX/TCP
SSH architectures, POSIX commands are used in conjunction with SSH. The applica-
tion code is deployed to the selected remote nodes, by transferring to them the proper
AAR files, then the archive files are uncompressed and unpacked. The object code and
libraries are then trasferred to the proper places in the local filesystems.

The necessary support processes to run the applications arealso started at the se-
lected nodes. In particular, the HOC processes used to implement the data flow streams
interconnecting ASSIST processes are started in this step.Eventually, the processes de-
rived from and implementing the user code are run. They perform user defined code
upon the data received from the HOC implemented data flow streams, which eventually
deliver results again on the HOC channels.

All these steps can be performed exploiting two different kinds of technologies:
Globus and SSH. WithGlobus (toolkit 2.4, currently moving to toolkit 4), the re-
source lookup is performed exploiting MDS facilities, dataand code (AAR) staging
is performed via GlobusFTP and processes are run remotely exploiting Globus remote
commanding facilities.SSH is a standard mechanism to run remote commands and to
transfer files, natively available by classical POSIX operating systems and supported,
non natively, also by Windows. Code and data staging is performed usingscp, remote
processes are started viassh and resources are looked for by inspecting a file or by a
special lookup process testing access to the machines on thelocal network.

The whole process not only supports the user code launch, butalso the management
of all the runtime processes needed to monitor ASSIST program performance and pos-
sibly to force the program to terminate, or even to adapt (e.g. varying its parallelism
degree) to changements in the grid architecture features and/or in the perfromance con-
tracts issued by the users.

ASSIST GEA is currently being engineered by separating the code performing ac-
tions from the code planning the application deployment. The main GEA code imple-
ments aplugin manager built on top of the COG toolkit [16]. The plugin manager
basically is able to load and run a module configured according to the XML file tags.
The plugin, in turn, is able to perform all the actions neededto deploy and run a code
developed with a particular environment. As an example, theASSIST plugin works as
described above, by first stagin and running the ADHOC code, than staging and running
the ASSIST user code. A CORBA/CCM [11] plugin first sets up theCORBA frame-
work and then launches the CCM code wrapped in the ASSIST program.

119



3.2 Distributed Data Collections

To profit from the large processing potential of the grid, applications cannot assume
the platform to be neither homogeneous, secure, reliable nor centrally managed. Also,
these applications should be fed with large distributed collections of data.

ADHOC (Adaptive Distributed Herd of Object Caches), is a distributed object repos-
itory [5]. It has been conceived in the context of the ASSIST project, as a distributed
persistent virtual storage. It provides the application designers with a toolkit to solve
data storage problems in a grid framework. In particular, itprovides building blocks to
set up client-server and service-oriented infrastructures which can cope with the grid
characteristics. Its underlying design principle consists in decoupling the management
of computation and storage in distributed applications.

Parallel grid applications often need processing large amounts of data. Data storages
for such applications are required to be fast, dynamically scalable and enough reliable
to survive to some failures. Decoupling helps in providing abroad class of parallel
applications with these features while achieving good performances. ADHOC creates a
local virtual memory associated with every processing element. A common distributed
data repository is provided by the cooperation between multiple local memories.

ADHOC implements an external repository for arbitrary length objects. Clients may
access objects through different protocols, implemented within proxy libraries. Proxies
may act as a simple adaptors, or exploit complex behaviors, even cooperating with other
proxies (e.g. distributed agreement). An object cannot be spread across different nodes,
but it can be replicated. Objects can be grouped in ordered collections of objects, which
can be spread across different nodes.

Objects and collections are identified by keys. The actual data location is found at
execution time through a distributed hash table. ADHOC API enables to get, put and
remove objects, and it provides remote execution of objectsmethods. This operation is
initially meant as mechanism to extend server core functionalities for specific needs, as
for example lock and unlock the object for consistency management.

4 Exploiting POP-C++ and ASSIST synergies

POP-C++ and ASSIST have been designed and developed with different programming
models in mind, but with a common goal: provide grid programmers with advanced
tools suitable to be used to develop efficient grid applications. Some of the problems
addressed and (partially) solved in the two contexts are therefore common problems. In
particular, the way active entities (objects in POP-C++ andprocesses in ASSIST) are
deployed to the grid processing nodes, the kind of support needed to efficiently share
data and the way parallelism can be exploited in a single gridprogram component are
all subject of design and implementation efforts in both these environments.

