
Self-Configuring and Self-Optimising Grid
Components in the GCM model and their ASSIST

Implementation
M. Aldinucci, C. Bertolli, S. Campa, M. Coppola, M. Vanneschi, L. Veraldi, and C. Zoccolo

Deptartment of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3, I-56127, Pisa, Italy

Email: {aldinuc, coppola, bertolli, campa, vannesch, veraldi, zoccolo}@di.unipi.it

Abstract— We present the concept of autonomic super-
component as a building block for Grid-aware applications.
Super-components are parametric, higher-order components ex-
hibiting a well-known parallel behaviour. The proposal of a super-
component feature is part of the experience we gained in the
implementation of the ASSIST environment, which allows the
development of self-configuring and optimising component-based
applications following a structured and hierarchical approach.
We discuss how such approach to Grid programming influenced
the design of the Grid Component Model (GCM).

I. INTRODUCTION

Grids computing platforms offer the option to run complex
and multidisciplinary applications, exploiting aggregate soft-
ware and hardware resources that are physically available at no
single computation site. On the other hand, the Grid is a highly
dynamic platform, where resources availability changes over
time while the program is executing. This makes adaptivity
an essential feature in order to achieve high performance and
efficiently exploit the available resources [1], [2].

An adaptive application can be re-configured at run-time
to tackle the variation of availability and performance of
Grid platforms over time, while preserving the semantics
of the ongoing computation [3]. Application configuration
changes may aim to target different goals, such as enhance
robustness, ensure a given level of QoS and security of an
application running on the Grid. To pursue these goals in a
very dynamic running environment, as Grids are, application
adaptation should be automatically triggered by changes of
environment status. This scenario finds a natural description
in terms of the autonomic computing paradigm [4], [5], which
indeed has been widely recognised as prerequisite for current
and future Grid-aware applications [6], [7], [8]. Also, the
autonomic behaviour is a key feature of the forthcoming Grid
Component Model (GCM) specification [9]. The GCM is a
proposal for a component model oriented to Grid platforms,
being developed within the framework of the CoreGRID
Network of Excellence (NoE). Part of our contribution to
the GCM component model is in the set of abstractions
needed to express autonomic behaviour taking into account
the aforementioned aspects in a common and consistent way.
Our contribution is based on the experiences we have made
in the development of the ASSIST parallel programming

environment [10], [11] and of the component model developed
in the Grid.it research project. In this paper we will introduce
the notion of super-component, i.e. a higher-order parametric
component. In ASSIST an autonomic super-component is the
result of a hierarchy of structured autonomic components
provided with an embedded parallel behaviour. By instancing
a super-component, the programmer selects its functionality
and its parallel behaviour, which is chosen among a number
of well-know patterns. This enables the automatic management
on-functional aspects of inner components. Last but not least,
since a super-component exposes also autonomic features, it
is able to manage itself in order to follow self-configuration,
self-optimisation, self-healing, and self-protecting targets.

ASSIST shares with GCM many features w.r.t. autonomic
behaviour. On the one hand, GCM is currently a proposal
for a framework fully supporting autonomic components, in
order to realize component-based autonomic Grid applications.
Grid.it components, on the other hand, already provide self-
optimising and self-configuring behaviour through a hierarchy
of user-configurable manager modules, an approach that al-
ready enables building HPC Grid applications.

In Sec. II we discuss previous work related to component
models and self-adaptive behaviour in Grid programming also
related to super-component abstractions. In Sec. III we briefly
recap basics of autonomic computing systems. In Sec. IV we
describe the architecture of the ASSIST programming environ-
ment and the Grid.it component model. We also describes the
role of component managers and the application management
hierarchy. Section V focuses on the notion of autonomic super-
components (self-configuring and self-optimising), which con-
stitutes the main contribution of the paper. In Sec. VI we
show experimental results of the self-management features of
ASSIST programs. In Sec. VII we relate the ASSIST approach
to the ongoing definition of the GCM component model and
we highlight their common aspects. Section VIII concludes
our presentation and outlines future work directions.

II. RELATED WORK

High-level programming environments for grid aim at mov-
ing most of the grid specific efforts needed while developing
high-performance grid applications from programmers to pro-
gramming tools and run time systems. A seminal proposal is

represented by the CORBA Component Model (CCM) [12],
followed by the Condor [13] experience from which we were
initially inspired in the design of the ASSIST component
[10]. GridCCM [14] is an extension of CCM supporting
parallel components with distributed data and communication
optimisations differing from our approach because of our focus
on adaptivity issues. In this sense and with respect to dynamic
reconfiguration and re-optimisation, we share common goals
with the GrADS project, besides our programming model
exhibits a higher lever of abstraction and transparency of
adaptation aspects [1], [15].

