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Abstract

In this work, we discuss an extension of the set of principles that should guide the future design and development of
skeletal programming systems, as defined by Cole in his ‘‘pragmatic manifesto’’ paper. The three further principles intro-
duced are related to the ability to exploit existing sequential code as well as to the ability to target typical modern archi-
tectures, those made out of heterogeneous processing elements with dynamically varying availability, processing power and
connectivity features such as grids or heterogeneous, non-dedicated clusters. We outline two skeleton based programming
environments currently developed at our university and we discuss how these environments adhere to the proposed set of
principles. Eventually, we outline how some other relevant, well-known skeleton environments conform to the same set of
principles.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

When algorithmic skeletons were first introduced in late 1980 [1] the idea had an almost immediate success.
Several research groups started research tracks on the subject and come up with different programming envi-
ronments supporting algorithmic skeletons. Darlington’s group first developed functional language embed-
dings of the skeletons [2] and then moved to FORTRAN [3]. Our group designed P3L, which is basically a
sort of skeleton-based parallel C [4,5]. Kuchen started the work on Skil [6] and eventually produced the Muesli
C++ skeleton library [7]. Serot designed Skipper [8,9], which exploits the macro data flow implementation
model introduced in [10].

These groups almost completely embraced the original definition of skeleton programming environment
given by Cole in his book [11]: The new system presents the user with a selection of independent ‘‘algorithmic
0167-8191/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.parco.2006.04.001

q This work has been supported by Italian FIRB GRID.it project (RBNE01KNFP) and by the European Network of Excellence
CoreGRID (IS-2002-004265).

* Corresponding author. Tel.: +39 05022 12742; fax: +39 05 022 12726.
E-mail address: marcod@di.unipi.it (M. Danelutto).

mailto:marcod@di.unipi.it


450 M. Danelutto, M. Aldinucci / Parallel Computing 32 (2006) 449–462
skeleton’’, each of which describes the structure of a particular style of algorithm, in the way in which ‘‘higher

order functions’’ represent general computational frameworks in the context of functional programming

languages. The user must describe a solution to a problem as an instance of the appropriate skeleton. In par-
ticular, the scientific community accepted the idea of a fixed selection of independent skeletons. All the
above-mentioned skeleton systems developed in the 1990 only provide the programmer with a fixed set
of skeletons.

The fixed, immutable skeleton set was both a source of power and weakness for the skeletal systems. It
allowed efficient implementations to be developed, but also it did not allow programmers to express non-
standard parallelism exploitation patterns; no matter if these are slight variations of the ones provided
by the supplied skeletons. A partial solution to the unavailability of skeletons modeling specific parallel pat-
terns came from the implementation of skeletons as libraries, whose mechanisms adopted to exploit paral-
lelism was partially known, such as the ones discussed in [12,13]. In the former case, skeletons are provided
as plain C function calls. The input data stream and the output data stream are implemented by plain Unix
file descriptors that are accessible to the user. Therefore the programmer can program his own parallel pat-
terns and make them interact with the predefined skeletons just writing/reading data to/from standard file
(pipe, actually) descriptors. In the latter case, skeletons are provided as collective MPI operations. The
programmer can access the MPI communicator executing the single parallel activity of the skeleton (e.g.
one pipeline stage or a task farm worker) and can freely manage the processors allocated to the communi-
cator. Explicit primitives allow the programmer to receive tasks from the skeleton input stream and to deli-
ver results to the skeleton output stream. In both cases, a limited degree of freedom is left to the
programmer to program his own parallelism exploitation patterns either outside or inside the ones modeled
by skeletons.
2. Guidelines to design advanced, usable skeletal systems

Despite being around since long time and despite the progress made in skeletal system design and imple-
mentation, the skeleton systems did not take off as expected. Nowadays, the skeleton system usage is actually
restricted to small communities grown around the teams that develop the skeleton systems.

Cole focused very well the problem in his manifesto [14]. Here he stated four principles that have to be tack-
led in skeletal systems to make them effective and successful:

1. propagate the concept with minimal conceptual disruption, that is skeletons must be provided within existing
programming environments without actually requiring the programmers to learn entirely new program-
ming languages;

2. integrate ad-hoc parallelism, i.e. allow programmers to express parallel patterns not captured by the avail-
able skeleton set;

3. accommodate diversity, that is provide mechanisms to specialize skeletons, in all those cases where special-
ization does not radically change the nature of the skeleton, and consequently the nature of the
implementation;

4. show the pay-back, i.e. demonstrate that the effort required to adopt a skeletal system is immediately
rewarded by some kind of concrete results: shorter design and implementation time of applications,
increased efficiency, increased machine independence of the application code, etc.
While the second and the third points are more specifically technical, the first and the last one are actually
more ‘‘advertising’’ ones, in a sense. All these points, however, have impacts on both the way the skeleton
systems are designed and on the way they are implemented.
In this work, we propose to add three more principles to the original Cole set:

5. support code reuse, that is allow programmers to reuse with minimal effort existing sequential code;
6. handle heterogeneity, i.e. implement skeletons in such a way skeleton programs can be run on clusters/net-

works/grids hosting heterogeneous computing resources (different processors, different operating systems,
different memory/disk configurations, etc.);
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7. handle dynamicity, i.e. implement in the skeleton support mechanisms and policies suitable to handle typical
dynamic situations, such as those arising when non-dedicated processing elements are used (e.g. peaks of
load that impair load balancing strategies) or from sudden unavailability of processing elements (e.g. net-
work faults, node reboot).

