
Autonomic QoS in ASSIST Grid-aware components

Marco Aldinucci
Inst. of Information Science

and Technologies, CNR
Via G. Moruzzi, 1
56124 Pisa, Italy

aldinuc@di.unipi.it

Marco Danelutto
Dept. of Computer Science

University of Pisa
Largo B. Pontecorvo, 3

56127 Pisa, Italy
marcod@di.unipi.it

Marco Vanneschi
Dept. of Computer Science

University of Pisa
Largo B. Pontecorvo, 3

56127 Pisa, Italy
vannesch@di.unipi.it

Abstract

Current Grid-aware applications are developed on exist-
ing software infrastructures, such as Globus, by developers
who are experts on Grid software implementation. Although
many useful applications have been produced this way, this
approach may hardly support the additional complexity to
Quality of Service (QoS) control in real application. We de-
scribe the ASSIST programming environment, the prototype
of parallel programming environment currently under de-
velopment at our group, as a suitable basis to capture all
the desired features for QoS control for the Grid. Grid ap-
plications, built as compositions of ASSIST components, are
supported by an innovative Grid Abstract Machine, which
includes essential abstractions of standard middleware ser-
vices and a hierarchical Application Manager, which may
be considered as an early prototype of Autonomic Manager.

Keywords: Components, Structured Parallel Programming,

Autonomic Computing, Grid, Adaptive Applications.

1. Introduction

Grid computing is supposed to enable the development

of large scientific applications on an unprecedented scale.

The key idea behind Grid-aware applications consists in

making use of the aggregate power of distributed resources,

thus benefiting from a computing power that falls far be-

yond the current availability threshold in a single site. De-

spite the huge computing power potentially available on the

Grid, developing algorithms able to exploit it is currently

likely to be a hard task. To realize the potential, program-

mers must design highly concurrent algorithms that can exe-

cute on large-scale platforms, which can be assumed neither

homogeneous, secure, reliable nor centrally managed. They

must then implement these algorithms correctly and effi-

ciently [13]. As results in order to build efficient Grid-aware

applications, programmers have to face up classical prob-

lems of parallel computing as well as Grid-specific ones:

• code all the algorithm details, take care about con-

currency exploitation, among the others concurrent

activities set up, mapping/scheduling, communica-

tion/synchronization handling and data allocation;

• manage resources heterogeneity and unreliability, net-

works latency and bandwidth unsteadiness, resources

topology and availability changes.

Hence, the number and quality of problems to be resolved

in order to draw a given QoS (in term of performance, ro-

bustness, etc.) from Grid-aware applications is quite large.

The lesson learned from parallel computing suggests that

any low-level approach to Grid programming is likely to

raise the programmer’s burden to an unacceptable level for

any real world application.

Therefore, we envision a layered, high-level program-

ming model for the Grid. In such software architecture the

bottom tiers should cope with key Grid requirements for

protocols and services (connectivity protocols concerned

with communication and authentication, resource protocols

concerned with negotiating access to individual resources)

and collective protocols and services (concerned with the

coordinated use of multiple resources) [13]. As top tier re-

gards, we envision a Grid-aware application as the composi-

tion of a number of coarse grained, cooperating components

within a high-level programming model, which is character-

ized by a high-level view of compositionality, interoperabil-

ity, reuse, performance and application adaptivity. Applica-

tions are expressed entirely on top of this level. This vi-

sion is currently pursued by several research initiatives and

programming environments, among the others, within the

ASSIST [23] and GrADS [16] projects.

The underlying idea of these programming environments

is moving most of the Grid specific efforts needed while

developing high-performance Grid applications from pro-

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

grammers to Grid tools and run-time systems. This leaves

programmers the responsibility of organizing the applica-

tion specific code and the programming tools (i.e. the com-

piling tools and/or the run-time system) the responsibility

of properly interacting with the Grid.

In such a scenario, QoS constraints of the whole applica-

tion and their components are naturally a – static and/or dy-
namic – attribute of components and their composition. In

both cases, the run-time system should actively operate in

order to fulfill QoS requirements of the applications, since

any static resource assignment may violate QoS constraints

due to the very uneven performance of Grid resources over

time. Therefore, the run-time support is required to exploit

a certain degree of self-management (configuration, opti-

mization), or in other words to be partially autonomic.

In this paper we take in account the ASSIST program-

ming environment and we sketch how its run-time support

may be enriched with some self-management features tar-

geted to fulfill QoS requirements expressed at the language

level.

In the next section we sketch the Autonomic Computing

idea. In Section 3 we briefly present the ASSIST program-

ming environment and its run-time support for the Grid,

while in Section 4 we discuss ASSIST autonomic features.

In Section 5 we present some experiments aiming to show

the effectiveness of proposed architecture. Related works

and final remarks conclude the paper.

2. Autonomic Computing

The term Autonomic Computing is emblematic of a vast

hierarchy of natural self-governing systems, many of which

consist of many interacting, self-governing components that

in turn comprise a number of interacting, self-governing

components at the next level down1 [17]. Autonomic com-

puting aims to attack the complexity, which entangle com-

plex system management and optimization by equipping

their parts with self-managements facilities.