The ProActive [16] implementation of the Fractal compo-
nent model [17] proposes a high-level programming toolkit for
the Grid supplying program adaptivity. However, adaptivity
policies should be explicitly programmed by directly ex-
ploiting ProActive adaptation mechanism. Dynaco (Dynamic
Adaptation for Components) is another Fractal-based frame-
work that helps in designing and implementing dynamically
adaptable components [18].

We also mention Ibis [19] as another Java based program-
ming environment offering a kind of Divide&Conquer super-
component notion but not exploiting autonomicity issues. A
similar approach is followed by the Higher-Order Components
(HOCs) [20], which are components offering the notion of
components parameterised with data and code but do not sup-
port autonomicity. Thus, a component expresses a behavioural
schema that can be instantiated on the target architecture at
hand by providing the corresponding code units. As seen
below, the idea of having kind of higher-order components
is also exploited in the Grid.it component model but we
propose a higher level of abstraction where hierarchy takes
an important role.

III. TOWARD AND AUTONOMIC GRID COMPONENT MODEL

As shown in Fig. 1, an autonomic element will typically
consist of one or more managed elements coupled with a
single autonomic manager that controls them. The managed
element could be a hardware resource (storage, CPU, etc.),
or a software resource, such as a Web service, or a software
component. Control loops, which are known in optimisation
theory since (at least) the mid of the last century, can be used
to apply component self-managing. They split the optimisation
process into 1) a monitoring phase, where the symptoms are
collected; 2) an analysis phase, where the current status is
checked against the goal status; 3) a planning phase, where
a plan is created to enact the desired alterations according to
some policies; and 4) the execution phase, which provides the
mechanisms to schedule and perform the necessary changes
to the system [7], [4]. Truly autonomic systems are years
away, although in the nearer term, autonomic functionality
will appear in software, especially in very complex systems as
Grid-aware applications. In particular, early autonomic system
may treat self-optimisation, self-healing, self-configuration
and self-protection as distinct aspects, with different solutions
that address each one separately.

Managed element

Monitor

Analyze Plan

 ExecuteKwowledge

Autonomic Manager

Fig. 1. Structure of an autonomic element. Elements interact with other
elements and with human programmers via their autonomic managers [4].

As we will see in the following, ASSIST components
and super-components may be equipped with a manager,
while GCM hierarchical components can have component con-
trollers. In both models, these managing entities can exploit
sub-component’s monitoring information (introspection) and
autonomic capabilities, at the high and low abstraction levels,
in order to achieve global QoS, by assigning contracts as goals
to autonomically pursue, as well as to steer the adaptation
mechanism of a component when non-local strategies have to
be employed to manage less autonomic (legacy) components.

In the following sections we will describe how such aspects
are modelled in the ASSIST environment by exploiting adap-
tive super-components as the result of a hierarchy of structured
managers and how this contribution will be mapped onto the
definition of the GCM model.

IV. THE ASSIST FRAMEWORK

ASSIST currently supports the Grid.it component model
(developed within the Grid.it Italian national project) that
shares several features with the forthcoming GCM. A complete
porting of ASSIST to meet the GCM is planned in the near
future. In the rest of the section we sketch the ASSIST
programming environment, starting from its parallel coordi-
nation language, its modular architecture and the support for
components, to introduce adaptive super-components driven
by an ASSIST hierarchy of managers and end up with the
description of ASSIST self-managed QoS for performance and
self-configuration.

A. The ASSIST Coordination Language

ASSIST applications are described by means of a coordina-
tion language, which can express arbitrary graphs of modules,
interconnected by typed streams of data.

Modules can be either sequential or parallel. A sequen-
tial module wraps a sequential function. A parallel module
(parmod) can be used to describe the parallel execution of a
number of sequential functions that run as Virtual Processes
(VPs) activated by items arriving from the input streams. VPs
may synchronise implicitly by activation, or through explicit
barriers. The sequential functions can be programmed by
using a standard sequential language (C, C++, Fortran). VPs
virtualise computing resources by de-coupling the definition
of parallel/concurrent activities from their instances and their
deployment at the implementation level (processes, threads and
their mapping onto physical resources).

GAM

Application Manager (AM)

ASSIST components

Abstraction of the basic services:
resource management & scheduling,
monitoring, ...

standard middleware

Fig. 2. ASSIST software architecture.

A parmod may behave in a data-parallel (e.g. SPMD/for-
all/apply-to-all) or task-parallel way (e.g. task farm), and it
may exploit a distributed shared state, which survives to VPs
lifespan. More details on the ASSIST coordination language
can be found in [10], [11].

B. The Grid.it Component Model

A single parmod or an arbitrary ASSIST graph of modules
can be declared as Grid.it component. A Grid.it component
is characterised by provide and use ports, as well as by non-
functional ports, which are related to component QoS control.
Each port of an ASSIST component may be configured to be-
have as endpoint of one-way stream connection, RPC method,
or event channel. A Grid.it component may also interoperate
with Corba/CCM components (via IIOP based RPC) or Web
services (via HTTP/SOAP).