The first additional point (5) is crucial to avoid the necessity to rewrite from scratch already existing and
possibly highly optimized code. Skeletal systems must allow programmers to reuse existing portions of sequen-
tial, optimized code by just wrapping them into suitable skeleton settings. The wrapping process must be kept
as automatic as possible and automatic wrapping of object code is to be considered as well, provided the
object code satisfies some minimal requirements (e.g. it is a function with a known signature and semantics).
Furthermore, code reuse should support a variety of programming languages. In particular, it should not be
limited to the ability of reuse code written in the implementation language of the skeletal system, to allow pro-
grammers to get and keep the better sequential software at hand, independently of its implementation lan-
guage. The second (6) and third (7) additional points actually come from experiences in grid programming
systems. Grid systems are heterogeneous and dynamic by definition [15], and any programming environment
targeting grid architectures must include proper techniques and algorithms to take care of these two important
aspects, possibly in an automatic and transparent way [16]. In particular, the design of skeletal systems should
allow programs to run seamlessly on distributed architectures composed of different processing elements, both
in terms of architecture and of operating system. Also, they should cope with the varying features of the dis-
tributed target architecture over time, such as varying loads on the processing elements, shared interconnec-
tion networks bandwidth and latency, possible faults or unavailability of network links and processing
elements.

Observe that heterogeneity property may also hold in plain cluster architectures. Clusters upgrades and
repairs can rarely rely on the very same machines used for the original cluster set up, due to the constant
and impressively fast technology improvement. Therefore working cluster machines end up with hosting dif-
ferent processing nodes, usually. Dynamicity is not strictly related to grid architectures as well. All non-ded-
icated cluster architectures experiment variable loads on their processing and network elements, and therefore
clever dynamic load balancing policies are needed, at least. Despite suffering minor problems with respect to
grids due to resource management, non-dedicated workstation networks and clusters need proper tools to
cope with dynamicity. As a consequence, requirements (6) and (7) can be considered central to most of the
current parallel architectures.

Overall, the seven principles stated above should be considered the basis of ‘‘next generation’’ skeleton sys-
tems. In other words, mature skeleton technology should efficiently address all the related problems. In this
perspective, here we want to discuss two ‘‘second-generation’’ experiences of our group in Pisa, namely the
muskel [17] and the ASSIST one [18–20]. Both are programming environments based on the skeleton struc-
tured parallel programming concepts. The former is a plain Java library exploiting macro data flow implemen-
tation techniques [10] directly derived from Lithium [21]. The latter defines a new programming language,
which is actually a coordination language that uses skeletons to model parallelism exploitation patterns.
ASSIST exploits implementation techniques derived from the implementation template methodology [22]
developed in P3L [5] and adopted by other skeleton frameworks [7].
muskel and ASSIST, besides addressing in different ways the principles (1)–(7), share another important

common feature: differently from other skeleton systems, they do not just use the structure of skeletons in
the program to build the network of processes that implements the parallel program. Actually, they synthesize
the high level semantic information of the skeletons and their structure into an intermediate meta description.
This description is then used to optimize several aspects of skeletons implementation, such as the network of
processes topology, the selection of data that should be marshaled, the selection of data should be consoli-
dated/migrated in case of run-time reconfiguration, the processes involved in the reconfiguration. However,
the techniques used to perform these optimization are different for muskel and ASSIST. muskel implements
skeletons exploiting a distributed macro data flow interpreter after transforming skeleton programs into data
flow graphs. The optimizations are performed at level of data flow graph [23] and its distributed interpretation
[10]. ASSIST exploits high level skeletal semantic to support a partial evaluation strategy of the source program.
The compiler generates a network of virtual activities, which are mapped onto the suitable implementation
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device of the target platform (processes, threads, communication and sharing primitives). This mapping is
partially done a compile time, then completed at lunch time, and possibly changed at run-time.