IBM tries to tackle the problem with the often-

quoted five “selves”: self-configuration, self-healing, self-

optimization, self-protection, and, as a combination of all,

self-management. As shown in Fig. 1, an autonomic el-

ement will typically consist of one or more managed ele-

ments coupled with a single autonomic manager that con-

trols them. The managed element could be a hardware re-

source (storage, CPU, etc.), or a software resource, such as

a Web service, or a software component. Control loops,

which are known in optimization theory since (at least)

the mid of the last century, can be used to apply the five

1The term, introduced by IBM in 2001, derives from the body’s au-

tonomic nervous system, which controls key functions without conscious

awareness.

Managed element

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager

Figure 1. Structure of an autonomic ele-
ment. Elements interact with other elements
and with human programmers via their auto-
nomic managers [17].

“selves”. They split the optimization process into 1) a moni-
toring phase, where the symptoms are collected; 2) an anal-
ysis phase, where the current status is checked against the

goal status; 3) a planning phase, where a plan is created to

enact the desired alterations according to some policies; and

4) the execution phase, which provides the mechanisms to

schedule and perform the necessary changes to the system

[7, 17].

Truly autonomic systems are years away, although in the

nearer term, autonomic functionality will appear in soft-

ware, especially in very complex systems as Grid-aware ap-

plications. In particular, early autonomic system may threat

the five “selves” as distinct aspects, with different solutions

that address each one separately.

3. The ASSIST Programming Environment

Current applications are developed atop existing soft-

ware infrastructures, such as Globus, by developers who

are experts on Grid software implementation. They must

design highly concurrent algorithms that can execute on

large-scale platforms. They must then implement these al-

gorithms correctly and efficiently. Although many useful

applications have been produced this way, this approach can

hardly rule increasing complexity due to application QoS

control. Indeed, several research projects are targeted to-

ward Grid high-level programming, among the other, AS-

SIST [23], GrADS [16], ProActive/Fractal [9, 10], Condor

[20], Ibis [22], XCAT [14], eSkel [11]. In the rest of the

section we sketch the ASSIST programming environment

and its architecture, a complete description can be found in

[1, 3].

3.1. The ASSIST coordination language

ASSIST applications are described by means of a coor-

dination language, which can express arbitrary graphs of

modules, interconnected by typed streams of data. Each

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

send1

send2

recv

matrix_mul

A

B

C=AB

1 generic main() {
2 stream long[N][N] s1;
3 stream long[N][N] s2;
4 stream long[N][N] s3;
5 send1 (output_stream s1);
6 send2 (output_stream s2);
7 matrix_mul (input_stream s1, s2)
8 output_stream s3);
9 recv (input_stream s3);

10 }
11

12 ...

20 parmod matrix_mul (input_stream long M1[N][N], long M2[N][N],
21 output_stream long M3[N][N]){
22 topology array [i:N][j:N] Pv;
23 attribute long A[N][N] scatter A[*ia][*ja] onto Pv[ia][ja];
24 attribute long B[N][N] scatter B[*ib][*jb] onto Pv[ib][jb];
25 stream long ris;
26 do input_section {
27 guard1: on , , M1 && M2 {
28 distribution M1[*i0][*j0] scatter to A[i0][j0];
29 distribution M2[*i1][*j1] scatter to B[i1][j1];
30 } } while (true)
31 virtual_processes {
32 elab1 (in guard1 out ris) {
33 VP i, j { f_mul (in A[i][], B[][j] output_stream ris);}}}
34 output_section {
35 collects ris from ALL Pv[i][j] {
36 int elem; int Matrix_ris_[N][N];
37 AST_FOR_EACH(elem) {
38 Matrix_ris_[i][j]=elem;
39 }
40 assist_out(M3, Matrix_ris_);
41 }<>; } }
42 proc f_mul(in long A[N], long B[N] output_stream long Res)
43 $c++{ register long r=0;
44 for (register int k=0; k<N; ++k)
45 r += A[k]*B[k];
46 assist_out(Res,r); }c++$

Figure 2. Sample of matrix multiplication code in ASSIST

stream realizes a one-way asynchronous channel between

two sets of endpoint modules: sources and sinks. Data items

injected from sources are broadcast to all sinks. All data

items injected into a stream should match stream type.

Modules can be either sequential or parallel. A sequen-

tial module wraps a sequential function. A parallel mod-

ule (parmod) can be used to describe the parallel execution

of a number of sequential functions that are activated and

run as Virtual Processes (VPs) on items arriving from input

streams. The VPs may synchronize with the others through

barriers. The sequential functions can be programmed by

using a standard sequential language (C, C++, Fortran).