The software architecture of the ASSIST component-based
parallel programming environment is organised as shown in
Fig. 2. The run-time environment of ASSIST 1.3 is imple-
mented on top of a Grid Abstract Machine (GAM). The GAM
implements abstract services, i.e. the functionalities needed by
the programming environment to support high-performance,
component-based Grid-aware applications. These regard re-
source discovery, management and monitoring; components
deployment, run, and wiring; routing of communications
through networks with private addresses. Whether possible,
these services rely on the underlying Grid middleware (e.g.
Globus), which are just abstracted out at the GAM level. In
other cases, GAM services extend Grid middleware services
(e.g. monitoring) [21].

Grid.it components are characterised by non-functional in-
terfaces, which enable introspection and run-time configu-
ration control of the components. These interfaces publicly
expose either an RPC or an event-based behaviour, involving
subscriptions and following gather of required information.
The low-level RPC, non-functional interfaces of Grid.it com-
ponents are:

• request for monitoring measurements;
• describe the current parallel layout of the component;
• apply a user-provided reconfiguration script;
• suspend/resume the component computation;

• stop the computation, releasing all involved grid resources
allocated for the component.

Any Grid.it component can directly be asked to report its
instantaneous performances or details about its own modules,
their location on the grid and current parallel behaviour. They
can also be asked to perform a sequence of run-time reconfigu-
rations: e.g. change of parallel degree, processes mapping onto
processing elements. Components can explicitly be suspended
(and subsequently resumed or stopped), in a correct manner
w.r.t. the semantics of the parallel computation. Finally, users
may like to stop a component running on a certain grid site,
in order to execute an identical copy of it elsewhere, where
performance/cost rate may be better. Gracefully stopping a
component is a low-level mechanism to implement stateless
migration [2], [8].

The low-level event-based interface, instead, provides for
the subscription to continuous performance monitoring mea-
sures, at regular time intervals. It allows to monitor in real-time
the execution of controlled components.

The user or a software manager may leverage on these low-
level interfaces to monitor and control the component run-time
behaviour. In the latter case, a component with its manager
constitute an autonomic component. These components hide
low-level non-functional interfaces described above, and sub-
stitute them with high-level interfaces for:

• the submission of a QoS contract;
• the subscription for QoS contract violations.

The concept of QoS contract is described in Sec. V-A.

C. Component Managers and Management Hierarchy

Both ASSIST modules and Grid.it components can be
equipped with managers aiming to dynamically control their
behaviour. These managers can be automatically generated
by the ASSIST programming environment. Each of these
managers behaves as an autonomic manager (see Sec. III).
In particular we distinguish: Module Autonomic Manager
(MAM), Component Autonomic Manager (CAM), and Appli-
cation Manager (AM) being the manager of the top component
since it (indirectly) controls the whole application.

As an example, Fig. 3 shows an application in which
we recognise four components, component a consisting of
modules M1, component b consisting of modules M2, and
component c consisting of modules M3 and M4. The whole
application exposes a provided port. Each module and com-
ponent has an associated management entity, respectively a
CAM or a MAM, arranged as a tree having the AM as its
root. All of these manager should be considered as logical
entities, nothing prevents each of them to be composed of a
set of distributed entities cooperating to achieve a common
goal [8].

Each CAM applies control strategies at the level of the
associated component, leveraging on non-functional ports of
the nested components. Whenever nested components do not
exploit any significant mechanism for adaptation and recon-
figuration, the CAM can possibly implement strategies based
on dynamic component creation and wiring functionalities

M4

MAM4

M3

MAM3

AM

M1

CAMa
MAM4

CAMc

M2

CAMb
MAM2

ASSIST stream

component
functional
interaction
(e.g. RPC)

provided
port

component a component b

component c

NF port

NF port NF port

Fig. 3. Four interacting Grid.it components.

provided by the component model. As a concrete example,
a component wrapping a legacy MPI program will likely
miss adaptation functionalities (its non-functional ports will
be no-ops). If the legacy component state can be saved or
disregarded, an outer CAM may create on the fly a new
instance of the component, with a different configuration and
mapping, and substitute the new version to the old one. A
CAM can also receive proposals of restructuring by the child
CAMs (monitor). In this case, the CAM has to apply a global
performance model in order to detect the need to restructure
more children modules and devise a good solution (analyse
& plan). Recursively, a CAM can receive reconfiguration
requests from father CAMs, and can send reconfiguration
proposals (execute). The root manager (AM) is the eventual
responsible for the final decisions in the global reconfiguration
control which, as seen, is a sort of parallel and asynchronous
Divide&Conquer strategy applied along the hierarchical man-
agement structure.