As a matter of fact, this is also a symptom of an evolution in the skeleton programming systems. More and
more attention is paid to transfer and exploit meta information deriving from skeleton program structuring to
the efficient implementation of the functionality of the original skeleton program rather than to the direct
matching of skeleton program structure with the template of the process (parallel activity) network used to
implement the program itself.
3. muskel

muskel [17,45] is a full Java skeleton library providing user with usual stream parallel skeletons: pipelines,
farms as well as arbitrary composition of farm and pipes. It is a compact, optimized subset of Lithium [21],
mainly meant as a handy test bed to experiment new implementation strategies. muskel key features are the
usage of macro data flow implementation techniques and the normal form concept, derived from Lithium, the
application manager and the performance contract concepts, original of muskel and subsequently moved to
ASSIST. A typical muskel program looks like the following:
import muskel.*;

public static void main(String [] args) {

Compute stage1 = new Farm(new doSweep());
 comp. doSweep on all tasks

Compute stage2 = new postProcRes();
 then post process results

Compute mainProgram = new Pipe(stage1,stage2);
 in pipe

ParDegree parDegree = new parDegree(5);
 ask this performance contract

ApplicationManager manager =
 create the manager

new ApplicationManager(mainProgram);
 to run mainProgram
manager.setContract(parDegree);
 give contract to manager

manager.setInputStream("input.dat");
 set input data location

manager.setOutputStream("output.dat");
 set output location

manager.eval();
 run the parallel program
}

This parallel program performs parameter sweeping (as coded in the doSweep sequential Java code) on a
set of input parameters stored in the input.dat file and produces the results in the output.dat file after
post-processing each result of doSweep via postProcRes. The user asks for a performance contract stating
that the parallelism degree in the execution of the program should be 5. This code is the full code the program-
mer must write to get the working muskel parallel program.

Compilation of skeleton programs to macro data flow. Skeletons are implemented in muskel using macro
data flow technology [10,21]: the skeleton program is translated into a data flow instruction graph. Instruc-
tions are fired (i.e. scheduled for the execution) when all their input tokens are available. A fireable instruction
is simply scheduled for the execution on one of the available remote interpreters using RMI. Data flow instruc-
tions are actually ‘‘macro’’ data flow instructions. The user provides instruction functions as parameters of the
associate skeleton, as shown in the code above. In particular, sequential code to be used in these parameters is
supplied as a Compute object, i.e. an object with an Object compute(Object task) method that returns
an Object embedded token result after computing some sequential function on the input token task
object(s).

The muskel parallel skeleton code structure is captured by the grammar P ::= seq(className)jpipe(P,
P)jfarm(P) where the classNames refer to classes implementing the Compute interface. A macro data flow
instruction can be described by the tuple: hid,gid,opcode, In,Oki where id is the instruction identifier, gid is the
graph identifier (both are either integers or the special null identifier), opcode is the name of the Compute class
providing the code to compute the instruction (i.e. computing the output tokens out of the input ones) and I

and O are the input tokens and the output token destinations, respectively (n is the input arity of the opcode
function and k its output arity). An input token is a pair hvalue,presenceBiti and an output token destination is
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a pair hdestInstructionId,destTokenIndexi. The process compiling the skeleton program into the data flow
graph can be described as follows. We define a pre-compile function PC :P · GraphIds!MDFgraph as
PC½seqðfÞ�gid ¼ ki:fhnewIdðÞ; gid;f; hhnull;falseii; hhi; 0iiig
PC½farmðPÞ�gid ¼ C½P�gid

PC½pipeðP1;P2�gid ¼ ki:fC½P1�gidðgetIdðP 0ÞÞ; P 0g where P 0 ¼ C½P2�gidðiÞ
where getID( ) is the function returning the id of the first instruction in its argument graph, that is, the one
assuming to receive the input token from outside the graph. The compile function C[ ] :P!MDFgraph is con-
sequently defined as
C½P� ¼ PC½P�newGidðÞðnullÞ
where newId( ) and newGid( ) are stateful functions returning a fresh (i.e. unused) instruction and graph iden-
tifier, respectively. The compile function returns therefore a graph, with a fresh graph identifier, hosting all the
data flow instructions relative to the skeleton program. The result tokens are identified as those whose desti-
nation is null. As an example, the compilation of the main program pipe(farm(seq(f)), farm(seq(g))) pro-
duces the data flow graph (assuming that identifiers and token positions start from 1):
fh1; 1;f; hhnull;falseii; hh2; 1iii; h2; 1;g; hhnull;falseii; hhnull;nulliiig

When the application manager is told to actually compute the program, via an eval() method call, the

input file stream is read looking for tasks to be computed. Each task found is used to fill the input token in the
getId(C[P]) data flow instruction in a new C[P] graph. In the example above, this results in the generation of a
set of independent graphs such as
fh1; i;f; hhtask i;trueii; hh2; 1iiih2; i;g; hhnull;falseii; hhnull;nulliiig

for all the tasks taski ranging from task1 to taskn.

All the resulting instructions are put in the distributed interpreter task pool in such a way that the control
threads taking care of feeding the remote data flow interpreter instances can start fetching the fireable instruc-
tions. The output tokens generated by instructions with destination tag equal to null are directly delivered to
the output file stream by the threads receiving them from the remote interpreter instances. Those with a non-
null flag are delivered to the proper instructions in the task pool that will eventually become fireable.