In this section, we want to address the synergies that can be exploited among POP-
C++ and ASSIST. We want to consider the possibilities of integrating the POP-C++ and
the ASSIST environments and, in particular, the integration possibilities that effectively
improve one of the two environments exploiting the originalresults already achieved
in the other environment. Three kind of possibilities have been explored, that seem to
provide suitable improvements in either the ASSIST or the POP-C++ environments:

120



1. to exploit the ASSIST GEA deployment tool to deploy and manage POP-C++ pro-
grams

2. to exploit ASSIST ADHOC shared memory support to implement shared state in
POP-C++ programs

3. to use POP-C++ to implement GRID.it components in the ASSIST framework

The former two cases actually improve the possibilities offered by POP-C++ by ex-
ploiting ASSIST technology. The latter case improves the possibilities offered by AS-
SIST to assemble complex programs out of components writtenaccordingly to different
models. Currently such components can only be written usingthe ASSIST coordination
language or inherited from CCM or Web Services. The following sections detail these
three possibilities and discuss their relative advatages/disadvantages.

4.1 Exploiting ASSIST GEA in POP-C++

POP-C++ comprises a runtime library that implements some services for launching
remote processes and for resource discovery. Launching remote processes is provided
by ajob manager, which has two main functionalities: launching the parallel object and
managing the resources. It allows to submit jobs with different management systems
such as LSF [9], PBS [12] or even Globus [10]. It does not provide authentication
services and relies on the security infrastructure of the management system used.

A distributed resource discovery is integrated in the POP-C++ runtime system. It
differs from the centralized approach such as in Globus, NetSolve [8] or Condor [14].
Information about the POP-C++ resources is fully distributed and accessed on demand,
configuring an adaptive peer-to-peer model. Though, this model has shown some scal-
ability problems and it is a good candidate for a replacement.

GEA provides a comprehensive infrastuture for launching processes, integrated
with functions for matching needs to resouces capabilities. The integration of POP-
C++ with GEA could be done in different levels. The most straightforward would be
to replace the parts of the job manager related to object loading and running and the
resource discovery with calls to GEA, which would perform all launching and all re-
source management. In any case, POP object files would have tobe packed into ASSIST
application packages, which is the file format understood byGEA.

In order to assess the implications of the integration proposed here, the object cre-
ation procedure inside the job manager has to be seen more into detail. Initially, a
proxy object is created, called interface. The interface evaluates the object description
and calls the resource discovery service to find a suitable resource. The interface then
launches an object server in the given resource. The object server now running in the
resource takes care of all other tasks, as downloading and starting the executable code,
setting the connection with the interface, receiving the constructor arguments and sig-
nalling the interface about the end of the creation.

The discovery service as required by the interface is not yetimplemented in GEA.
If implemented, GEA, should return an access point to the resource found. As GEA
can be instructed to load and launch a program in a specified resource, the interface
algorithm could stay as it is. On the other hand, instead of adding a discovery call to
GEA, the interface algorithm could be changed. It could directly ask GEA to launch the

121



new object using a resource description. This is also present in GEA, but only could be
used with some modification.

Requests to launch processes have some restrictions on GEA.Its currently struc-
tured model matches the structured model of ASSIST. Nodes are divided into domains.
The ASSIST model dictates a fixed structure for parallel programs, which are formed
by parallel modules, that are connected in a predefined way. Modules are divided into
processes, which are assigned to resources when the execution starts. All resources as-
signed to a single parallel module must belong to the same domain. It is eventually
possible to adjust on the number of processes inside of a running parallel module, but
the new processes must be started in the same domain.

POP-C++ needs a completely dynamic model to run parallel objects. An object
running in a domain must be able to start new objects in different domains. In order to
support that, GEA has to be extended to a more flexible model. This can be done by
making a process launching interface accessible from inside a domain. Also, resource
discovery for new processes must take into account the resources in all domains (not
only the local one). This functionalities can be added to GEAeither as plugins or as a
separate process, as is the case of the ADHOC server.