Overall, an application is described as a hierarchy of natural
self-governing components that in turn comprise a number of
interacting, self-governing components at the next level down.
Each component should be equipped with compositional QoS
model in order to control if the requested local behaviour prop-
agates bottom-up in the hierarchy in the globally requested
behaviour. They should continually adapt their configuration
to changes in Grid resources with the goal of sustaining the
requested QoS. Notice however that understanding the map-
ping from local behaviour to global behaviour is a necessary
but insufficient condition for controlling autonomic systems.
We must also exploit the inverse relationship. The strategy
to re-convey a component in the requested behaviour (plan
and execute phases) should be propagated in a top-down
fashion in the hierarchy. This means each strategy should be
designed in such a way it can be split in different parts, which
cooperate to achieve a global goal. These parts are not known
in advance since the structure of the hierarchy may change
during the run. The definition of a sound set of interaction
rules that, once embedded in managers, will induce the desired
global behaviour is under investigation. The concept of super-
component is a step ahead in this process. A super-component

includes a parametric number of components which interact
one with each other following a fixed and known pattern. This
considerably eases the understanding and the definition of the
global to local mapping of component behaviour.

V. GRID.IT SUPER-COMPONENTS

The advantages offered by a hierarchical structure of a
component application based on the managers interactions,
suggests a further abstraction step leading to the notion of
super-component, i.e. a container that can host both other
components or super-components. Super-components may be
considered as higher-order, parametric components which can
be instantiated with other components. They describe common
computation paradigms (skeletons, actually [22]).

We have to point out that such common computation
paradigms could be also described by manually composing
Grid.it components into a graph and by caring about the
encoding of the related managers. While the ASSIST compiler
can automatically generate templates for the manager of com-
ponents wired in any way, it cannot yet produce compositional
performance models and distributed re-configuration heuristics
for any graph of components. The programmer should com-
plete the description of these manager with suitable policies,
and this is a complex and error prone programming phase.
Due to their well-know parallel structure, super-components
eases the compiler task in producing suitable performance
models and heuristics, and enable it to produce full-fledged
working managers with any programmer intervention, who
is not required to care about internal behaviour (such as
scheduling and data distribution). This distinguishes Grid.it
super-components from other incarnations of higher-order
components (e.g. HOCs [20]).

In the Grid.it model two kinds of super-components are
currently defined:

a) DAG: it enables the wiring of components/super-
components as nodes of a Direct Acyclic Graph, as a gen-
eralisation of the a pipeline parallel pattern.

b) Farm: it enables the replication of a given host
component/super-component, and is functionally equivalent to
the replicated component, exposing the same provided/used
functional ports of the host. The farm can of course expose
different non-functional ports. Each data item (call/pure data)
on the farm provided functional ports is routed to the provided
ports of one of the internal replicas. Data items from the
replica’s used ports are routed on the super-component ones.
The replication degree can be changed at run-time via the farm
non-functional ports, causing replicas to be spawn/deactivated,
exploiting mechanisms and policies analogous to those used
in parallel modules, described in this section and in Sec. VI.

Super-components can be used with both event/one-way
and RPC-style ports. However, they are particularly suited
to be connected via one-way streams, describing a flow of
data that is computed along different logical phases. In this
case, wiring among components may be done via buffered
ports (implemented via distributed queues), enabling multi-site
deployment without a strict co-allocation mechanism.

Super-components turn the Grid.it component model into a
hierarchical component model, according to GCM specifica-
tion.

A. QoS Contracts for Autonomic Components

A Grid.it autonomic component accepts (statically or dy-
namically) a QoS contract via its non-functional interfaces.
Currently, QoS contracts are described by a specific XML
file, and include the specification of the processing bandwidth
(service time) in stream-based computations, and/or the com-
pletion time, which is often more significant for non-stream
computations. Such a contract may be subject to constraints
on the amount and on the kind of computing resources.

A Grid.it QoS contract carries a component QoS goal and
the description on how it should be achieved. In particular:

• Performance features: a set of variables, which can be
evaluated from module static information, run-time data,
collected through monitoring, and performance model
evaluation.

• Performance model: a set of relations among performance
features variables, some of them representing the perfor-
mance goal.

• Performance goal: a set of inequalities involving perfor-
mance features.

• Deployment annotations describing processes resource
needs, such as required hardware (platform kind, memory
and disk size, network configuration, etc.), required soft-
ware (O.S., libraries, local services, etc.), and other all
strictly required constraints to enforce code correctness.

• Adaptation policy: a reference to the desired adaptation
policy chosen among the ones available for the module.
Standard adaptation policies are represented as algorithms
and embedded within MAM code at compile time.

Among all possible QoS goals, Grid.it managers currently sup-
port the performance related ones that are achievable through
adaptation within each parallel module. Aspects regarding
modules coordination, as well as other QoS measures such
as reliability, availability, and security are currently under
investigation.