Normal form. In muskel, the skeleton program executed is not actually the one provided by the user: the
skeleton program is first transformed to obtain its normal form as defined in [23] and then this normal form
skeleton program is actually compiled to macro data flow and eventually executed. The normal form P of a
muskel program P is defined as
P ¼ farmðrðPÞÞ

where the r :P! P recursive auxiliary function is defined as follows:
rðseqðPÞÞ ¼ seqðPÞ; rðfarmðPÞÞ ¼ rðPÞ; rðpipeðP0;P00ÞÞ ¼ rðP0Þ; rðP00Þ

and the ‘‘;’’ operator represents sequential composition.

As an example, the muskel skeleton code at the beginning of this section is transformed before compiling
it into macro data flow into the following equivalent, normal form muskel source code:
mainProgram ¼ new Farmðnew SeqCompðnew doSweepðÞ;new PostProcResðÞÞÞ;
The normal form has been proved to implement programs that are functionally equivalent and with better
performance with respect to the original, user supplied, non-normal form programs [23,21]. The transforma-
tion process is completely transparent to the programmer.

Distributed macro data flow execution. The normalized skeleton code is eventually transformed into a macro
data flow instruction graph and executed as any other muskel skeleton program. An application manager is
started (see next paragraph) that recruits a convenient number of remote data flow interpreters. The fireable
macro data flow instructions deriving from the skeleton code are staged for the execution to the remote
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interpreters. A thread is forked for each one of the remote interpreters recruited. The thread looks for a fire-
able instruction in a task pool repository, delivers it to the associate remote interpreter and waits for the
results of the computation. When results come back from the remote interpreter they are either delivered
to the output stream, or reinserted in the proper target macro data flow instruction in the task pool. This
macro data flow instruction can possibly become fireable. Immediately after the thread starts trying to fetch
a new fireable instruction.

Application manager. The muskel application manager takes care of several aspects related to program
execution. It recruits a number of remote interpreter nodes suitable to accomplish the performance contract
asked to the user, exploiting a proper discovery algorithm. The remote interpreter instances should have been
started once and for all on the nodes of the target architecture as Java RMI (plain or Activatable) objects.
The recruiting process is best effort, that is the manager tries to recruit the closest number of remote interpret-
ers to the one stated in the performance contract. Then, the application manager monitors program execution
and takes care of constantly ensuring the performance contract. In case a remote interpreter becomes unavail-
able (e.g. due to a network or to a node failure) the muskel application manager arranges to recruit a new
one, if available. The task(s) left un-computed by the missing interpreter(s) are put back to the task pool and
they will be eventually re-scheduled to a different interpreter. Results achieved with muskel are very good
both in terms of load balancing and in terms of fault tolerance and absolute performance/efficiency [17].

Unstructured parallelism. Unstructured parallelism exploitation mechanisms are also provided to the
muskel user by allowing him to write his own macro data flow graphs modeling those parallelism exploita-
tion patterns not captured by the skeletons provided natively by muskel. In particular, muskel users may
program their own macro data flow graphs and embed them into ParCompute objects. Those objects can be
used in any place a Compute object is used (actually ParCompute is a subclass of Compute). ParCompute
objects have a MdfGraph getMdfGraph() method that can be used in the skeleton to macro data flow
graph compiler to retrieve the user defined macro data flow graph supplied as a parameter in the ParCom-
pute constructor. Therefore, macro data flow graphs happen to be build either compiling the Compute

objects as shown above, or by gluing together the macro data flow graphs supplied by users and embedded
in the ParCompute objects. The only limitation, at the moment, is that the user supplied macro data flow
graphs in the ParCompute objects must have a single input and a single output, i.e. they must compute with
a single input token and the result should be a single output token. This is to be able to merge ParCompute
macro data flow graphs and graphs generated compiling Compute Pipelines and Farms [45].

The mechanism just outlined can be used to program all those parts of the application that cannot be easily
and efficiently implementing using the skeletons subsystem. Being the mechanisms used to execute user sup-
plied macro data flow graphs (instructions) the same as the ones used to execute skeleton programs, the same
level of efficiency is granted in the execution to user defined macro data flow code than the one achieved in the
execution of macro data flow code compiled from muskel skeletons. Furthermore, users can program once
and for all particular macro data flow graphs in a ParCompute subclass and then use this class as a normal
muskel skeleton class, thus completely achieving expandability of the muskel skeleton set.

3.1. Assessment

muskel has been used to program several parallel applications, including number crunching, image pro-
cessing and sequence matching. In case the computational grain (i.e. the ratio between the time spent comput-
ing an instruction and the time spent delivering the remote interpreter the input tokens and retrieving from the
remote interpreter the result tokens) of the macro data flow instructions is not too small, almost perfect sca-
lability is achieved, as show in Fig. 1. The plots are relative to an experiment performed on a network of
Linux/Pentium III blades with Fast Ethernet interconnection. Medium grain is about 10, large grain is about
160, that is the time spent computing a macro data flow instruction is 160 times the time spend in delivering
tokens to the interpreter processing it and retrieving the result tokens out of the remote interpreter. Although
this can look like to be a large value, the normal form transformation applied in muskel behaves such that
the actual grain values measured in real application code are even larger.