A parmod may behave in a data-parallel (e.g. SPMD/for-

all/apply-to-all) or task-parallel (e.g. farm) way and it may

exploit a distributed shared state, which survives to VPs

lifespan. A module can nondeterministically accept from

one or more input streams a number of input items, which

may be decomposed in parts and used as function parame-

ters to instantiate VPs according to the input and distribu-

tion rules specified in the parmod. The VPs may send items

or parts of items onto the output streams, and these are gath-

ered according to the output rules. The simple application

in Fig. 2 includes three sequential modules (send1, send2,

and recv) and one parmod (matrix mul), which take two

matrixes and give their product along three different streams

(lines 2–9).

A parmod is characterized by four regions of code

describing its behavior: topology, input section,

virtual processes, and output section. The

topology declaration specializes the behavior of the Vir-

tual Processes as farm (topology none), or SMPD (topol-

ogy array). The input section enables program-

mers to declare how VPs receive data items, or parts of

items, from streams. A single data item may be dis-

tributed (scattered, broadcast or unicast) to many VPs.

The input section realizes a CSP repetitive command

[15]. The virtual processes declarations enable the

programmer to realize a parametric Virtual Process start-

ing from a sequential function (proc). VPs may be iden-

tified by an index and may synchronize and exchange data

one with another through the ASSIST language API. The

output section enables programmers to declare how

data should be gathered from VPs to be sent onto output

streams. More details on the ASSIST coordination lan-

guage can be found in [23, 3].

The example parmod in Fig. 2 exhibits a topology

array (line 22, NxN VPs behaving in a SPMD fashion).

Once the two input matrixes are received (line 27), they are

both scattered to the VPs which store them in the distributed

shared matrixes A and B (lines 28–29) that has been previ-

ously declared (lines 23–24). Then, all elements of the re-

sult matrix C are computed in parallel (lines 31–33). Once

all VPs completed the operation, a result matrix is collected

from the distributed matrix C and sent into the output stream

(lines 34–41). The code of sequential modules is not shown

for the sake of brevity.

The ASSIST compiler translates a graph of modules into

a network of processes. As sketched in Fig. 3 a), sequen-

tial modules are translated into sequential processes, while

parallel modules are translated into a parametric (w.r.t. the

parallelism degree) network of processes: one Input Section
Manager (ISM), one Output Section Manager (OSM), and

a set of Virtual Processes Managers (VPMs, each of them

running a set of Virtual Processes). Also, a number of other

processes devoted to application QoS control are added to

the network (not shown in Fig. 3). We shall introduce them

in the next sections.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

a)

ASSIST
compiler

seq P1

parmod

VP VP
VP

binary
files

QoS
contract

ASSIST program

resource
description

(XML)

VP
VP
VP

VP
VP

VP
VP
VP
VP output

section
input

section

binary code+XML
(network of processes)

ISM OSMP1 P2VP
VPVP

VP
VP

VPM
VP

seq P2

source
code

b)

GAM

Application Manager (AM)

ASSIST components

Abstraction of the basic services:
resource management & scheduling,
monitoring, ...

standard middleware

Figure 3. a) An ASSIST application and a QoS contract are compiled in a set of executable codes and
its meta-data [3], this information is used to set up a processes network at launch time: hexagons
represent Virtual Processes, ovals represents processes, solid edges represent data channels,
dashed edges management channels. b) ASSIST software architecture.

3.2. Components and Managers

A single parmod or a graph of them may be declared

as component (ASSIST native component). In addition a

graph of components and the whole application may be re-

cursively declared as a component. A component is char-

acterized by provided and used ports, as well as by Non-
Functional ports, which are related to component QoS con-

trol. Each port of an ASSIST native component may be

configured to behave as endpoint of one-way stream con-

nection, RPC method, or event channel. ASSIST native

component may also interoperate with Corba/CCM (via

IIOP based RPC) components [18] or Web services (via

HTTP/SOAP) [4].

The software architecture of the ASSIST component-

based parallel programming environment is organized as

shown in Fig. 3 b). The run-time environment of AS-

SIST 1.3 is implemented on top of a Grid Abstract Ma-
chine (GAM). The GAM implements abstract services, i.e.

the functionalities needed by the programming environment

to support high-performance, component-based Grid-aware

applications. These regard resources discovery, manage-

ment and monitoring; components deployment, run, and

wiring; routing of communications through networks with

private addresses, and other services (accounting and so

on). Whether possible, these services rely on the under-

lying Grid middleware, which are just abstracted out at the

GAM level. In other cases, GAM services extend Grid mid-

dleware services (e.g. monitoring) [2, 12]. More specifi-

cally, the GAM and the related GAM deployment tool are

currently implemented on top of two distinct frameworks:

plain POSIX TCP/IP OS and Globus:

• POSIX ssh/scp tools are exploited to stage data and

code and to remotely execute commands. Resource

lookup is performed consulting configuration XML

files. This GAM implementation is primarily thought

to target clusters/networks of workstations.

• Globus CoG toolkit is used to perform code and data

staging, to remotely execute commands and to access

MDS, i.e. to gather information about the available

Grid resources. The possibility to use XIO to imple-

ment communications and NWS to support the moni-

toring process is also taken into account.