The performance models used in the ASSIST framework
range from very simple and approximate analytical models,
such as the one used to manage task farm parmods, to
more complex models derived using advanced mathematical
techniques, such as those derived in [2], [23].

As an example, the following is the QoS contract of the
experiment in Fig. 4. For more details about Grid.it QoS
contracts we refer back to [2], [8].

Perf. features QLi (input queue level), QLo (input queue level), TISM

(ISM service time), TOSM (OSM service time), Nw (number
of VPMs), Tw[i] (VPMi avg. service time), Tp (parmod avg.
service time)

Perf. model Tp = max{TISM ,
∑n

i=1
Tw[i]/n, TOSM}

Goal Tp < K

Deployment arch = (i686-pc-linux-gnu ∨ powerpc-apple-darwin*)

Adapt. policy goal based

N.
 o

f V
PM

s

 80 60 40 20 140

 8
 6
 4
 2

Fi
ll %

Wall Clock Time (s)

Ite
m

s/
s

 2

 200

 4
 6
 8

 10

Input stream pressure

 160 180 120

Input stream queue fill level
 0

 50
 100

VPMs aggregated power

N. of VPMs in parmod

 100

Fig. 4. Experiments on ASSIST adaptivity: Farm reconfigurations guided
by QoS contract changes

!

!"#

!"$

!"%

!"&

'

'"#

($)#"*+,- ($)#+,- (.)&%&/,- ($)#"&+,-

(0123456789:;

<
=
=
"7
=
54
3"
7>
92
?
51
29
4
:
@
A@
B

!C

'C

#C

.C

$C

*C

%C

D
9:
E
F
7G
4
H
4
/
I(
J

<=="7=5409:H
7G4H4/I(J

< G K L

Fig. 5. Experiments on ASSIST adaptivity: Performance of chosen machines
on a non-dedicated execution environment

Since ASSIST super-components are pre-defined hierarchi-
cal structures of components, the autonomic management dis-
cussed can be applied also to such structures, thus allowing the
ASSIST framework to expose autonomic super-components.

VI. ASSIST IMPLEMENTATION RESULTS

In this section we will focus on adaptation for ASSIST
parallel modules with reference to the satisfaction of user-
provided QoS constraints. We will also show quantitative
results.

A. ASSIST parmod Adaptivity

As reported in [2], the ASSIST support natively provides for
a wide range of dynamic adaptations for parallel modules: new
processes can be added/removed at runtime within a parmod,
and can be migrated across heterogeneous platforms, using a
specifically optimized checkpointing strategy. This allows to
exploit remapping strategies to balance the workload in data-
parallel computations

No matter when a change request is issued by user or
runtime support, the involved module is actually able to
reconfigure itself only in special conditions. In such time
windows, which are called reconf-safe points, the parmod state
is consistent, i.e. it is completely defined by the value of its
attributes, and no communications involving data are pending.
Notably, the runtime does not introduce any additional syn-
chronisation, apart from those required by program semantics.
It rather delays reconfiguration execution until the next natural
reconf-safe point is reached.

Reconfiguration actions are implemented and optimized for
each parmod taking into account its parallel computation

 4

 2

 0

 400
 350
 300
 250

 150
 200

 100
 50

D

A

C

B

additional load started on platform B

VP
s

to
 V

PM
s

m
ap

pi
ng

se
co

nd
s

Iteration count
 0 50 100 150 200 250 300 350 400

Max unbalance time
Iteration time 3

 1

Fig. 6. Experiments on ASSIST adaptivity: Data-parallel rebalancing

semantics. Migration overhead is especially dependent on the
knowledge we can infer from the high-level specification of
the computation that a parmod provides.

B. Quantitative Results

To evaluate the effectiveness of our approach we report
experiences about a farm and a data-parallel parmod (Fig. 4–
5). The former farms out a dummy sequential function with 2s
average service time; the latter computes an iterative (forall)
reduction on internal shared state.
Farm parmod is executed with an initial, relatively strict QoS

constraint over the overall module service time (Fig. 4).
The QoS contract for the parmod is changed twice by
user. The first time, about 70s after computation start, a
more relaxed contract is submitted. The runtime support
consequently mandates a reduction of the parallelism
degree to free the exceeding resources. The second time,
QoS gets tighter, thus fresh resources are recruited and
new VPM processes launched on them, in order to meet
the user requirements.

Data-parallel computation is distributed on four heteroge-
neous machines in a non-dedicated execution environ-
ment (Fig. 5 shows their relative performance). When
a processing element is artificially overloaded (Fig. 6,
ray-tracing and code compiling starts on node B) the
autonomic runtime redistributes the workload trying to re-
balance the computation. The support decides to shrink
the partition of shared data assigned to the overloaded
processing element for the rest of the execution, dis-
tributing the exceeding workload proportionally to the
performance of the other processing elements.