A minimal effort is required to experienced Java programmers to use muskel: basically, a small effort to
implement the Compute interface in the existing application dependent code, plus the launch of the remote
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interpreter RMI objects on the available processing elements (both plain RMI and rmid versions of the
remote interpreter are available). This addresses principle 1. FileInputStream and FileOutputStream

objects can be passed to the manager to provide input task and retrieve output results. Therefore specialized
parallel patterns can be programmed that interact with the existing skeleton (programs) via the streams, in the
flavor of what happened in [12] with Unix file handles. Furthermore, with the explicit macro data flow mech-
anisms just described, the programmer can even program his own macro data flow graphs and embed such
graphs in skeleton program in any place where a plain Compute object may appear (e.g. as a pipeline stage
or as a farm worker). Overall, these two aspects allow both to integrate ad-hoc parallelism and to accommo-
date diversity, thus addressing (2) and (3). The payback offered by muskel is evidenced by the muskel code
shown in this section: a negligible amount of code is needed to get a fully working, efficient parallel application
(3). Target architecture heterogeneity is handled naturally in muskel due to portability features of the JVM
and RMI (6). We performed several experiments, using a mix of Mac OS/X PowerPC machines and different
configurations of Pentium machine with Linux. The experiments run successfully, as expected, that is they
computed the correct results despite the fact different macro data flow instructions of the same program were
run on machines with different processors and operating systems. Obviously, the runs used the machines dif-
ferently, that is they scheduled a different number of fireable instructions on them. As an example, we used
three machines (a dual Pentium IV and a Pentium III with Linux and a PPC G5 with Mac OS/X Tiger) to
run sample muskel code and we end up measuring that 48% of the macro data flow instructions were executed
by the Pentium III machine, that was idle at that time, 24% of the instructions were run on the dual Pentium
IV machine, that is the group server and at that time it experimented a load equal to 2.15 (uptime measure),
and 28% of the instructions on the G5 PPC, that was also quite loaded at that time. Dynamicity is handled in
the ApplicationManager, where fault tolerance is also dealt with (7). Experimental data show that a neg-
ligible overhead is charged to replace a faulty remote interpreter node, provided that other, currently idle
remote interpreters can be recruited [17]. Typical results of experiments on dynamicity are show in Table 1.
Table 1
Percentage of MDF instructions computed by remote interpreters instances: during time slices 5–12 an external additional load was
executed on WS2, thus some of the work of WS2 has been redistributed to WS1 and WS3

Time slices

0–2 s 3–5 s 6–8 s 9–11 s 12–14 s 15–17 s 18–20 s

WS1 (%) 2.2 1.1 2.2 2.2 1.1 2.2 1.1
WS2 (%) 6.5 5.4 3.3 3.3 4.3 5.4 5.4
WS3 (%) 8.7 7.6 7.6 8.7 7.6 6.5 7.6

Total (%) 17.4 14.1 13.0 14.1 13.0 14.1 14.1
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In this case, we run an application on three (heterogeneous) machines. The table has in columns the percentage
of the overall macro data flow instruction executed on the machine in that time slice (each column accounts
for a time slice of 3 s, thus the whole run was about 21 s). We externally overloaded the second machine 5 s
after the application start (second column). The reader can easily verify how this lead to a redistribution of the
fireable instructions onto the other two machines. The additional load was killed after 14 s (fifth column).
Notice that this instruction re-distribution takes place due to the particular structure of the distributed macro
data flow interpreter (the overloaded machines simply succeeds asking less new fireable instructions to execute,
due to the time spent for execution of the single macro data flow instruction) and does not require, in partic-
ular, any kind of specific, on line action possibly disturbing the execution of the main program. In ASSIST, as
we shall see in Section 4, part of the reconfiguration is actually computed off line, but eventually, the main
computation as to be interrupted to allow the re-distribution of parallel activities.

Concerning code reuse (5), existing Java code can be easily reused by wrapping existing code in a Compute
interface. Code written in other languages, as well as object code, requires more effort to be integrated in
muskel programs, however. The structure used to exploit parallelism heavily relies on serializability of code
and it will be difficult to adapt it to support C, FORTRAN or even C++ code reuse. While muskel currently
requires full RMI access to all the nodes hosting a remote MDF interpreter instance, a version of muskel
built on top of the ProActive grid middleware [24] is currently being fine tuned that allows to target actual
grid architectures supporting ssh access to nodes only.

4. ASSIST

ASSIST (A Software development System based on Integrated Skeleton Technology [20]) is a programming
environment aimed at supporting parallel and distributed application development on clusters and networks
of workstations as well as on grids. ASSIST applications are described by means of a coordination language,
which can express arbitrary graphs of modules, interconnected by typed streams of data. Each stream realizes
a one-way asynchronous channel between two sets of endpoint modules: sources and sinks. Data items
injected from sources are broadcast to all sinks. A simple ASSIST program for parallel matrix multiplication
is shown in Fig. 2: the matrix_mul module takes one matrix from each of the two modules send1, and
send2; multiply them and gives the result to recv module.