In both cases, the GAM deployment tool is able to deal with

multi-site deployment, even in case job schedulers manage

the sites since different components of an ASSIST applica-

tion do not require a strict co-allocation of resources.

Application management can be realized in a decen-

tralized way, according to several strategies. We suppose

that the decentralization is realized in a hierarchical man-

ner. Moreover, for availability reasons, we assume that the

root is designed according to principles of fault-tolerance,

e.g. using redundancy and, possibly, mechanisms for check

pointing.

The Application Manager (AM) has a hierarchical struc-
ture that can be extended at any level according to the com-

positionality and abstraction strategy adopted for the appli-

cation. Each ASSIST module has associated a Module Ap-
plication Manager (MAM): each MAMi is the responsible

of the configuration and QoS control of the associated mod-

ule. A global strategy for the configuration control of the

whole component is implemented by the Component Appli-
cation Manager (CAM).

For example, Fig. 4 shows an application in which

we recognize four components, component a consisting

of modules M1, component b consisting of modules M2,

and component c consisting of modules M3 and M4. The

whole application exposes a provided port. Each mod-

ule and component has an associated management en-

tity: CAMa, CAMb, and CAMc for components; MAM1,

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

M4

MAM4

M3

MAM3

AM

M1

CAMa
MAM4

CAMc

M2

CAMb
MAM2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

Figure 4. Four interacting ASSIST compo-
nents.

MAM2, MAM3, and MAM4 for ASSIST modules. Man-

agers are arranged in a hierarchy whose root is the Applica-

tion Manager coordinating the QoS of the whole application

through CAMs and MAMs.

The ASSIST compiler automatically generates MAMs,

CAMs, and AM, programmers are only requested to config-

ure the management policy providing the code with a QoS

contract. Also, ASSIST provides programmers an AM able

to bind legacy (non ASSIST, e.g. CCM) components, pro-

vided they implement a suitable set of non-functional ports

(e.g. monitor and adaptivity methods).

4. Self-Optimizing ASSIST components

In order to fully exploit Grid potentialities ASSIST rely

on enhanced execution environment, which is designed (to

a certain extent) to exploit an autonomic behavior (self-

optimizing, at least). It should continually adapt the ap-

plication to changes in Grid resources with the goal of sus-

taining the QoS requested for the application.

Each ASSIST component may be (statically or dynam-

ically) set with a QoS specification, a.k.a. QoS contract.

It can be specified for the whole application and/or for ev-

ery single component. Currently, QoS contract is provided

by a specific XML file and includes the specification of the

processing bandwidth (service time) in stream-based com-

putations, and/or the completion time, which is significant

also for non-stream computations. Such service time may

be constrained by the use of a maximum amount and of a

given kind of processing nodes. The introduction of several

other attributes is under way:

• the aggregate memory space available on a component,

which is a key issue for components exploiting dis-

tributed storage;

• component protocols and their performances, which is

needed to glue legacy components and to control their

bandwidth;

• component fault-tolerance capability, which crucial for

Grid executions.

As mentioned, each ASSIST Manager behaves as an Auto-
nomic Manager. Module-AM (MAM) controlled elements

are processes that implements the parmod. Component-AM

(CAM) controlled elements are nested components. The ap-

plication Manager (AM) is built out of all the components

constituting the application. Clearly, the three kinds of man-

agers may have different goals. All of them, anyway, con-

tribute to satisfy the contracts, provided as XML files, ac-

cording to a “best effort policy”. As explained below, they

initially allocate resources, then provide to cycle monitor-

ing execution and possibly performing some performance

model driven, corrective action.

4.1. Module Application Manager

The Module Application Manager (MAM) implements

the configuration control of the single ASSIST parmods. Its

main goal consists in to keep valid the module QoS con-

tract, possibly by using assigned resources. Currently the

performance contact can be set up dynamically by the fa-

ther CAM, and may describe a mix of module service time

and number/kind of resources.

The initial configuration of an ASSIST program is spec-

ified by the set of processes that are co-allocated at launch

time. The configuration of a parmod is managed by its

MAM, which dynamically decides the number of VPMs,

and their mapping onto grid Processing Elements (PEs) ac-

quired through Grid middleware. The ASSIST compiler

prepares a QoS contract for each parmod and binds them

to MAMs. Moreover, a MAM can asynchronously receive

a different QoS contract from the CAM/AM in any moment

along the application run.

Among all possible QoS goals, in this work we mainly

focus on performance related ones that are achievable

through adaptation within each parallel module. All aspects

regarding modules coordination, as well as other QoS mea-

sures such as reliability, availability, and security are cur-

rently under investigation. We introduce the concept of QoS

contract. It carries a module QoS goal and the description

on how it should be achieved. In particular:

• Performance features: a set of variables, which can

be evaluated from module static information, run-time

data, collected through monitoring, and performance

model evaluation.

• Performance model: a set of relations among perfor-
mance features variables, some of them representing

the performance goal.