These experiments show that the approach is feasible for
data-parallel computations, and that good results are obtained
for the task-parallel ones, for which we found effective adap-
tation policies.

C. Component-based Applications

Applications are expressed at the highest level, as simple
interconnection of black-box components as well as hierar-
chical compositions of managers, where users only have to
define the correct bindings of declared functional interfaces.
The functional behaviour of parallel components may be
easily and effortless described, naturally exploiting the AS-
SIST coordination language. The framework supports stream,

<Binding>
<Components>
<Component refId="InputComponent">

<LaunchRef ref="inputPkg"/>
</Component>
<Component refId="DataParallelComp">

<LaunchRef ref="dataParallelPkg"
dataAAR="calibration"/>

</Component>
</Components>
<Connectors>
<Stream refId="Channel">

<BasicType>long</BasicType>
</Stream>

</Connectors>
<Dependencies>
<Component refId="InputComponent">

<Produce>
<Stream refId="Channel" origName="out"/>

</Produce>
</Component>
<Component refId="DataParallelComp">

<Consume>
<Stream refId="Channel" origName="src"/>

</Consume>
</Component>
</Dependencies>

</Binding>

Fig. 7. A typical composition in a pipeline application

event and RPC communication paradigms, and consequently
provides for component interconnection at run-time by means
of declared interface binding. The experiences achieved with
the work on ASSIST have naturally driven us to focus more
on to the stream nature of logical interconnection. Study about
the other kinds of support is currently ongoing.

As an example of component composition, Fig. 7 shows
a typical layout of a pipeline application, where two stages
are defined and a logical connector is created, of type stream.
In the simple formalism used to bind components’ interfaces
together no knowledge of internal component behaviour, nor
implementation, is actually required to produce the final pack-
aging of the application. The configuration file exposed can
be used as input for a pipeline Application Manager to be
executed on Grid machines. Once run, users can interact with
the top-level manager to alter the parallel behaviour of the
stages or monitor its performance in real-time.

VII. THE GCM APPROACH

The Grid Component Model (GCM in short) has been
recently introduced by the Institute of Programming Model of
the CoreGRID NoE (WP3), as a unified software component
model for Computational Grids, currently at the level of a
proposal.

GCM is based on the Fractal component model [17], which
is hierarchical. Components can be contained within other
components, and the support of a component (its membrane in
the Fractal terminology) can also be made up of other compo-
nents. Component controllers are primitive Fractal components
devoted to controlling their containing component, by means
of internal non-functional interfaces which allow them e.g. to
alter their host component configuration, and to intercept the
communication flow between the inside and the outside of the
host component.

44

4

4

4

Component

Definition

Self−* Controller

Definition

Component

controller
controller

*−contract

N.F.I.
self−*

*−contract

N.F.I.

Non Functional Interface

Monitoring

self−*

Fig. 8. The hierarchy of controllers inside a GCM composite component.

To enhance component interoperability with legacy code,
Fractal considers different levels of compliance of actual com-
ponents with the implementation framework. GCM applies a
similar approach also to autonomic behaviour, with the highest
level of compliance being that of fully autonomic components,
which implement the whole set of autonomic interfaces. At
lower levels of compliance, components can implement a
subset of the interfaces needed for autonomic behaviour (e.g.
steering or introspection interfaces).

The autonomicity of a GCM component can be charac-
terised w.r.t. two main points:

1) non-functional ports implement the interface through
which the user can express, at a high-level, the desired
behaviours/properties of the component. Non-functional
ports are implemented by a hierarchy of linked compo-
nent controllers, whose structure reflects the component
hierarchical structure (see Fig. 8).

2) Each controller is related to a specific aspect of the auto-
nomicity of the component. Controllers are implemented
as sub-component of the whole component itself. In
order to allow flexible dynamic replacing of support code
within a component, Dynamic component controllers
have been proposed which can be stopped and replaced
at run-time, encapsulating specific policies or low-level
functionality. The specific implementation of controllers
is thus configurable, and defines the autonomic behaviour
of the component.

A. Autonomic Component Controllers

The GCM proposal defines a set of separate controllers that
hierarchically implement the run-time support of the differ-
ent autonomicity aspects, exposing interfaces through which
contracts can be specified. The organisation of controllers is
depicted in Fig. 8:

• The composite component provides a set of non-
functional interfaces bound to the controllers of the
component itself.

• The controllers of the composite are bound to the con-
trollers of the sub-components by means of subcompo-
nent non-functional interfaces.

• Each sub-component controller directly monitors the
subcomponent itself, and, when requested, provides this
information to the composite component controller.

• Each sub-component controller directly manages the sub-
component.

As it can be seen, there is a clear similarity between GCM
controllers and ASSIST managers, as well as between their
hierarchical organisation. However, GCM requires a separate
controller for each autonomicity aspect, while in ASSIST more
attention is paid on the interactions between managers that
coordinate them-selves to reach a common autonomicity goal.