Modules can be either sequential or parallel. A sequential module wraps a sequential function. A parallel
module (parmod) can be used to describe the parallel execution of a number of sequential activities that are acti-
vated and run as Virtual Processes (VPs) on items coming from the input streams. Each VP is arranged in a topol-

ogy and accordingly named (e.g. VP[i, j]). A VP is programmed as the sequence of calls to procedures (procs) that
wrap standard sequential code (C, C++, Fortran). The topology declaration specializes the behavior of the VPs
as farm (topology none) or data parallel (topology array). Farm parmods exhibit a logically unbounded number
of anonymous VPs, which never synchronize one each other. Data parallel parmods exhibit a programmer-
defined number of VPs, which can be named by topology indexes, can share data, and might synchronize in
a barrier. Data can be shared via global variables (attributes), which can be read by all VPs, and be written
by the owner VP. The ownership of global variables or part of them can be declared by using topology indexes
(as an example the ownership of a matrix can be assigned by row, columns and blocks). Barriers are part of the
ASSIST API; they might appear between procedure calls. They also behave as memory fences. A sequence of
procedure calls in a VP might be surrounded by an iterative command (e.g. for, while), which termination clause
Fig. 2. Multiplication of two streams of matrixes in ASSIST, and the relative graph of modules.
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may involve values reduced from VPs local variables. Despite these basic features, ASSIST has several exten-
sions provided to the programmer by means of libraries: among the others, arbitrary data sharing via Distrib-
uted Shared Memory, synchronization among subset of VPs, access to a parallel file system. Observe however,
that because of the extreme freedom these libraries give to the programmer, their use may prevent or have a neg-
ative impact on the performance of other important features of ASSIST, such as transparency in mapping and
deployment, program adaptability and resilience to faults (currently under investigation).

A module can non-deterministically accept from one or more input streams a number of input items, which
may be decomposed in parts that are (logically) distributed to VPs according to rules specified in input section

of the parmod and to VPs topology. These rules include broadcast, scatter, multicast or a combination of
them. Once triggered by data, each VP executes its sequence of procedures and barriers, if any. The
output_section has a symmetric role of the input section, and enables the gathering of data items, or parts
of them, from VPs. Parmod basic behavior is sketched in Fig. 3. More details on the ASSIST coordination
language can be found in [18,25].

The example parmod in Fig. 4 exhibits a topology array (line 3, N · N VPs behaving in a SPMD fash-
ion). Once the two input matrixes are received (line 8), they are both scattered to the VPs which store them in
the distributed shared matrixes A and B (lines 9–10) that has been previously declared (lines 4–5). Then, all
Fig. 3. Parmod basic behavior.

Fig. 4. ASSIST code of the matrix_mul parmod.



458 M. Danelutto, M. Aldinucci / Parallel Computing 32 (2006) 449–462
elements of the result matrix C are computed in parallel (lines 12–14). Once all VPs completed the operation, a
result matrix is collected from the distributed matrix C and sent into the output stream (lines 15–22). A stan-
dard row by column multiplication C++ code is wrapped within a proc declaration (lines 24–27).

4.1. Assessment

The ASSIST parmod represents the major innovation of ASSIST with respect to previous skeleton systems
developed at our group. The parmod represents a generic parallel module. By specializing this generic con-
struct many classical parallel skeletons can be derived: farm, deal, map/forall, haloswap, and reduce with
or without shared state. Pipelines, and more in general graphs can be easily expressed by wiring modules with
streams. ASSIST clearly meets several principles in the set proposed in Section 2. In particular, a graph of
parmods represents, by its very nature, the essence of accommodating diversity (3), since both the structure
of the graph can be freely defined and the parmod can be specialized to model several different classical skel-
etons and many variants of them. Moreover, the VPs virtualize parallel algorithms with respect to the map-
ping onto the distributed platform. On the one hand, this enables the delay at launch time of the real mapping
of VPs onto processes on platforms, in such a way a good communication/computation ratio for the algo-
rithm/platform pair can be tuned (usually #VPs > #processes > #platforms). On the other hand, it enables
to further improve malleability of algorithms by allowing the mapping between VPs and target platforms
to change during application run (adaptability). Ad-hoc parallelism (2) can be realized by enriching VPs code
with both ASSIST native (e.g. barriers, shared memory accesses) and guest language synchronization or com-
munication primitives towards external processes and services (e.g. Unix sockets, OS or library calls). More-
over, modules can be wired almost automatically to standard services via special streams (e.g. CCM-CORBA/
IIOP channels, HTTP/SOAP Web Services), thus bridging ASSIST native code with third-party legacy
sequential and parallel code [26–29]. This, together with code wrapping in procs, enables code reuse (5), both
in binary and source form, respectively. Notably, the framework nature of the ASSIST language does not
require changing or interleaving sequential code with library calls.