• Performance goal: a set of inequalities involving per-
formance features.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

a)

Input
Streams

Output
Streams

parmod

to the
 CAM

In
pu

t
M

an
ag

er

O
ut

pu
t

M
an

ag
er

MAM

VPVP
VP
VP

VP
VP

VPM

VPM

VP VP VP

VP
VP
VP

VP
VP VP

b)

Input
Streams

Output
Streams

to the
CAM

MAM
parmod

In
pu

t
M

an
ag

er

O
ut

pu
t

M
an

ag
er

VPM

VPM

VP
VP
VP

VPVP
VP
VP

VP
VP

VP VP VP

VPVP VP

Figure 5. An ASSIST parmod before (a) and after (b) a reconfiguration. Dark VPs are migrated from
one VPM to the other VPM under the control of the MAM. Along with VPs migration, some computa-
tional load is moved from one VPM to the other.

• Deployment annotations describing processes resource

needs, such as required hardware (platform kind,

memory and disk size, network configuration, etc.), re-

quired software (O.S., libraries, local services, etc.),

and other all strictly required constraints to enforce

code correctness.

• Adaptation policy: a reference to the desired adapta-

tion policy chosen among the ones available for the

module. Standard adaptation policies are represented

as algorithms and embedded within MAM code at

compile time.

In Section 5 an example of QoS is given. The performance

models used in the ASSIST framework range from very

simple and approximate analytical models, such as the one

used to manage task farm parmods, to more complex mod-

els derived using advanced mathematical techniques, such

as those derived in [24].

MAM main autonomic behavior consists in keeping

the load balancing among module resources, despite the

possible change of state/performance of underlying hard-

ware/software resources. At this end, the MAM is equipped

with a performance model that forecasts a sub-optimal map-

ping of VPs onto VPMs [5, 2]. The model uses VPs and

VPMs historical performance data, and exploits the struc-

tured design of the parmod. MAM control loop is the fol-

lowing:

� Monitor. It collects VPMs execution times between two

consecutive synchronization points that characterize

module workload. These may be induced by ex-

plicit barriers (e.g. between loop cycles), or any event

due to shared state synchronization or data distribu-

tion. The selection of suitable synchronization points

is performed at compile time and guided by struc-

tured nature of parallelism exploitation in the parmod.

It collects communication and synchronization perfor-

mances.

� Analyze. Collected data is used to verify the MAM per-
formance goal, update manager knowledge by build-

ing statistic and historical performance data. If the

performance goal is broken, the possible causes are

detected (e.g. load unbalance, not enough computing

power or network bandwidth, insufficient input data

rate).

� Plan. If the performance goal is broken, a plan to re-

convey the contract to a valid status is formed, i.e. a

sequence of reconfiguration actions, each of them ad-

dressing a particular cause of performance degrada-

tion. Reconfiguration actions are chosen among legal

ones for the particular instance of the parmod (e.g. add

workers to a farm, migrate load between two VPs), and

configured by using performance model instanced with

data collected in previous stage (e.g. how many work-

ers should be added to met a given service time, how

much work should be moved from a VP to another). In

the case no reconfiguration actions appear effective for

the problem, an event is raised to the father CAM.

� Execute. Depending of the previous outcome, it triggers

VPs redistribution among VPMs by starting the suit-

able protocol, and it negotiates a resource upgrade with

father CAM. The MAM can also receive an event by

the father CAM indicating that it has to apply a re-

structuring strategy because a global variation of per-

formance has been detected.

Note that many of the described features are really feasi-

ble due the high-level, structured nature of parallelism ex-

ploited in the ASSIST language. In particular, the pattern,

frequency, and cost of communications among VPs can be

derived from parmod declaration. They depend from par-

mod topology, data types and distribution. This informa-

tion enables the definition of parametric performance mod-

els that can be instanced with monitored data (e.g. VPs

completion time, communication bandwidth) to forecast ex-

pected performance. As an example, the performance gain

of adding a worker in farm can be forecasted by extrapolat-

ing current performance to a scenario with more PEs.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

A,B,C,D

A,B,D

A,B,C
A,B

A,C

A

0

0.5

1

1.5

2

2.5

3

3.5

0.7 1.2 1.7 2.2 2.7 3.2

Aggregate power

pa
rm

od
 s

pe
ed

up

Measured
Perfect

power of Cpower of Dpower of B

Figure 6. Speedup curve of a data-parallel
application versus the aggregate power of
tested environment.

4.2. Component Application Manager

Each Component Application Manager (CAM) applies

control strategies at a global level for the associated com-

ponent. Understanding the mapping from local behavior to

global behavior is a necessary but insufficient condition for

controlling autonomic systems. We must also exploit the

inverse relationship. As indicated above, a CAM can re-

ceive proposals of restructuring by the child MAMs (mon-
itor). In this case, the CAM has to apply a global perfor-

mance model in order to individuate a good solution to the

restructuring of one or more of the children modules (ana-
lyze & plan). Recursively, a CAM can receive reconfigura-

tion requests from father CAMs, and can send them recon-

figuration proposals (execute). The root manager (AM) is

the eventual responsible for the final decisions in the global

reconfiguration control which, as seen, is a sort of parallel

and asynchronous Divide&Conquer strategy applied along

the hierarchical Application Manager structure.