Another common aspect regards the role of non-functional
interfaces. Non-functional ports in the GCM proposal are each
one related to a specific autonomicity aspect. Examples of the
kind of requests acceptable by those interfaces are:

• a new level of performance of the component constraining
the service time under a specified threshold, made explicit
by a new performance contract (self-optimisation)

• a requirement on the fault tolerance level provided, or on
the fault recovery mechanism. That contract can require
a 99.9% probability of fail-free execution or mandate that
a failure should cost less that one hour of computation
(self-healing).

• a desired level of security for a protocol (e.g. the hardness
of a cryptographic code) or a specific constraint on the
kind of protocols/resources used (self-protection).

• the interface can accept the description of a goal, a
parameter, or a procedure to adopt in order to configure
the component (self-configuring).

The GCM framework proposal does not define how the
different contracts can interact, even though it is clear that they
do in the general case: for instance, a performance contract can
be satisfied if resources are available (thus we may need to
self-configure new ones) and as long as the overhead due to
fault tolerance is not too high.

It is thus a matter of research to understand how contracts
specified at the top of the hierarchy are translated into goals
for the leaf components, and how to prevent or control interac-
tions between different controllers, especially if we take into
account that dynamic component controller can be replaced at
any time. This is a quite powerful feature but it also adds to
the complexity of the problem.

As previously mentioned, GCM also supports deriving
full autonomic behaviour from non-autonomic components.
Controllers can choose to expose outside of the component
the steering interfaces that are usually available only from
inside, e.g. allowing to modify the parallelism degree of a
subcomponent. Devolving control to an outer entity can break
autonomicity, but also allows us to develop an overall auto-
nomic composition out of non-autonomic components (having
a very limited controller support) by adding external manager
components which play the autonomic controller role. This

approach is just the same that has been pursued in the design
of ASSIST and the Grid.it component model.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a general approach to
autonomic grid components, which is common to the GCM
and the Grid.it component models. We have described the
ASSIST architecture with its managing hierarchy ensuring
specific QoS aspects and we have introduced the concept
of autonomic super-component as higher-order parametric
component embedding a given parallel behaviour.

From the test results it is clear that ASSIST partially
implements the features required in the GCM model, allow-
ing structured design and deployment of component based
applications over grids, with high performance and ensuring
autonomic control w.r.t. performance and optimisation. There
are however differences and open issues which still have to
be investigated. GCM models autonomicity with a separate
controller for each aspect: it is not yet clear how the different
hierarchies related to the aspects will interact.

Even in the simpler design adopted in Grid.it, where man-
agers are not separate for the different aspects, it a critical
issue to develop interaction schemes and techniques to break
autonomic goals into cooperating and non-conflicting subgoals
to be applied to lower levels of a component hierarchy.

Another issue is that even if the ASSIST approach to
autonomic performance management is general, we still are
more geared toward stream asynchronous communication.
While this communication paradigm is quite efficient to exploit
over grids, more general models and techniques have to be
applied in order to tackle more general application structures.

At the moment we are working to enlarge the set of super-
components, and experimenting with different policies and
coordination protocols for the manager hierarchy. At the same
time, since our experiences will contribute to the analysis
and design of the GCM component model, we have planned
to enhance the compatibility between the ASSIST/Grid.it
environment and GCM, implementing a larger subset of it
within our programming environment.

ACKNOWLEDGMENTS

This work has been partially supported by Italian na-
tional FIRB project no. RBNE01KNFP Grid.it, by Italian
national strategic projects legge 449/97 No. 02.00470.ST97
and 02.00640.ST97, and byt the FP6 Network of Excellence
CoreGRID funded by the European Commission (Contract
IST-2002-004265).

REFERENCES

[1] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper, L. Torczon,
F. Berman, A. Chien, H. Dail, O. Sievert, D. Angulo, I. Foster,
D. Gannon, L. Johnsson, C. Kesselman, R. Aydt, D. Reed, J. Dongarra,
S. Vadhiyar, and R. Wolski, “Toward a framework for preparing and
executing adaptive Grid programs,” in Proc. of NSF Next Generation
Systems Program Workshop (IPDPS 2002), 2002.

[2] M. Aldinucci, A. Petrocelli, E. Pistoletti, M. Torquati, M. Vanneschi,
L. Veraldi, and C. Zoccolo, “Dynamic reconfiguration of grid-aware
applications in ASSIST,” in Proc. of 11th Intl. Euro-Par 2005: Parallel
and Distributed Computing, ser. LNCS, J. C. Cunha and P. D. Medeiros,
Eds., vol. 3648. Springer Verlag, Aug. 2005.