In most grid systems, node allocation is based on some sort ofapplication require-
ments and on resource capabilities. In the context of POP-C++ (an in other similar
systems, as ProActive [7], for instance), the allocation must be done dynamically. This
is clearly an optimisation problem, that could eventually be solved with distributed
heuristics expoiting a certain degree of locality. In orderto do that, requirements and
resource sets must be split into parts and mixed and matched in a distributed and incre-
mental (partial) fashion. Requirements sould be expressedas predicates that evaluate to
a certain degree of satisfaction [6]. Resources should be described without a predefined
structure (descriptions could be of any type, not just memory, CPU and network). The
languages needed to express requirements and resources, aswell as good distributed
resource matching algorithms are interesting research problems.

4.2 Data sharing in POP-C++ through ADHOC

POP-C++ implements asynchronous remote method invocations, using very basic sys-
tem features, as TCP/IP sockets and POSIX threads. Instead of using those implemented
parallel objects, POP-C++ could be adapted to use ADHOC objects. Calls to POP ob-
jects would be converted into calls to ADHOC objects. This would have the added ad-
vantage of being possible to somehow mix ADHOC applicationsand POP-C++ as they
would share the same type of distributed object. This would as well add persistence to
POP-C++ objects.

ADHOC objects are shared in a distributed system, as POP objects are. But they
do not incorporate any concurrent semantics on the object side, neither their calls are
asynchronous. In order to offer the same semantics, ADHOC objects (in the caller and
in the callee side) would have to be wrapped in jackets, whichwould implement the
concurrent semantics using something like POSIX threads. This does not appear to be
a good solution.

122



4.3 Parallel POP-C++ components in the ASSIST framework

Currently, the ASSIST framework allows component programsto be developed with
two type of components:native GRID.it components andwrapped legacy components.
GRID.it components can either be sequential or parallel. They provide both a functional
interface, exposing the computing capabilities of the component, and a non functional
interface, exposing methods that can be used to control the component (e.g. to monitor
its behaviour). They provide as well aperformance contract that the component itself
takes ensures by exploiting its internal autonomic controlfeatures implemented in the
non functional code. Wrapped legacy components, on the other hand, are either CCM
components or plain Web Services that can be automatically wrapped by the ASSIST
framework tools to look like a GRID.it native component.

The ASSIST framework can be extended in such a way that POP-C++ programs
can also be wrapped to look like GRID.it components and therefore be used in plain
GRID.it component programs. As the parallelism exploitation patterns allowed in na-
tive GRID.it components are restricted to the ones providedby the ASSIST coordina-
tion language, POP-C++ components introduce in the ASSIST framework the possi-
bility of having completely general parallel components. Of course, the efficiency of
the POP-C++ components is completely in charge of the POP-C++ compiler/runtime
environment. Some interesting possibilities also come in this case from the exploitation
of object oriented programming techniques to implement thenon functional part of the
GRID.it component. In other words, trying to exploit full POP-C++ features to imple-
ment a customizable autonomic application manager providing the same non functional
interface provided by ASSIST/GRID.it components.

5 Conclusion

The questions discussed in this paper entail a CoreGRID fellowship. All the possibili-
ties described in the previous sections are currently beingconsidered. The main focus
of interest is clearly the integration of GEA as the POP-C++ launcher and resource
manager. This will impose modifications on POP-C++ runtime library and new fun-
cionalities for GEA. Both systems are expected to improve thanks to this interaction,
as POP-C++ will profit from better resource discovery and GEAwill implement a less
restricted model. A running prototype is expected for the end of the year.

Further research on the matching model will lead to new approaches on expressing
and matching application requirements and resource capabilities. This model should al-
low a distributed implementation that dinamically adapt the requirements as well as the
resource availability, being able to express both ASSIST and POP-C++ requirements,
and probably others.

A subsequent step can be a higher level of integration, usingPOP-C++ programs as
GRID.it wrapped legacy components. This could allow to exploit full object oriented
parallel programming techniques in ASSIST programs on grids. The implications of
POP-C++ parallel object oriented modules on the structuredmodel of ASSIST are not
fully identified, especially due to the dynamic aspects of the objects created. Supple-
mentary study has to be done in order to devise its real advantages and consequences.