The definition of a sound set of behavioral and inter-

action rules, that embedded in CAMs, will induce the de-

sired global behavior is under investigation. As an exam-

ple, a general strategy enabling to make sound decisions

at the minimum possible level of the CAM hierarchy may

significantly improve management overhead. At this end,

the analysis of the application graph in terms of a queu-

ing network seems a promising approach. This enables

the detection of bottlenecks in application DAGs or sub-

DAGs exploiting a data-flow behavior, i.e. ASSIST compo-

nents mainly interacting via streams. Application of general

graphs require a more sophisticated analysis because of the

need to partition the graph in suitable sub graphs having

both stable states and matching a manager that is as lower

as possible in the manager hierarchy.

5. Experiments

The proposed AM organization and behavior, described

in Section 3, has been evaluated and validated before ac-

tually starting its complete implementation. We integrated

some ASSIST object code samples, produced by the AS-

SIST compiler, with code emulating the dynamic features

of the run-time support and of the MAM/CAM hierarchi-

cal organization. Then we analyzed the efficacy and the

peculiarities of the different implementation choices exper-

imented. Later on we started migrating this whole experi-

ence in the actual ASSIST compiler/run time framework.

The engineering of the MAM/CAM stuff in the production

ASSIST compiler is still undergoing. This Section is about

the results of the preliminary validation experiments per-

formed to assess the MAM/CAM technology.

First of all, we performed a set of experiments aimed at

evaluating the impact of the usage of heterogeneous pro-

cessing node, such as the ones that can be recruited by the

mangers in the process of adapting the execution of an ap-

plication to the varying features sported by the target ar-

chitecture processing elements. Good scalability can be

achieved, as shown in Fig. 6. In the figure, the speedup of

an application executed on a set of up to four different ma-

chines is shown. The speedup is measured in function of the

aggregate power of the machines used to execute the pro-

gram. Machines A, B, C and D differ in their relative power

(CPU, clock speed, main memory). To have a rough idea

of the relative power we used the BogoMIPS measure per-

formed by the Linux kernel during the boot process. Nor-

malized taking machine D as the unit power machine, ma-

chine A is rated at 0.8, machine B at 0.6 and machine C

at less than 0.4 times the power of machine D. The mea-

sured speedup is definitely not far from the ideal one, also

taking into account that BogoMIPS do not reflect latency

and bandwidth in the network connections between the ma-

chines that also varied during the experiment.

Figure 7 shows the results achieved in a set of reconfigu-

ration experiments. The experiments have been performed

using an application whose structure was a pipeline of three

stages: the first and the third stages are data servers and

stream managers, and the second stage is a data parallel

version of the finite difference method for solving differ-

ential equations (Jacobi method). Each stage is a parmod,

wrapped in a component.

Figure 7 a) shows the effects of a perturbing overload

caused by the creation of a new application onto the same

processing nodes. In this case, we assume that no more

processing nodes are available, thus only the load balanc-

ing solution is attempted, with a suitable redistribution of

data partitions implemented directly by the run-time sup-

port. Fig. 7 b) shows a situation similar to Fig. 7 a): the

difference is that more processing nodes are now available,

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Current Service Time
Average Service Time

T
im

e
(s

ec
s)

Stream items computed (computation unfolding)

4 PEs 8 PEs (no more PEs are needed)5 PEs

The load of some PEs goes up and down until the end
of the test (because of some other applications). The

AM reacts by both re-distributing the data/computation
onto PEs and adding fresh PEs.

performance contract
max. Service Time

+3 PEs+1 PE

b)

0

20

40

60

80

100

120

140

160

180

200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Current Service Time

Average Service Time

Stream items computed (computation unfolding)

T
im

e
(s

ec
s)

4 PEs
(no more PEs
are available)

2 PEs

performance contract
max. Service Time

+2 PEs

PEs overload caused by the activation of other
applications. The AM reacts by re-distributing

data and computation onto available PEs.

a)

Figure 7. Experiments in dynamic restructuring of parallel ASSIST components.

and, after a first attempt of applying data redistribution, the

degree of parallelism of the data parallel module is success-

fully increased.

Further experiments have been performed to better eval-

uate overhead related to manager activity. These experi-

ments have been performed using an application using a

parmod to model a plain task farm parallel pattern, and they

have been performed on a dedicated Linux cluster. The

cluster hosts 24 P3@800MHz PEs, connected through a

100MBit switched Ethernet. The architectural homogene-

ity and stability enable to precisely discriminate reconfigu-

ration overhead, while do not affect general validity since

the farm paradigm sports a self-balancing behavior through

its on-demand scheduling [5]:

Fig. 8-� is relative to manager activity in best effort mode,

that is, the manager was requested to arrange the better

possible execution. In this case the number of tasks

(i.e. stream items) per second per parmod is required

to receive and compute (Input stream pressure)

Fig. 8-� is relative to manager activity in goal based mode,

that is, the manager was asked to guarantee a fixed ser-

vice time specified in the contract and with a fixed in-

put pressure. Three times, along the program run, a PE

is externally overloaded causing a contract violation.