The implementation of parmod is highly optimized and both rely on a huge compilation process and on an
optimized run time system, namely the ASSISTlib. The compiler also guarantees the transparent usage of dif-
ferent guest languages (C, C++, Fortran, Java) and the correctness onto heterogeneous platforms (6), among
the set of supported ones, i.e. several flavors of Unix and Mac OS/X). In particular, the memory layout of data
structures (including alignment and endianess) is managed transparently to the user: the compiler generates
highly optimized (template-based) marshalling code for each type and for each pair of platform kind. At
the application launch time, each communication primitive is enriched with the correct marshaler if and only
if it is required by the kind of involved communication endpoints: a communication between two platforms of
the same kind does not need any marshalling [30]. Both the transparency and the efficiency of the communi-
cations and the distributed memory sharing between different kind of platforms reachable in this way is one
the typical byproducts of skeletons (4): high-level, semantic information about the parallel code and data types
is used to generate and tune an efficient marshalling process.

The price to pay is a somehow heavy language, thus not fully compliant with minimal conceptual disruption

principle (1). Also, the possibility to express arbitrary graphs of parallel modules is a notable step away from
previous experiences. As muskel, ASSIST supports autonomic control of parallel modules and of the overall
application [31]. A parmod can be executed in such a way that the user asks a given performance contract to
be satisfied. In this case, the parmod automatically provides to keep the contract satisfied, if possible: exploit-
ing the knowledge coming from the parmod analytic performance models, the parmod dynamically adapts the
number of resource used to execute the parmod in order to satisfy the user supplied performance contract (7).

As an example, Fig. 5 reports a run of a data parallel shortest path algorithm implemented with an ASSIST
parmod (with 400 VPs). The figure shows the time needed to complete an iteration of the algorithm from the
start to the convergence (iterations 0–400), the respective relative unbalance1 for the iteration, and the load
1 Defined for each iteration as (maxTi � minTi)/maxTi, where maxTi, minTi are the maximum and minimum across of VPi of the time
needed to complete the iteration.



Fig. 5. ASSIST parmod with autonomic control computing a data parallel algorithm (shortest path). The parmod is run on 4
heterogeneous platforms (A, B, C, D) exhibiting different computing power. Platform C happens to be externally overloaded for a while
during the run, the parmod reacts redistributing load on other platforms.
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distribution across the platforms. As soon as the relative unbalance climbs up a given threshold, the auto-
nomic control rebalances the load by redistributing VPs across the platforms. All the process is completely
transparent to the application programmer, who is not charged to write the code to realize adaptivity (such
as make decisions, synchronize and migrate activities). The compiler instruments the application code with
everything needed to correctly migrate VPs across platforms. Again, this is possible because of the high-level,
structured nature of the ASSIST language. The compiler knows in which moments, during the run of the par-
mod, the distributed state of the VPs is ‘‘safe’’ for a reconfiguration (so-called reconf-safe points) because their
interaction follows a known paradigm, which is actually its skeleton. This knowledge is also used to optimize
reconfiguration latency. As a simple example consider two parmods behaving as data parallel and farm,
respectively. In the former case, a reconfiguration requires VPs consensus and data migration; while in the
latter case no synchronization is needed since computation on different VPs are independent. Indeed, as shown
in Table 2, the reconfiguration overhead (add/remove a number of processing elements (PE) during the run) of
a farm parmod is almost zero, while the data parallel parmod exhibits an overhead that depends on the algo-
rithm data size and the number of PEs involved in the reconfiguration [31].

The ASSIST environment is currently released under GPL by the Dept. of Computer Science of the Uni-
versity of Pisa and targets workstation networks, clusters and grids either equipped with plain TCP/IP and
ssh/scp tools (in this case Linux and Mac OS/X machines are supported as target nodes) or equipped with
Globus 2.4. Several real world applications has been developed with ASSIST by partners of the national pro-
ject GRID.it (including the Italian Space Agency) in these areas: graphics (isosurface detection), bioinformat-
ics (protein folding), massive data-mining, ‘‘social’’ applications including remote sensing and image analysis
(sea oil spill detection, landslip detection), chemistry (ab-initio molecule simulation), and numerical comput-
ing [32–35].
Table 2
Evaluation of reconfiguration latency (Rl) of an ASSIST parmod (ms) on the cluster described in Section 3

parmod kind Data-parallel (with shared state) Farm (without shared state)

reconf. kind add_PEs remove_PEs add_PEs remove_PEs

n. of PEs 1! 2 2! 4 4! 8 2! 1 4! 2 8! 4 1! 2 2! 4 4! 8 2! 1 4! 2 8! 4

Rl barrier 1.2 1.6 2.3 0.8 1.4 3.7 – – – – – –
Rl stream-item 4.7 12.0 33.9 3.9 6.5 19.1 �0 �0 �0 �0 �0 �0

On this cluster, 50 ms are needed to ping 200KB between two PEs, or to compute a 1 M integer additions.
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5. Related work

Skeleton based programming environments had been very popular in the 1990, right after the Cole’ results.
Currently, there is quite a limited number of research groups developing/supporting skeleton based program-
ming environments. Beside our group in Pisa, which is active since early 1990, the most notable skeleton based
programming systems are eSkel by Cole [14], Muesli by Kuchen [7], and the ones from the group of Gorlatch
[36]. Furthermore the group in Alberta University is maintaining the CO2P3S programming environment [37]
which is actually based on the design pattern technology, but is very close to the skeleton world.