123



References

1. M. Aldinucci, S. Campa, P. Ciullo, M. Coppola, S. Magini, P. Pesciullesi, L. Potiti, R. Ravaz-
zoloand M. Torquati, M. Vanneschi, and C. Zoccolo. The Implementation of ASSIST, an
Environment for Parallel and Distributed Programming. InProc. of EuroPar2003, number
2790 in ”Lecture Notes in Computer Science”. Springer, 2003.

2. M. Aldinucci, S. Campa, M. Coppola, M. Danelutto, D. Laforenza, D. Puppin, L. Scarponi,
M. Vanneschi, and C. Zoccolo. Components for High-Performance Grid Programming in
GRID.it. In Component modes and systems for Grid applications, CoreGRID. Springer,
2005.

3. M. Aldinucci, M. Danelutto, and P. Teti. An advanced environment supporting structured
parallel programming in Java.Future Generation Computer Systems, 19(5):611–626, 2003.
Elsevier Science.

4. M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,M. Vanneschi, L. Veraldi, and C. Zoc-
colo. Dynamic reconfiguration of grid-aware applications in ASSIST. In11th Intl Euro-Par
2005: Parallel and Distributed Computing, number 3149 in ”Lecture Notes in Computer
Science”. Springer Verlag, 2004.

5. M. Aldinucci and M. Torquati. Accelerating apache farms through ad-HOC distributed scal-
able object repository. In M. Danelutto, M. Vanneschi, and D. Laforenza, editors,10th Intl
Euro-Par 2004: Parallel and Distributed Computing, volume 3149 of”Lecture Notes in
Computer Science”, pages 596–605, Pisa, Italy, August 2004. ”Springer”.

6. S. Andreozzi, P. Ciancarini, D. Montesi, and R. Moretti. Towards a metamodeling based
method for representing and selecting grid services. In Mario Jeckle, Ryszard Kowalczyk,
and Peter Braun II, editors,GSEM, volume 3270 ofLecture Notes in Computer Science,
pages 78–93. Springer, 2004.

7. F. Baude, D. Caromel, L. Mestre, F. Huet, and J. Vayssière. Interactive and descriptor-
based deployment of object-oriented grid applications. InProceedings of the 11th IEEE
Intl Symposium on High Performance Distributed Computing, pages 93–102, Edinburgh,
Scotland, July 2002. IEEE Computer Society.

8. H. Casanova and J. Dongarra. NetSolve: A network-enabledserver for solving computational
science problems.The Intl Journal of Supercomputer Applications and High Performance
Computing, 11(3):212–223, Fall 1997.

9. Platform Computing Corporation.Running Jobs with Platform LSF, 2003.
10. I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.Intl Journal of

Supercomputer Applications and High Performance Computing, 11(2):115–128, 1997.
11. Object Management Group.CORBA Components, 2002.
12. R. Henderson and D. Tweten. Portable batch system: External reference specification. Tech-

nical report, NASA, Ames Research Center, 1996.
13. T.-A. Nguyen and P. Kuonen. ParoC++: A requirement-driven parallel object-oriented pro-

gramming language. InEighth Intl Workshop on High-Level Parallel Programming Models
and Supportive Environments (HIPS’03), April 22-22, 2003,Nice, France, pages 25–33.
IEEE Computer Society, 2003.

14. R. Raman, M. Livny, and M.H. Solomon. Resource management through multilateral match-
making. InHPDC, pages 290–291, 2000.

15. M. Vanneschi. The Programming Model of ASSIST, an Environment for Parallel and Dis-
tributed Portable Applications .Parallel Computing, 12, December 2002.

16. G. von Laszewski, B. Alunkal, K. Amin, J. Gawor, M. Hategan, and S. Nijsure. The Java CoG
Kit User Manual. MCS Technical Memorandum ANL/MCS-TM-259,Argonne National
Laboratory, March 14 2003.

17. T. Ylonen. SSH - secure login connections over the internet. In Proceedings of the 6th
Security Symposium, page 37, Berkeley, 1996. USENIX Association.

124