[3] M. Aldinucci, F. André, J. Buisson, S. Campa, M. Coppola, M. Dane-
lutto, and C. Zoccolo, “Parallel program/component adaptivity manage-
ment,” in Proc. of Intl. PARCO 2005: Parallel Computing, Sept. 2005.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
IEEE Computer, vol. 36, no. 1, pp. 41–50, 2003.

[5] S. White, J. Hanson, I. Whalley, D. Chess, and J. Kephart, “An
architectural approach to autonomic computing,” in Proceedings of the
International Conference on Autonomic Computing, May 2004, pp. 2–9.

[6] NGG3, Future for European Grids: GRIDs and Service Oriented
Knowledge Utilities. Vision and Research Directions 2010 and Beyond,
Next Generation GRIDs Expert Group, Jan. 2006. [Online]. Available:
ftp://ftp.cordis.lu/pub/ist/docs/grids/ngg3 eg final.pdf

[7] A. Andrzejak, A. Reinefeld, F. Schintke, and T. Schütt, “On adaptability
in grid systems,” in Future Generation Grids, ser. CoreGRID series,
V. Getov, D. Laforenza, and A. Reinefeld, Eds. Springer-Verlag, Nov.
2005.

[8] M. Aldinucci, M. Danelutto, and M. Vanneschi, “Autonomic QoS in AS-
SIST grid-aware components,” in Proceedings of Intl. Euromicro PDP
2006: Parallel Distributed and network-based Processing. Montbéliard,
France: IEEE, Feb. 2006.

[9] Deliverable D.PM.02 – Proposals for a Grid Component Model,
CoreGRID NoE deliverable series, Institute on Programming Model,
Nov. 2005. [Online]. Available: http://www.coregrid.net

[10] M. Vanneschi, “The programming model of ASSIST, an environment
for parallel and distributed portable applications,” Parallel Computing,
vol. 28, no. 12, pp. 1709–1732, Dec. 2002.

[11] M. Aldinucci, M. Coppola, M. Danelutto, M. Vanneschi, and C. Zoccolo,
“ASSIST as a research framework for high-performance grid program-
ming environments,” in Grid Computing: Software environments and
Tools, J. C. Cunha and O. F. Rana, Eds. Springer Verlag, Jan. 2006,
ch. 10, pp. 230–256.

[12] The CORBA & CCM home page, http://ditec.um.es/∼dsevilla/ccm/.
[13] D. Thain, T. Tannenbaum, and M. Livny, “Condor and the grid,” in

Grid Computing: Making the Global Infrastructure a Reality, F. Berman,
G. Fox, and T. Hey, Eds. John Wiley & Sons Inc., December 2002.

[14] A. Denis, C. Pérez, T. Priol, and A. Ribes, “Bringing high performance
to the corba component model,” in SIAM Conference on Parallel
Processing for Scientific Computing, Feb. 2004.

[15] S. Vadhiyar and J. Dongarra, “Self adaptability in grid computing,”
Concurrency & Computation: Practice & Experience, vol. 17, no. 2–4,
pp. 235–257, 2005.

[16] F. Baude, D. Caromel, and M. Morel, “On hierarchical, parallel and dis-
tributed components for Grid programming,” in Workshop on component
Models and Systems for Grid Applications, V. Getov and T. Kielmann,
Eds., ICS ’04, Saint-Malo, France, June 2005.

[17] The Fractal Component Model, Technical Specification, ObjectWeb
Consortium, 2003.

[18] J. Buisson, F. André, and J.-L. Pazat, “Performance and practicability
of dynamic adaptation for parallel computing: An experience feedback
from Dynaco,” IRISA PI-1782, Rennes, France, Tech. Rep., Feb. 2006.

[19] R. V. van Nieuwpoort, J. Maassen, G. Wrzesinska, R. Hofman, C. Ja-
cobs, T. Kielmann, and H. E. Bal, “Ibis: a flexible and efficient java-
based grid programming environment,” Concurrency & Computation:
Practice & Experience, vol. 17, pp. 1079–1107, 2005.

[20] S. Gorlatch and J. Dünnweber, “From grid middleware to grid appli-
cations: Bridging the gap with HOCs,” in Future Generation Grids,
ser. CoreGRID series, V. Getov, D. Laforenza, and A. Reinefeld, Eds.
Springer-Verlag, Nov. 2005.

[21] M. Aldinucci, M. Coppola, S. Campa, M. Danelutto, M. Vanneschi, and
C. Zoccolo, “Structured implementation of component based grid pro-
gramming environments,” in Future Generation Grids, ser. CoreGRID
series, V. Getov, D. Laforenza, and A. Reinefeld, Eds. Springer Verlag,
Nov. 2005, pp. 217–239.

[22] M. Cole, “Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming,” Parallel Computing, vol. 30, no. 3,
pp. 389–406, 2004.

[23] C. Zoccolo, “High-performance component-based programming for het-
erogeneous computing,” Ph.D. dissertation, Dept. Computer Science,
Univ. of Pisa, 2005.