The MAM reacts by adding as many VPMs (one in

the figure) mapped onto fresh PEs until the contract is

satisfied. The MAM also knows that the contract con-

tinues to be satisfied if the overloaded PE is removed,

and after a while removes it. On the whole a VPM

migrates from one PE to another without stopping the

parmod.

Experiment in Fig. 8-� is run with the following QoS con-

tract:

Perf. features QLi (input queue level), QLo (input queue level), TISM

(ISM service time), TOSM (OSM service time), Nw

(number of VPMs), Tw [i] (VPMi avg. service time), Tp

(parmod avg. service time)

Perf. model Tp = max{TISM ,
∑

n

i=1
Tw[i]/n, TOSM}

Goal Tp < K

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-darwin*)

Adapt. policy goal based

6. Related Works

The AFPAC library [6] proposes a similar approach to

our in supporting application adaptability for MPI appli-

cations, however the reconfigurations are not transparent

since the user code should be augmented with both synchro-

nization points finalized to adaptability and reconfiguration

code (ASSIST reconfiguration mechanisms are described

in [5]). AFPAC does not support application development

through assembly of components. Java bytecode portability

has been exploited to provide a user-level migration mech-

anism (ProActive [9]), even if it is not transparent to the

application programmer. ProActive include an implemen-

tation of the Fractal component model [19]. Both AFPAC

and ProActive does not support automatic management of

QoS.

We followed a similar approach to the GrADS project,

which exploits a complete environment, including a mon-

itoring architecture, contract negotiators and configuration

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

 50 80 60 40 20 100 150 200

 50
 100

Input stream queue fill level F
ill

 %

Wall Clock Time (s)

F
ill

 %

 200
Wall Clock Time (s)

Ite
m

s/
s

Ite
m

s/
s

N. of VPMs in parmod

 3
 4
 5
 6 VPMs aggregated power

 2
 4
 6
 8

 10

Input stream pressure
VPMs aggregated power

 160 140

 8
 6
 4
 2

 180

 6
 7
 8
 9

N
. o

f V
P

M
s

QoS contract

N
. o

f V
P

M
s

N. of VPMs in parmod

 0
 120

Input stream queue fill level

 0
 50

 100

 100

Figure 8. Experiments on farm reconfiguration.

optimizer. Differently from GrADS we can reconfigure ap-

plications in transparent manner, and with a sensibly bet-

ter performance (we can join additional resources without

completely stopping the application [5]). In particular [21],

reports cost of minutes for reconfiguring a data-parallel ap-

plication while ASSIST overheads ranges in milliseconds–

seconds span. The lower reconfiguration cost diminishes

the criticality of deciding a reconfiguration, and enables

the use of heuristic “try-and-see” approach whether analytic

modeling fails.

7. Concluding Remarks

We presented current status of ASSIST, a Grid-oriented

structured parallel programming environment under devel-

opment at the University of Pisa. The environment allows

achieving quality of service in the execution of parallel pro-

grams by ensuring that a user defined performance con-

tract is dynamically satisfied. This activity is completely in

charge of a hierarchy of autonomic managers, which are au-

tomatically generated and configured by the ASSIST com-

piler. The programmer only needs to express the parallel

program as a composition of components and to provide

a performance contract. Components are declared by or-

ganizing sequential function according to a data or control

parallel paradigm, and automatically generated by the com-

piler. The compiler also provides tools to integrate both

legacy components and Web Services into an ASSIST ap-

plication.

We discussed preliminary results on the ability of the

ASSIST run-time to sustain a given QoS (service time),

even whether available resources are artificially overloaded.

The self-optimizing architecture of the ASSIST run-time,

as well as the formalization of analysis and plan autonomic

phases are topics of current research. The ASSIST pro-

gramming environment is available under GPL open source

license [8].

Acknowledgments. This work has been partially sup-

ported by Italian national FIRB project no. RBNE01KNFP

GRID.it, by Italian national strategic projects legge 449/97
No. 02.00470.ST97 and 02.00640.ST97, and by the FP6

Network of Excellence CoreGRID funded by the European

Commission (Contract IST-2002-004265)

References

[1] M. Aldinucci, S. Campa, M. Coppola, M. Danelutto,

D. Laforenza, D. Puppin, L. Scarponi, M. Vanneschi, and

C. Zoccolo. Components for high performance Grid pro-

gramming in Grid.it. In V. Getov and T. Kielmann, editors,

Proc. of the Workshop on Component Models and Systems
for Grid Applications, CoreGRID series. Springer Verlag,

Jan. 2005.

[2] M. Aldinucci, M. Coppola, S. Campa, M. Danelutto,

M. Vanneschi, and C. Zoccolo. Structured implementation

of component based grid programming environments. In

V. Getov, D. Laforenza, and A. Reinefeld, editors, Future
Generation Grids, CoreGRID series. Springer Verlag, Nov.

2005.