Cole’s eSkel system implements skeletons as collective MPI operations. It has been introduced in [14], that
is in the same paper where the four principles (1) to (4) were discussed. All these points are addressed in eSkel
[14,13,38]. eSkel also provides some code reuse facilities (5) as most C and C++ code can simply be adapted in
eSkel programs. In eSkel heterogeneous architectures are supported (6) through the usage of MPI, much in the
sense heterogeneous architectures are supported through the usage of Java in muskel. However, current
implementation of eSkel (2.0) does not support user defined MPI data types in the communication primitives,
that actually use MPI_INT data buffers, and therefore heterogeneous architectures can be targeted using
proper MPI implementations just when all the nodes have the same type of processors. No support for dynam-
icity handling (7) is provided in eSkel, however.

Muesli is basically a C++ library built on top of MPI. Differently from eSkel, it provides stream parallel
skeletons, data parallel objects (arrays, basically) and data parallel operations as C++ template classes. The
user interface is definitely very good, as the full power of object oriented paradigm along with templates is
exploited to provide Muesli programmers with user-friendly skeletons, and consequently C++ programmers
can develop parallel programs very rapidly. In particular, despite exploiting MPI as eSkel, Muesli does not
require any MPI specific knowledge/action to write a skeleton program. Therefore point (1) is very well
addressed here. Points (2) and (3) are addressed providing the programmer with a full set of (data parallel)
operations that can be freely combined. The payback (4) is mainly related to the OO techniques exploited
to provide skeletons. Code reuse (5) is supported as it is supported in eSkel, as programmers can use
C++/C code to build their own skeletons as well as sequential code to be used in the skeletons. Also in this
case there is limited support to heterogeneity (6): the MPI code in the Skeleton library directly uses MPI_BYTE
buffers to implement Muesli communications, and therefore MPI libraries supporting heterogeneous architec-
tures may be used just in case the nodes sport the same kind of processor and the same C/C++ compiler tool-
set. Dynamicity handling (7) is not supported at all in Muesli.

Gorlatch’s group work was more related on data parallel skeleton optimizations, actually [39,40]. Recently,
they presented a grid programming environment HOC [36,41], which provides suitable ways of developing
component based grid applications exploiting classical skeleton components. The implementation exploits
Web Services technology [42]. Overall the HOC programming environment addressed principles (1) and
(4). Points (2) and (3) rely on the possibility given to programmers to insert/create new HOCs in the reposi-
tory. Point (6) is handled via Web Services. This technology is inherently multiplatform, and therefore heter-
ogeneous target architectures can be easily used to run HOC programs. Point (5) is guaranteed as sequential
code can easily (modulus the fact some XML code is needed, actually) be wrapped in Web Services. However,
no support to (7) is included in the current HOC version.

CO2P3S is a design pattern based parallel programming environment, entirely developed in Java. It has been
the first structured programming environment supporting controlled user additions to the pattern (skeleton)
library [43], therefore fully addressing (2) and (3) requirements. Requirement (1) is addressed, being a plain Java
library and (4) is clearly shown by the time spent in developing structured programs using CO2P3S [44]. Point
(6) is addressed through Java portability, as in muskel, but the CO2P3S implementation only targets SMPS.
Point (5) is also taken into account, as Java code can be seamlessly reused in CO2P3S programs (only Java code,
actually), and point (7) is not addressed at all.

6. Conclusions

We proposed an extension of the set of principles to be satisfied when developing efficient and hopefully
successful skeletal programming systems presented in [14] by Cole. Actually, we proposed three new, addi-
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tional principles, sharing the same level of abstraction of the original ones. We believe they are fundamental to
the success of skeletal systems as they guarantee the possibility to preserve the investments made in sequential
software development and to target a larger and more significant class of architectures. Then we discussed the
way these requirements are addressed in two skeleton programming environments currently being developed
in Pisa, muskel and ASSIST. These environments are shortly outlined before discussing how they satisfy the
original and the new requirements. Both muskel and ASSIST accomplish to satisfy the seven requirements,
possibly using different strategies and using for sure very different implementations. The muskel and ASSIST
experience demonstrated that the ability of adapting application execution to varying features of heteroge-
neous target architecture is a key point in convincing a user to migrate to a skeleton programming
environment.

Eventually, we outlined how some of the more significant skeleton based parallel programming system cur-
rently available deal with the seven requirements. Most of these environments address fairly well some of the
original Cole principles although they did not take into suitable account the three further principles taken into
account in this work.
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