[3] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi,

and C. Zoccolo. ASSIST as a research framework for

high-performance Grid programming environments. In J. C.

Cunha and O. F. Rana, editors, Grid Computing: Software
environments and Tools. Springer Verlag, Jan. 2006.

[4] M. Aldinucci, M. Danelutto, A. Paternesi, R. Ravazzolo, and

M. Vanneschi. Building interoperable grid-aware ASSIST

applications via WebServices. In Proc. of PARCO 2005:
Parallel Computing, Malaga, Spain, Sept. 2005.

[5] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati,

M. Vanneschi, L. Veraldi, and C. Zoccolo. Dynamic recon-

figuration of grid-aware applications in ASSIST. In 11th Intl
Euro-Par 2005: Parallel and Distributed Computing, vol-

ume 3648 of LNCS, pages 771–781, Lisboa, Portugal, Aug.

2005. Springer Verlag.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

[6] F. André, J. Buisson, and J.-L. Pazat. Dynamic adaptation

of parallel codes: toward self-adap table components for the

Grid. In Workshop on component Models and Systems for
Grid Applications, June 2005.

[7] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schütt. On

adaptability in grid systems. In V. Getov, D. Laforenza, and

A. Reinefeld, editors, Future Generation Grids, CoreGRID

series. Springer-Verlag, Nov. 2005.
[8] ASSIST web site. http://www.di.unipi.it/Assist.html.
[9] F. Baude, D. Caromel, and M. Morel. On hierarchical, par-

allel and distributed components for Grid programming. In

V. Getov and T. Kielmann, editors, Workshop on component
Models and Systems for Grid Applications, ICS ’04, Saint-

Malo, France, June 2005.
[10] E. Bruneton, T. Coupaye, and J. B. Stefani. Recursive and

Dynamic Software Composition with Sharing. In 7th Intl
Workshop on Component-Oriented Programming, ECOOP

2002, Malaga, Spain, June 2002.
[11] M. Cole. Bringing Skeletons out of the Closet: A Prag-

matic Manifesto for Skel etal Parallel Programming. Paral-
lel Computing, 30(3):389–406, 2004.

[12] M. Danelutto, M. Vanneschi, C. Zoccolo, N. Tonellotto,

R. Baraglia, T. Fagni, D. Laforenza, and A. Paccosi. HPC

application execution on grids. In V. Getov, D. Laforenza,

and A. Reinefeld, editors, Future Generation Grids, Core-

GRID series. Springer-Verlag, Nov. 2005.
[13] I. Foster, C. Kesselman, and S. Tuecke. The anatomy

of the Grid: Enabling scalable virtual organization. The
Intl. Journal of High Performance Computing Applications,

15(3):200–222, Fall 2001.
[14] M. Govindaraju, S. Krishnan, A. S. K. Chiu, D. Gannon,

and R. Bramley. XCAT 2.0: A component-based program-

ming model for Grid web services. Technical Report TR562,

Dept. of Computer Science, Indiana University, 2002.
[15] C. A. R. Hoare. Communicating Sequential Processes. Com-

munications of ACM, 21(8):666–677, Aug. 1978.
[16] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,

L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-

gulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman,

R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wolski.

Toward a framework for preparing and executing adaptive

Grid programs. In Proc. of NSF Next Generation Systems
Program Workshop (IPDPS 2002), 2002.

[17] J. O. Kephart and D. M. Chess. The vision of autonomic

computing. IEEE Computer, 36(1):41–50, 2003.
[18] S. Magini, P. Pesciullesi, and C. Zoccolo. Parallel software

interoperability by means of CORBA in the ASSIST pro-

gramming environment. In M. Danelutto, M. Vanneschi, and

D. Laforenza, editors, Proc. of the Euro-Par 2003, volume

3149 of Lecture Notes in Computer Science, pages 679–688,

Pisa, Italy, Aug. 2004. Springer.
[19] ObjectWeb Consortium. The Fractal Component Model,

Technical Specification, 2003.
[20] D. Thain, T. Tannenbaum, and M. Livny. Condor and the

grid. In F. Berman, G. Fox, and T. Hey, editors, Grid Com-
puting: Making the Global Infrastructure a Reality. John

Wiley & Sons Inc., December 2002.
[21] S. Vadhiyar and J. Dongarra. Self adaptability in grid com-

puting. Concurrency & Computation: Practice & Experi-
ence, 17(2–4):235–257, 2005.

[22] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hof-

man, C. Jacobs, T. Kielmann, and H. E. Bal. Ibis: a

flexible and efficient java-based grid programming environ-

ment. Concurrency & Computation: Practice & Experience,

17:1079–1107, 2005.
[23] M. Vanneschi. The programming model of ASSIST, an en-

vironment for parallel and distributed portable applications.

Parallel Computing, 28(12):1709–1732, Dec. 2002.
[24] C. Zoccolo. High-performance component-based program-

ming for heterogeneous computing. PhD thesis, Dept. Com-

puter Science, Univ. of Pisa, 2005.

Proceedings of the 14th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP’06)
1066-6192/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

